Skip to main content

Cell Therapy for Cardiovascular Disorders

  • Chapter
  • First Online:
Applications of Biotechnology in Cardiovascular Therapeutics

Abstract

New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure. Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow (BM) stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium. Basics and techniques of cell therapy have been described in a special report on this topic (Jain 2011). Applications in cardiovascular disorders will be described in this chapter including methods of delivery of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abilez O, Benharash P, Miyamoto E, et al. P19 progenitor cells progress to organized contracting myocytes after chemical and electrical stimulation: implications for vascular tissue engineering. J Endovasc Ther 2006;13:377–88.

    Article  Google Scholar 

  • Abraham MR, Henrikson CA, Tung L, et al. Antiarrhythmic Engineering of Skeletal Myoblasts for Cardiac Transplantation. Circ Res 2005;97:159–67.

    Article  CAS  Google Scholar 

  • Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. PNAS 2005;102:11474–9.

    Article  CAS  Google Scholar 

  • Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 2006;113:1451–63.

    Article  Google Scholar 

  • Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668–73.

    Article  CAS  Google Scholar 

  • Behfar A, Perez-Terzic C, Faustino RS, et al. Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. J Exp Med 2007;204:405–20.

    Article  CAS  Google Scholar 

  • Bersell K, Arab S, Haring B, et al. Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury. Cell 2009;138:257–70.

    Article  CAS  Google Scholar 

  • Blin G, Nury D, Stefanovic S, et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 2010;120:1125–39.

    Article  CAS  Google Scholar 

  • Blindt R, Vogt F, Astafieva I, et al. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J Am Coll Cardiol 2006;47:1786–95.

    Article  CAS  Google Scholar 

  • Bonaros N, Rauf R, Wolf D, et al. Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. J Thorac Cardiovasc Surg 2006;132:1321–8.

    Article  Google Scholar 

  • Brunner S, Engelmann MG, Franz WM. Stem cell mobilisation for myocardial repair. Expert Opinion on Biological Therapy 2008;8:1675–1690.

    Article  CAS  Google Scholar 

  • Cai CL, Martin JC, Sun Y, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 2008;454:104–8.

    Article  CAS  Google Scholar 

  • Caspi O, Gepstein L. Regenerating the Heart Using Human Embryonic Stem Cells – from Cell to Bedside. IMAJ 2006;8:208–14.

    CAS  Google Scholar 

  • Christine KS, Conlon FL. Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline. Dev Cell 2008;14:616–23.

    Article  CAS  Google Scholar 

  • Colazzo F, Chester AH, Taylor PM, Yacoub MH. Induction of mesenchymal to endothelial transformation of adipose-derived stem cells. J Heart Valve Dis 2010;19:736–44.

    Google Scholar 

  • Davis ME, Hsieh PC, Takahashi T, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. PNAS 2006;103:8155–60.

    Article  CAS  Google Scholar 

  • Dawn B, Stein AB, Urbanek K, et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. PNAS 2005;102:3766–71.

    Article  CAS  Google Scholar 

  • Engel FB, Schebesta M, Duong MT, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development 2005;19:1175–87.

    Article  CAS  Google Scholar 

  • Engelmayr GC, Cheng M, Bettinger CJ, et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mat 2008;7:1003–10.

    Article  CAS  Google Scholar 

  • Fazel S, Cimini M, Chen L, et al. Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Invest 2006; 116: 1865–1877.

    Article  CAS  Google Scholar 

  • Flynn A, O’Brien T. Stem cell therapy for cardiac disease. Expert Opin Biol Ther 2011;11:177–87.

    Article  Google Scholar 

  • Fraidenraich D, Stillwell E, Romero E, et al. Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science 2004;306:247–52.

    Article  CAS  Google Scholar 

  • Ghodsizad A, Niehaus M, Kögler G, et al. Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart 2009;95:27–35.

    Article  CAS  Google Scholar 

  • Guarita-Souza LC, Carvalho KA, Woitowicz V, et al. Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation 2006;114(1 Suppl):I120–4.

    CAS  Google Scholar 

  • Hagege AA, Marolleau JP, Vilquin JT, et al. Skeletal myoblast transplantation in ischemic heart failure: long-term follow-up of the first phase I cohort of patients. Circulation 2006;114(1 Suppl):I108–13.

    Google Scholar 

  • Hare J, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, ­dose-escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277–86.

    Article  CAS  Google Scholar 

  • Harel-Adar T, Mordechai TB, Amsalem Y, et al. Modulation of cardiac macrophages by ­phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA 2011;108:1827–32.

    Article  CAS  Google Scholar 

  • Hata H, Matsumiya G, Miyagawa S, et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg 2006;132:918–24.

    Google Scholar 

  • Huang YC, Khait L, Birla RK. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration. J Biomed Mat Res Part A 2007;80:719–31.

    Article  Google Scholar 

  • Ieda M, Fu JD, Delgado-Olguin P, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010;142:375–86.

    Article  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395–402.

    Article  CAS  Google Scholar 

  • Jain KK. Cell Therapy: technologies, markets & companies. 2011, Jain PharmaBiotech Publications, Basel, 2011.

    Google Scholar 

  • Jo J, Nagaya N, Miyahara Y, et al. Transplantation of Genetically Engineered Mesenchymal Stem Cells Improves Cardiac Function in Rats with Myocardial Infarction: Benefit of a Novel Nonviral Vector, Cationized Dextran. Tissue Engineering 2007;13:313–322.

    Google Scholar 

  • Kang H, Kim H, Zhang S, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 2004;363:751–56.

    Article  CAS  Google Scholar 

  • Karp JM, Leng Teo GS. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 2009;4:206–16.

    Article  CAS  Google Scholar 

  • Kehat I, Khimovich L, Caspi O, et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotech 2004;22:1282–9.

    Article  CAS  Google Scholar 

  • Kellar RS, Shepherd BR, Larson DF, et al. Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng 2005;11:1678–87.

    Article  CAS  Google Scholar 

  • Kolossov E, Bostani T, Roell W, et al. Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 2006;203:2315–27.

    Article  CAS  Google Scholar 

  • Kraitchman DL, Tatsumi M, Gilson WD, et al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 2005;112:1451–61.

    Article  Google Scholar 

  • Kühn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med 2007;13:962–9.

    Article  Google Scholar 

  • Kusuyama T, Omura T, Nishiya D, et al. The effects of HMG-CoA reductase inhibitor on vascular progenitor cells. J Pharmacol Sci 2006;101:344–9.

    Article  CAS  Google Scholar 

  • Kyrtatos PG, Lehtolainen P, Junemann-Ramirez M, et al. Magnetic Tagging Increases Delivery of Circulating Progenitors in Vascular Injury. J Am Coll Cardiol Intv 2009;2:794–802.

    Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotech 2007;25:1015–24.

    Article  CAS  Google Scholar 

  • Laflamme MA, Gold J, Xu C, Hassanipour M, et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 2005;167:663–71.

    Article  CAS  Google Scholar 

  • Laugwitz KL, Moretti A, Lam J, et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 2005;433:647–653.

    Article  CAS  Google Scholar 

  • Lepilina A, Coon AN, Kikuchi K, et al. A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration. Cell 2006;127:607–19.

    Article  CAS  Google Scholar 

  • Li TS, Takahashi M, Suzuki R, et al. Pravastatin improves remodeling and cardiac function after myocardial infarction by an antiinflammatory mechanism rather than by the induction of angiogenesis. Ann Thorac Surg 2006;81:2217–25.

    Article  Google Scholar 

  • Linke A, Müller P, Nurzynska D, et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. PNAS 2005;102:8966–71.

    Article  CAS  Google Scholar 

  • Lu SJ, Feng Q, Caballero S, et al. Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 2007;4:501–9.

    Article  CAS  Google Scholar 

  • Lushaj EB, Anstadt E, Haworth R, et al. Mesenchymal stromal cells are present in the heart and promote growth of adult stem cells in vitro. Cytotherapy 2010 Nov 19. [Epub ahead of print].

    Google Scholar 

  • Menard C, Hagege AA, Agbulut O, et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet 2005; 366:1005–1012.

    Article  Google Scholar 

  • Menasché P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 2008;117:1189–200.

    Google Scholar 

  • Mund JA, Ingram DA, Yoder MC, Case J. Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy 2009;11:103–113.

    Article  Google Scholar 

  • Murry CE, Pu WT. Reprogramming fibroblasts into cardiomyocytes. N Engl J Med 2011;364:177–8.

    Article  CAS  Google Scholar 

  • Napoli C, Williams-Ignarro S, de Nigris F, et al. Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. PNAS 2005;102:17202–6.

    Article  CAS  Google Scholar 

  • Okada M, Payne TR, Zheng B, et al. Myogenic Endothelial Cells Purified From Human Skeletal Muscle Improve Cardiac Function After Transplantation Into Infarcted Myocardium. J Am Coll Cardiol 2008;52:1869–1880.

    Article  Google Scholar 

  • Ott HC, Matthiesen TS, Brechtken J, et al. The adult human heart as a source for stem cells: repair strategies with embryonic-like progenitor cells. Nat Clin Pract Cardiovasc Med 2007;4 Suppl 1(S1):S27-S39.

    Article  Google Scholar 

  • Radisic M, Park H, Chen F, et al. Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Eng 2006;12:2077–91.

    Article  CAS  Google Scholar 

  • Rey S, Lee K, Wang CJ, et al. Synergistic effect of HIF-1α gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. PNAS 2009;106:20399–404.

    Article  CAS  Google Scholar 

  • Roche R, Hoareau L, Mounet F, Festy F. Adult stem cells for cardiovascular diseases: the adipose tissue potential. Expert Opin Biol Ther 2007;7:791–798.

    Article  CAS  Google Scholar 

  • Sadek H, Hannack B, Choe E, et al. Cardiogenic small molecules that enhance myocardial repair by stem cells. PNAS 2008;105:6063–8.

    Article  CAS  Google Scholar 

  • Schachinger V, Erbs S, Elsässer A, et al. Intracoronary Bone Marrow–Derived Progenitor Cells in Acute Myocardial Infarction. NEJM 2006;355: 1210–1221.

    Article  CAS  Google Scholar 

  • Schmidt D, Mol A, Odermatt B, et al. Engineering of Biologically Active Living Heart Valve Leaflets Using Human Umbilical Cord-Derived Progenitor Cells. Tissue Eng 2006;12: 3223–3232.

    Article  CAS  Google Scholar 

  • Shmelkov SV, Meeus S, Moussazadeh N, et al. Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue. Circulation 2005;111:1175–83.

    Article  CAS  Google Scholar 

  • Singla DK, Hacker TA, Ma L, et al. Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. Journal of Molecular and Cellular Cardiology 2006;40:195–200.

    Article  CAS  Google Scholar 

  • Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45–6.

    Article  Google Scholar 

  • Strauer BE, Brehm M, Zeus T, et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. J Am Coll Cardiol 2005;46:1651–8.

    Article  Google Scholar 

  • Strem BM, Zhu M, Alfonso Z, et al. Expression of Cardiomyocytic Markers on Adipose Tissue-Derived Cells in a Murine Model of Acute Myocardial Injury. Cytotherapy 2005;7:282–291.

    Article  CAS  Google Scholar 

  • Sun Z, Wu J, Fujii H, et al. Human angiogenic cell precursors restore function in the infarcted rat heart: a comparison of cell delivery routes. Eur J Heart Fail 2008;10:525–33.

    Article  CAS  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009;325:612–6.

    Article  CAS  Google Scholar 

  • Tillmanns J, Rota M, Hosoda T, et al. Formation of large coronary arteries by cardiac progenitor cells. PNAS 2008;105:1668–73.

    Article  CAS  Google Scholar 

  • Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. PNAS 2005;102:8692–7.

    Article  CAS  Google Scholar 

  • Xiang Z, Liao R, Kelly MS, Spector M. Collagen–GAG Scaffolds Grafted onto Myocardial Infarcts in a Rat Model: A Delivery Vehicle for Mesenchymal Stem Cells. Tissue Engineering 2006;12:2467–2478.

    Article  CAS  Google Scholar 

  • Xiaofeng Y, Wu Y, Wang H, et al. Transplantation of Mobilized Peripheral Mononuclear Cells for Peripheral Arterial Occlusive Disease. J Geriatr Cardiol 2006;3:181–3.

    Google Scholar 

  • Xie CQ, Zhang J, Xiao Y, et al. Transplantation of Human Undifferentiated Embryonic Stem Cells into A Myocardial Infarction Rat Model. Stem Cells and Development 2007;16:25–30.

    Article  CAS  Google Scholar 

  • Xue T, Cho HC, Akar FG, et al. Functional Integration of Electrically Active Cardiac Derivatives from Genetically Engineered Human Embryonic Stem Cells With Quiescent Recipient Ventricular Cardiomyocytes. Insights into the Development of Cell-Based Pacemakers. Circulation 2005;111:11–20.

    Article  Google Scholar 

  • Yang L, Soonpaa MH, Adler ED, et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 2008;453:524–8.

    Google Scholar 

  • Yankelson L, Feld Y, Bressler-Stramer T, et al. Cell therapy for modification of the myocardial electrophysiological substrate. Circulation 2008;117:720–31.

    Article  Google Scholar 

  • Zaruba MM, Franz WM. Role of the SDF-1-CXCR4 axis in stem cell-based therapies for ischemic cardiomyopathy. Expert Opin Biol Ther 2010;10:321–35.

    Article  CAS  Google Scholar 

  • Zeineddine D, Papadimou E, Mery A, et al. Cardiac commitment of embryonic stem cells for myocardial repair. Methods Mol Med 2005;112:175–82.

    CAS  Google Scholar 

  • Zhang G, Wang X, Wang Z, et al. A PEGylated Fibrin Patch for Mesenchymal Stem Cell Delivery. Tissue Engineering 2006;12:9–19.

    Article  CAS  Google Scholar 

  • Zhang S, Wang D, Estrov Z, et al. Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation 2004;110:3803–7.

    Article  Google Scholar 

  • Zhao X, Bucchi A, Oren RV, et al. In vitro characterization of HCN channel kinetics and frequency dependence in myocytes predicts biological pacemaker functionality. J Physiol 2009;587:1513–25.

    Article  CAS  Google Scholar 

  • Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008;454:109–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2011). Cell Therapy for Cardiovascular Disorders. In: Applications of Biotechnology in Cardiovascular Therapeutics. Humana Press. https://doi.org/10.1007/978-1-61779-240-3_7

Download citation

Publish with us

Policies and ethics