Skip to main content

Inherent Nuclear Reprogramming in Mammalian Embryos

  • Chapter
  • First Online:
Nuclear Reprogramming and Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1166 Accesses

Abstract

In the current literature, the term “nuclear reprogramming” is defined as either the switch of the gene expression state from one cell type to another or the change of a differentiated, specialized cell into a developmentally more ­primitive but more pluripotent state. Experimentally, nuclear reprogramming can be achieved by somatic cell nuclear transfer (SCNT) into oocytes, by cell fusion, or by introduction of specific transcription factors into a cell. The epigenome of the target cell becomes altered and a gain of developmental potential ensues. During embryogenesis, nuclear reprogramming is achieved inherently through complex epigenetic processes. Here we focus on the natural, forward process of differentiation in the developing mouse embryo and discuss the key epigenetic reprogramming events involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenot PG, Mercier Y, Renard JP et al (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124:4615–4625

    PubMed  CAS  Google Scholar 

  • Ancelin K, Lange UC, Hajkova P et al (2006) Blimp1 associates with PRMT5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  PubMed  CAS  Google Scholar 

  • Aravin AA, Heijden GW, Castaneda J et al (2009) Cytoplasmic compartmentalisation of the fetal piRNA pathway in mice. PLoS Genet 5:e1000764

    Article  PubMed  Google Scholar 

  • Barreto G, Schafer A, Marhold J et al (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445:671–675

    Article  PubMed  CAS  Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya SK, Ramchandani S, Cervoni N et al (1999) A mammalian protein with specific demethylase activity for mCpG DNA. Nature 397:579–583

    Article  PubMed  CAS  Google Scholar 

  • Bhutani N, Brady JJ, Damian M et al (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1–15

    Article  Google Scholar 

  • Brennecke J, Malone CD, Aravin AA et al (2008) An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Chapman V, Forrester L, Sanford J et al (1984) Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307:284–286

    Article  PubMed  CAS  Google Scholar 

  • Chazaud C, Yamanaka Y, Pawson T et al (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Pane A, Schupbach T (2007) cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr Biol 17:1–6

    Article  Google Scholar 

  • Chen C, Jin J, James DA et al (2009) Mouse Piwi interactome identifies Tdrkh Tudor domain to arginine methylated Miwi. Proc Natl Acad Sci USA 106:20336–20341

    Article  PubMed  CAS  Google Scholar 

  • Dodge JE, Kang YK, Beppu H et al (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24:2478–2486

    Article  PubMed  CAS  Google Scholar 

  • Durcova-Hills G, Hajkova P, Sullivan S et al (2006) Influence of sex chromosome constitution on the genomic imprinting fo germ cells. Proc Natl Acad Sci USA 103:11184–11188

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Su IH, Schneider R et al (2003) Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development 130:4235–4248

    Article  PubMed  CAS  Google Scholar 

  • Farthing CR, Ficz G, Ng RK et al (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4:e1000116

    Article  PubMed  Google Scholar 

  • Gardner RL, Beddington RS (1988) Multi-lineage ‘stem’ cells in the mammalian embryo. J Cell Sci Suppl 10:11–27

    PubMed  CAS  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R et al (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666

    PubMed  CAS  Google Scholar 

  • Govin J, Escoffier E, Rousseaux S et al (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294

    Article  PubMed  CAS  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B et al (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648

    Article  PubMed  CAS  Google Scholar 

  • Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Ancelin K, Waldmann T et al (2008) Chromatin dynamics during epigenetic reprogamming in the mouse germ line. Nature 452:877–882

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Jeffries SJ, Lee C et al (2010) Genome-wide reprogramming in the mouse germline entails the base excision repair pathway. Science 329:78–82

    Article  PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  • Hata D, Okano M, Lei H et al (2002) DNMT3L cooperates with the DNMT3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993

    PubMed  CAS  Google Scholar 

  • Hochedlinger K, Plath K (2009) Epigenetic reprogramming and induced pluripotency. Development 136:509–523

    Article  PubMed  CAS  Google Scholar 

  • Howell CY, Bestor TH, Ding F et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi K, Yoshioka H, Low EW et al (2007) Autonomous regulation of sex-specific developmental programming of mouse fetal germ cells. Biol Reprod 77:697–706

    Article  PubMed  CAS  Google Scholar 

  • Kaneko-Ishino T, Kohda T, Ishino F (2003) The regulation and biological significance of genomic imprinting in mammals. J Biochem 133:699–711

    Article  PubMed  CAS  Google Scholar 

  • Kirino Y, Kim N, Planell-Saguer M et al (2009) Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for AGO3 and AUB stability. Nat Cell Biol 11:652–658

    Article  PubMed  CAS  Google Scholar 

  • Kirino Y, Vourekas A, Sayed N et al (2010) Arginine methylation of Aubergine mediates Tudor binding and germ plasm localisation. RNA 16:70–78

    Article  PubMed  CAS  Google Scholar 

  • Koutsourakis M, Langeveld A, Patient R et al (1999) The transcription factor GATA6 is essential for early extraembryonic development. Development 126:723–732

    CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K et al (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917

    Article  PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K et al (2010) MVH in piRNA processing and gene silencing of retrotransposons. Genes Dev 24:887–892

    Article  PubMed  CAS  Google Scholar 

  • Lane N, Dean W, Erhardt S et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93

    Article  PubMed  CAS  Google Scholar 

  • Lees-Murdock DJ, Felici MD, Walsh CP (2003) Methylation dynamics of repetitive DNA elements in the mouse germ cell lineage. Genomics 82:230–237

    Article  PubMed  CAS  Google Scholar 

  • Lepikhov K, Walter J (2004) Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4:12

    Article  PubMed  Google Scholar 

  • Lepikhov K, Zakhartchenko V, Hao R et al (2008) Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1:8

    Article  PubMed  Google Scholar 

  • Li JY, Lees-Murdock DJ, Xu GL et al (2004) Timing of establishment of paternal methylation imprints in the mouse. Genomics 84:952–960

    Article  PubMed  CAS  Google Scholar 

  • Lim AK, Kai T (2007) A unique germline organelle, Nuage, functions to repress selfish genetic elements in Drosophila melanogaster. Proc Natl Acad Sci USA 104:6714–6719

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Buchold GM, Greenbaum MP et al (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet 5:e1000635

    Article  PubMed  Google Scholar 

  • Maatouk DM, Kellam LD, Mann MRW et al (2006) DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages. Development 133:3411–3418

    Article  PubMed  CAS  Google Scholar 

  • Manes C, Menzel P (1981) Demethylation of CpG sites in DNA of early rabbit trophoblast. Nature 293:589–590

    Article  PubMed  CAS  Google Scholar 

  • Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure and catalysis. Curr Opin Genet Dev 11:155–161

    Article  PubMed  CAS  Google Scholar 

  • Messerschmidt DM, Kemler R (2010) Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev Biol 344:129–137

    Article  PubMed  CAS  Google Scholar 

  • Metivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–52

    Article  PubMed  CAS  Google Scholar 

  • Mitsui K, Tokuzawa Y, Itoh H et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  • Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382

    PubMed  CAS  Google Scholar 

  • Morgan HD, Dean W, Coker HA et al (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279:52353–52360

    Article  PubMed  CAS  Google Scholar 

  • Morgan HD, Santos F, Green K et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1: R47–R58

    Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  • Morrisey EE, Tang Z, Sigrist K et al (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12:3579–3590

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Arai Y, Umehara H et al (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9:64–71

    Article  PubMed  CAS  Google Scholar 

  • Nakatani Y (2001) Histone acetylases – versatile players. Genes Cells 6:79–86

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Zhang Y, Hendrich B et al (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61

    PubMed  CAS  Google Scholar 

  • Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll D, Erhardt S, Pagani M et al (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336

    Article  PubMed  Google Scholar 

  • Ogryzko VV, Schiltz RL, Russanova V et al (1996) The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Yamagata K, Hong K et al (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554–558

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Jeong YS, Shin ST et al (2007) Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev Dyn 236:2523–2533

    Article  PubMed  CAS  Google Scholar 

  • Peaston A, Evsikow AV, Graber JH et al (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606

    Article  PubMed  CAS  Google Scholar 

  • Polanski Z, Motosugi N, Tsurumi C et al (2008) Hypomethylation of paternal DNA in the late mouse zygote is not essential for development. Int J Dev Biol 52:295–298

    Article  PubMed  Google Scholar 

  • Ralston A, Rossant J (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev Biol 313:614–629

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001a) Evolution of imprinting mechanisms: the battle of the sexes begins in the zygote. Nat Genet 27:255–256

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001b) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Santos F, Dean W (2003) Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology 59:21–32

    Article  PubMed  CAS  Google Scholar 

  • Rossant J, Tam PP (2009) Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:701–713

    Article  PubMed  CAS  Google Scholar 

  • Rossant J, Sanford JP, Chapman VM et al (1986) Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev Biol 117:567–573

    Article  PubMed  CAS  Google Scholar 

  • Ruijter AJMD, Gennip AHV, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  Google Scholar 

  • Saeki H, Ohsumi K, Aihara H et al (2005) Linker histone variants control chromatin dynamics during early embryogenesis. Proc Natl Acad Sci USA 102:5697–5702

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127:643–651

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W et al (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  • Santos F, Peters AH, Otte AP et al (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    Article  PubMed  CAS  Google Scholar 

  • Seki Y, Hayashi K, Itoh K et al (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278:440–458

    Article  PubMed  CAS  Google Scholar 

  • Seki Y, Yamaji M, Yabuta Y et al (2007) Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice. Development 134:2627–2638

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  • Shoji M, Tanaka T, Hosokawa M et al (2009) The TDRD9-MIWI2 complex is essential for piRNA-mediated retrotransposon silencing in the mouse male germline. Dev Cell 17:775–787

    Article  PubMed  CAS  Google Scholar 

  • Soper SFC, Heijden GW, Hardiman TC et al (2008) Mouse Maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 15:285–297

    Article  PubMed  CAS  Google Scholar 

  • Szabo PE, Mann JR (1995) Biallelic expression of imprinted genes in the mouse germline: Implications for erasure, establishment and mechanisms of genomic imprinting. Genes Dev 9:1857–1868

    Article  PubMed  CAS  Google Scholar 

  • Tada T, Tada M, Hilton K et al (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Hennebold JD, Macfarlane J et al (2001) A mammalian oocyte-specific linker histone gene H1oo: homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 128:655–664

    PubMed  CAS  Google Scholar 

  • Tanaka TS, Kunath T, Kimber WL et al (2002) Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity. Genome Res 12:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  PubMed  CAS  Google Scholar 

  • Tian X, Fang J (2007) Current perspectives on histone demethylases. Acta Biochim Biophys Sin 39:81–88

    Article  PubMed  CAS  Google Scholar 

  • Torres-Padilla ME, Bannister AJ, Hurd PJ et al (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461

    Article  PubMed  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816

    Article  PubMed  CAS  Google Scholar 

  • Vagin VV, Wohlschlegel J, Qu J et al (2009) Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 23:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA et al (2005) Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    Article  PubMed  Google Scholar 

  • Watanabe D, Suetake I, Tada T et al (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187–190

    Article  PubMed  CAS  Google Scholar 

  • Wu F, Caron C, De Robertis C et al (2008) Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J Reprod Dev 54:413–417

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Edmondson DG, Evrard Y et al (2000) Loss of GCN512 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26:229–232

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Low EW, Marikawa Y et al (2005) Adult mice cloned from migrating primordial germcells. Proc Natl Acad Sci USA 102:11361–11366

    Article  PubMed  CAS  Google Scholar 

  • Yao TP, Oh SP, Fuchs M et al (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372

    Article  PubMed  CAS  Google Scholar 

  • Yuan H, Corbi N, Basilico C et al (1995) Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9:2635–2645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Messerschmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lim, A.K., Knowles, B.B., Kai, T., Messerschmidt, D.M. (2011). Inherent Nuclear Reprogramming in Mammalian Embryos. In: Ainscough, J., Yamanaka, S., Tada, T. (eds) Nuclear Reprogramming and Stem Cells. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-225-0_3

Download citation

Publish with us

Policies and ethics