Skip to main content

Beta-Lactam Antibiotics

  • Chapter
  • First Online:
Drug Interactions in Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 2025 Accesses

Abstract

This chapter describes the drug–drug interactions of the beta-lactam antibiotics: penicillins, cephalosporins, carbapenems, and monobactams. The beta-lactam antibiotics are a large class of diverse compounds used clinically in oral, parenteral, and inhaled dosage formulations. The beta-lactam antibiotic agents have become the most widely used therapeutic class of antimicrobials because of their broad antibacterial spectrum and excellent safety profile. Reports of drug–drug interactions with the beta-lactam antimicrobials are a relatively rare phenomenon, and when they do occur they are generally of minor significance.

In this chapter each beta-lactam drug interaction has been categorized as major, moderate or minor and is presented in Table 7.1. Interactions classified as major are considered well documented and have the potential to be life threatening or dangerous. Moderate interactions are those for which more documentation is needed and/or potential harm to the patient is less. Minor interactions are either poorly documented, present minimal potential harm to the patient, or occur with a low incidence.

The drug interactions of most concern with the beta-lactam antibiotics are those with oral contraceptive products, methotrexate and valproic acid. In the case oral contraceptives, even though a small percentage of women may potentially experience decreased effectiveness of these birth control products while taking beta-lactam antibiotic, alternative birth control methods should be considered while taking these antibiotics. Weak organic acids such as penicillins and cephalosporins can compete with methotrexate for renal tubular secretion which may increase the risk of adverse effects of methotrexate. Lastly, decreased plasma concentrations to subtherapeutic ranges have been reported in patients taking the carbapenems and valproic acid concomitantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers HJ, James CA, Morrison PJ. Effect of cimetidine on oral absorption of ampicillin and cotrimoxazole. J Antimicrob Chemother 1980;6:297–300.

    PubMed  CAS  Google Scholar 

  2. Paulsen O, Hoglund P, Walder M. No effect of omeprazole-induced hypoacidity on the bioavailability of ampicillin and bacampicillin. Scand J Infec Dis 1989;21:219–223.

    CAS  Google Scholar 

  3. Stainforth DH, Clarke HL, Horton R, et al. Augmentin bioavailability following cimetidine, aluminum hydroxide and milk. Int J Clin Pharmacol Ther Toxicol 1985;23:154–157.

    Google Scholar 

  4. Deppermann KM, Lode H, Hoffken G, et al. Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid. Antimicrob Agents Chemother 1989;33:1901–1907.

    PubMed  CAS  Google Scholar 

  5. Sommers DK, Van Wyk M, Moncrieff J. Influence of food and reduced gastric acidity on the bioavailability of bacampicillin and cefuroxime axetil. Br J Clin Pharm 1984:18:535–539.

    CAS  Google Scholar 

  6. Jick H, Porter JB. Potentiation of ampicillin skin reactions by allopurinol or hyperuricemia. J Clin Pharmacol 1981;21:456–458.

    PubMed  CAS  Google Scholar 

  7. Fessel WJ. Immunologic reactivity in hyperuricemia. N Engl J Med 1972;286:1218.

    PubMed  CAS  Google Scholar 

  8. Townsend RS. In vitro inactivation of gentamicin by ampicillin. Am J Hosp Pharm 1989;46:2250–2251.

    PubMed  CAS  Google Scholar 

  9. McLaughlin JE, Reeves DS. Clinical and laboratory evidence for inactivation of gentamicin by carbenicillin. Lancet 1971;1:261–264.

    PubMed  CAS  Google Scholar 

  10. Uber WE, Brundage RC, White RL, et al. In vivo inactivation of tobramycin by piperacillin. DICP Ann Pharmacother 1991;25:357–359.

    CAS  Google Scholar 

  11. Halstenson CE, Hirata CA, Heim-Duthoy KL, et al. Effect of concomitant administration of piperacillin on the disposition of netilmicin and tobramycin in patients with end-stage renal disease. Antimicrob Agents Chemother 1990;34:128–133.

    PubMed  CAS  Google Scholar 

  12. Davies M, Morgan JR, Anand C. Interactions of carbenicillin and ticarcillin with gentamicin. Antimicrob Agents Chemother 1975;7:431–434.

    PubMed  CAS  Google Scholar 

  13. Weibert R, Keane W, Shapiro F. Carbenicillin inactivation of aminoglycosides in patients with severe renal failure. Trans Am Soc Artif Organs 1976;22:439–445.

    CAS  Google Scholar 

  14. Eykyn S, Philips I, Ridley M. Gentamicin plus carbenicillin. Lancet 1 1971;13: 545–546.

    Google Scholar 

  15. Kradjian WA, Burger R. In vivo inactivation of gentamicin by carbenicillin and ticarcillin. Arch Intern Med 1980;140:1668–1670.

    Google Scholar 

  16. Davies M, Morgan JR, Anand C. Interactions of carbenicillin and ticarcillin with gentamicin. Antimicrob Agents Chemother 1975:7:431–434.

    PubMed  CAS  Google Scholar 

  17. Lau A, Lee M, Flascha S, et al. Effect of piperacillin on tobramycin pharmacokinetics in patients with normal renal function. Antimicrob Agents Chemother 1983;24:533–537.

    PubMed  CAS  Google Scholar 

  18. Hitt CM, Patel KB, Nicolau DP, Zhu Z, Nightingale CH. Influence of piperacillin-tazobactam on pharmacokinetics of gentamicin given once daily. Am J Health Syst Pharm 1997;1:2704–2708.

    Google Scholar 

  19. Dowell JA, Korth-Bradley J, Milisci M, et al. Evaluating possible pharmacokinetic interactions between tobramycin, piperacillin, and a combination of piperacillin and tazobactam in patients with various degrees of renal impairment. J Clin Pharmacol 2001;41:979–986.

    PubMed  CAS  Google Scholar 

  20. Noone P, Pattison JR. Therapeutic implications of interaction of gentamicin and penicillins. Lancet 1971;2:575–578.

    PubMed  CAS  Google Scholar 

  21. Ervin FR, Bullock WE, Nuttall CE. Inactivation of gentamicin by penicillins in patients with renal failure. Antimicrob Agents Chemother 1976;9:1009–1011.

    Google Scholar 

  22. Cheng SH, White A. Effect of orally administered neomycin on the absorption of penicillin V. N Engl J Med 1962;267:1296–1297.

    PubMed  CAS  Google Scholar 

  23. Moellering RC, Wennersten C, Weinberg AN. Synergy of penicillin and gentamicin against Enterococci. J Infect Dis 1971;124(suppl):S207–S209.

    Google Scholar 

  24. Guenthner SH, Chao HP, Wenzel RP. Synergy between amikacin and ticarcillin or mezlocillin against nosocomial bloodstream isolates. J Antimicrob Chemother 1986;18:550–552.

    PubMed  CAS  Google Scholar 

  25. Laverdiere M, Gallimore B, Restieri C, et al. In vitro synergism of ceftriaxone combined with aminoglycosides against Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 1994;19:39–46.

    PubMed  CAS  Google Scholar 

  26. Marks MI, Hammerberg S, Greenstone G, et al. Activity of newer aminoglycosides and carbenicillin, alone, and in combination against gentamicin-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1976;10:399–401.

    PubMed  CAS  Google Scholar 

  27. Moellering RC, Wennersten, Weinberg AJ. Studies on antibiotic synergism against Enterococci. I. Bacteriologic studies. J Lab Clin Med 1971;77:821–828.

    Google Scholar 

  28. Weinstein AJ, Moellering RC. Penicillin and gentamicin therapy for enterococcal infections. JAMA 1973;223:1030–1032.

    PubMed  CAS  Google Scholar 

  29. Anderson ET, Young LS, Hewitt WL. Antimicrobial synergism in the therapy of Gram-negative rod bacteremia. Chemotherapy 1978;24:45–54.

    PubMed  CAS  Google Scholar 

  30. Brown CH, Natelson EA, Bradshaw MW, et al. The hemostatic defect produced by carbenicillin. N Engl J Med 1974;291:265–270.

    PubMed  CAS  Google Scholar 

  31. Brown CH, Natelson EA, Bradshaw MW, et al. Study of the effects of ticarcillin on blood coagulation and platelet function. Antimicrob Agents Chemother 1975;7:652–657.

    PubMed  CAS  Google Scholar 

  32. Brown CH, Bradshaw MW, Natelson EA, et al. Defective platelet function following the administration of penicillin compounds. Blood 1976;6:949–956.

    Google Scholar 

  33. Andrassy K, Ritz E, Hasper B, et al. Penicillin-induced coagulation disorder. Lancet 1976;2:1039–1041.

    PubMed  CAS  Google Scholar 

  34. Andrassy K, Weischedel E, Ritz E, et al. Bleeding in uremic patients after carbenicillin. Thrombos Haemost 1976;36:115–126.

    CAS  Google Scholar 

  35. Tabernero Romo JM, Corbacho L, Sanchez S, et al. Effects of carbenicillin on blood coagulation; a study in patients with chronic renal failure. Clin Nephrol 1979;11:31–34.

    Google Scholar 

  36. Wisloff F, Larsen JP, Dahle A, et al. Effect of prophylactic high-dose treatment with ampicillin and cloxacillin on bleeding time and bleeding in patients undergoing elective vascular surgery. Scand J Haematol 1983;31:97–101.

    PubMed  CAS  Google Scholar 

  37. Lurie A, Ogilvie M, Gold CH, et al. Carbenicillin-induced coagulopathy. S Afr Med J 1974;48:457–461.

    PubMed  CAS  Google Scholar 

  38. Taylor AT, Pritchard DC, Goldstein AO, et al. Continuation of warfarin-nafcillin interaction during dicloxacillin therapy. J Fam Pract 1994;39:182–185.

    PubMed  CAS  Google Scholar 

  39. Heilker GM, Fowler JW, Self TH, et al. Possible nafcillin-warfarin interaction. Arch Intern Med 1994;154:822–824.

    PubMed  CAS  Google Scholar 

  40. Qureshi GD, Reinders TP, Somori GJ, et al. Warfarin resistance with nafcillin therapy. Ann Intern Med 1984;100:527–529.

    PubMed  CAS  Google Scholar 

  41. Shovick VA, Rihn TL. Decreased hypoprothrombinemic response to warfarin secondary to the warfarin-nafcillin interaction. Drug Intell Clin Pharm 1991;25:598–600.

    CAS  Google Scholar 

  42. Kim KY, Frey RJ, Epplen K, Foruhari F. Interaction between warfarin and nafcillin: Case report and review of the literature. Pharmacotherapy 2007;27:1467–1470.

    PubMed  CAS  Google Scholar 

  43. Krstenansky PM, Jones WN, Garewal HS. Effect of dicloxacillin sodium on the hypoprothrombinemic response to warfarin sodium. Clin Pharm 1987;6:804–806.

    PubMed  CAS  Google Scholar 

  44. Mailloux AT, Gidal BE, Sorkness CA. Potential interaction between warfarin and dicloxacillin. Ann Pharmacother 1996:30:1402–1407.

    PubMed  CAS  Google Scholar 

  45. Davis RL, Berman W, Wernly JA, et al. Warfarin-nafcillin interaction. J Pediatr 1991;118:300–303.

    PubMed  CAS  Google Scholar 

  46. Rolinson GN, Sutherland R. The binding of antibiotics to serum proteins. Br J Pharmacol 1965;25:638–650.

    CAS  Google Scholar 

  47. Lang CC, Jamal SK, Mohmaed Z, Mustafa MR, Mustafa AM, Lee TC. Evidence of an interaction between nifedipine and nafcillin in humans. Br J Clin Pharmacol. 2003;55:588–590.

    PubMed  CAS  Google Scholar 

  48. Cropp JS, BusseyHI. A review of enzyme induction of warfarin metabolism with recommendations for patient management. Pharmacotherapy. 1997; 17: 917–928.

    PubMed  CAS  Google Scholar 

  49. Brown MA, Korchinski ED, Miller DR. Interaction of penicillin-G and warfarin? Can J Hosp Pharm 1979;32:18,19.

    Google Scholar 

  50. Davydov L, Yermolnik M, Cuni LJ. Warfarin and amoxicillin/clavulanate drug interaction. Ann Pharmacother 2003;37:367–370.

    PubMed  Google Scholar 

  51. Kampmann J, Molholm Hansen J, Siersbaek-Nielsen K, Laursen H. Effect of some drugs on penicillin half-life in blood. Clin Pharmacol Ther 1972;13:516–519.

    Google Scholar 

  52. Kunin CM. Clinical pharmacology of the new penicillins. II. Effect of drugs which interfere with binding to serum proteins. Clin Pharmacol Ther 1966;7:180–188.

    PubMed  CAS  Google Scholar 

  53. Suffness M, Rose BS. Potential drug interactions and adverse effects related to aspirin. Drug Intell Clin Pharm 1974;8:694–699.

    CAS  Google Scholar 

  54. Moskowitz B, Somani SM, McDonald RH. Salicylate interaction with penicillin and secobarbital binding sites on human serum albumin. Clin Toxicol 1973;6:247–256.

    PubMed  CAS  Google Scholar 

  55. Hayes AH. Therapeutic implications of drug interactions with acetaminophen and aspirin. Arch Intern Med 1981:141:301–304.

    PubMed  CAS  Google Scholar 

  56. Schafer-Korting M, Kirch W, Axthelm T, et al. Atenolol interaction with aspirin, allopurinol, and ampicillin. Clin Pharmacol Ther 1983;33:283–288.

    PubMed  CAS  Google Scholar 

  57. McLean AJ, Tonkin A, McCarthy P, et al. Dose-dependence of atenolol-ampicillin interaction. Br J Clin Pharmacol 1984;18:969–971.

    PubMed  CAS  Google Scholar 

  58. Westphal JF, Trouvin JH, Deslandes A, et al. Nifedipine enhances amoxicillin absorption kinetics and bioavailability in humans. J Pharmacol Exp Ther 1990;255:312–317.

    PubMed  CAS  Google Scholar 

  59. Lang CC, Jamal SK, Mohamed Z, et al. Evidence of an interaction between nifedipine and nafcillin in humans. Br J Clin Pharmacol 2003;55:588–590.

    PubMed  CAS  Google Scholar 

  60. Jawetz E. Gunnison JB, Coleman VR. The combined action of penicillin with streptomycin or chloromycetin on Enterococci in vitro. Science 1950;3:254–256.

    Google Scholar 

  61. Wallace JF, Smith H, Garcia M, et al. Studies on the pathogenesis of meningitis. VI Antagonism between penicillin and chloramphenicol in experimental pneumococcal meningitis. J Lab Clin Med 1967;70:408–418.

    PubMed  CAS  Google Scholar 

  62. Yourassowsky E, Monsieur R. Antagonism limit of penicillin G and chloramphenicol against Neisseria meningitidis. Arzneimittel Forsch 1971;21:1385–1387.

    CAS  Google Scholar 

  63. Gjessing HC, Odegaard K. Oral chloramphenicol alone and with intramuscular procaine penicillin in the treatment of gonorrhoea. Br J Vener Dis 1967;43:133–136.

    PubMed  CAS  Google Scholar 

  64. DeRitis F, Giammanco G, Manzillo G. Chloramphenicol combined with ampicillin in treatment of typhoid. Br Med J 1972;4:17,18.

    Google Scholar 

  65. Ali HM. Reduced ampicillin bioavailability following oral coadministration with chloroquine. J Antimicrob Chemother 1985;15:781–784.

    PubMed  CAS  Google Scholar 

  66. Barriere SL, Catlin DH, Orlando PL, et al. Alteration in the pharmacokinetic disposition of ciprofloxacin by simultaneous administration of azlocillin. Antimicrob Agents Chemother 1990;34:823–826.

    PubMed  CAS  Google Scholar 

  67. Peterson LR, Moody JA, Fasching CE, et al. In vivo and in vitro activity of ciprofloxacin plus azlocillin against 12 streptococcal isolates in a neutropenic site model. Diagn Microbiol Infect Dis 1987;7:127–136.

    PubMed  CAS  Google Scholar 

  68. Dossetor J. Drug interaction with oral contraceptive steroids [editorial]. Br Med J 1980;280:467,468.

    Google Scholar 

  69. DeSano EA, Hurley SC. Possible interaction of antihistamines and antibiotics with oral contraceptive effectiveness. Fertil Steril 1982;1:853,854.

    Google Scholar 

  70. Bainton R. Interaction between antibiotic therapy and contraceptive medication. Oral Surg Oral Med Oral Pathol 1986;61:453–455.

    PubMed  CAS  Google Scholar 

  71. Silber TJ. Apparent oral contraceptive failure associated with antibiotic administration. J Adolesc Health Care 1983;4:287–289.

    PubMed  CAS  Google Scholar 

  72. Miller DM, Helms SE, Brodell RT. A practical approach to antibiotic treatment in women taking oral contraceptives. J Am Acad Dermatol 1994;30:1008–1011.

    PubMed  CAS  Google Scholar 

  73. Fernandez N, Sierra M, Diez MJ, et al. Study of the pharmacokinetic interaction between ethinylestradiol and amoxicillin in rabbits. Contraception 1997:55:47–52.

    PubMed  CAS  Google Scholar 

  74. Back DJ, Brenckenridge AM, Cross KJ, et al. An antibiotic interaction with ethinyloestradiol in the rat and rabbit. J Steroid Biochem 1982;16:407–413.

    PubMed  CAS  Google Scholar 

  75. Back DJ, Breckenridge AM, MacIver M, et al. The effects of ampicillin on oral contraceptive steroids in women. Br J Clin Pharmacol 1982;14:43–48.

    PubMed  CAS  Google Scholar 

  76. Friedman CI, Huneke AL, Kim MH, et al. The effect of ampicillin on oral contraceptive effectiveness. Obstet Gynecol 1980;55:33–37.

    PubMed  CAS  Google Scholar 

  77. Joshi JV, Joshi UM, Sankholi GM, et al. A study of interaction of low-dose combination oral contraceptive with ampicillin and metronidazole. Contraception 1980;22:643–652.

    PubMed  CAS  Google Scholar 

  78. Weisberg E. Interactions between oral contraceptives and antifungals/antibacterials. Is contraceptive failure the result? Clin Pharmacokinet 1999;36:309–13.

    PubMed  CAS  Google Scholar 

  79. Dickinson BD, Altman RD, Nielsen NH, Sterling ML. Drug Interactions between oral contraceptives and antibiotics. Obstet Gynecol 2001;98:853–860.

    Google Scholar 

  80. Veremis SA, Maddux MS, Pollak R, et al. Subtherapeutic cyclosporine concentrations during nafcillin therapy. Transplantation 1987;43:913–915.

    PubMed  CAS  Google Scholar 

  81. Finland M, Bach MC, Garner C, et al. Synergistic action of ampicillin and erythromycin against Nocardia asteroides: effect of time of incubation. Antimicrob Agents Chemother 1974;5:344–353.

    PubMed  CAS  Google Scholar 

  82. Roberts CE, Rosenfeld LS, Kirby WM. Synergism of erythromycin and penicillin against resistant staphylococci: mechanism and relation to synthetic penicillins. Antimicrob Agents Chemother 1962:831–842.

    Google Scholar 

  83. Waterworth PM. Apparent synergy between penicillin and erythromycin or fusidic acid. Clin Med 1963:70:941–953.

    PubMed  CAS  Google Scholar 

  84. Oswald EJ, Reedy RJ, Wright WW. Antibiotic combinations: an in vitro study of antistaphylococcal effects of erythromycin plus penicillin, streptomycin, or tetracycline. Antimicrob Agents Chemother 1961:904–910.

    Google Scholar 

  85. Herrell WE, Balows A, Becker J. Erythrocillin: a new approach to the problem of antibiotic-resistant Staphylococci. Antibiot Med Clin Ther 1960;7:637–642.

    CAS  Google Scholar 

  86. Manten A. Synergism and antagonism between antibiotic mixtures containing erythromycin. Antibiot Chemother 1954;4:1228–1233.

    CAS  Google Scholar 

  87. Allen NE, Epp JK. Mechanism of penicillin-erythromycin synergy on antibiotic resistant Staphylococcus aureus. Antimicrob Agents Chemother 1978;13:849–853.

    PubMed  CAS  Google Scholar 

  88. Manten A, Terra JI. The antagonism between penicillin and other antibiotics in relation to drug concentration. Chemotherapia 1964;8:21–29.

    Google Scholar 

  89. Chang TW, Weinstein L. Inhibitory effects of other antibiotics on bacterial morphologic changes induced by penicillin G. Nature 1966:211:763–765.

    PubMed  CAS  Google Scholar 

  90. Garrod LP, Waterworth PM. Methods of testing combined antibiotic bactericidal action and the significance of the results. J Clin Pathol 1962;15:328–338.

    PubMed  CAS  Google Scholar 

  91. Strom J. Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them. Antibiot Chemother 1961;11:694–697.

    PubMed  CAS  Google Scholar 

  92. Robinson L, Fonseca K. Value of the minimum bactericidal concentration of antibiotics in the management of a case of recurrent Streptococcus bovis septicaemia. J Clin Pathol 1982;35:879,880.

    Google Scholar 

  93. Bach MC, Monaco AP, Finland M. Pulmonary nocardiosis therapy with minocycline and with erythromycin plus ampicillin. JAMA 1973;224:1378–1381.

    PubMed  CAS  Google Scholar 

  94. Martinez JA, Horcajada JP, Almela M, et al. Addition of a macrolide to a beta-lactam-based empirical antibiotic regimen is associated with lower in-hospital mortality for patients with bacteremic pneumococcal pneumonia. Clin Infect Dis 2003;36:389–95.

    PubMed  CAS  Google Scholar 

  95. Waterer GW, Somes GW, Wunderink RG. Monotherapy may be suboptimal for severe bacteremic pneumococcal pneumonia. Arch Intern Med 2001;161:1837–1842.

    PubMed  CAS  Google Scholar 

  96. Mutson MA, Stanek. Bacteremic pneumococcal pneumonia in one American city: a 20-year longitudinal study, 1978–1997. Am J Med 1999;107:S34–43.

    Google Scholar 

  97. Mandell LA, Wunderink RG, Anzueto A, et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44:S27–72.

    PubMed  CAS  Google Scholar 

  98. Huupponen R, Seppala P, Iisalo E. Effect of guar gum, a fibre preparation on digoxin and penicillin absorption in man. Eur J Clin Pharmacol 1984;26:279–281.

    PubMed  CAS  Google Scholar 

  99. Brooks BM, Thomas AL, Coleman JW. Benzylpenicillin differentially conjugates to IFN-gamma, TNF-alpha, IL-1beta, IL-4 and IL-13 but selectively reduces IFN-gamma activity. Clin Exp Immunol 2003;131:268–74.

    PubMed  CAS  Google Scholar 

  100. Brooks BM, Hart CA, Coleman JW. Differential effects of beta-lactams on human IFN-gamma activity. J Antimicrob Chemother 2005;56:1122–1125.

    PubMed  CAS  Google Scholar 

  101. Attef OA, Ali AA. Effect of khat chewing on the bioavailability of ampicillin and amoxycillin. J Antimicrob Chemother 1997;39:523–525.

    PubMed  CAS  Google Scholar 

  102. Jayasagar G, Krishna Kumar M, Chandrasekhar K, et al. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 2002;19:41–48.

    Google Scholar 

  103. Wang DS, Kusuhara H, Kato Y, et al. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol Pharmacol 2003;63:844–848.

    PubMed  CAS  Google Scholar 

  104. Iven H, Brasch H. The effects of antibiotics and uricosuric drugs on the renal elimination of methotrexate and 7-hydroxymethotrexate in rabbits. Cancer Chemother Pharmacol 1988;21:337–342.

    PubMed  CAS  Google Scholar 

  105. Iven H, Brasch H. Influence of the antibiotics piperacillin, doxycycline, and tobramycin on the pharmacokinetics of methotrexate in rabbits. Cancer Chemother Pharmacol 1986;17:218–222.

    PubMed  CAS  Google Scholar 

  106. Najjar TA, Abou-Auda HS, Ghilzai NM. Influence of piperacillin on the pharmacokinetics of methotrexate and 7-hydroxymethotrexate. Cancer Chemother Pharmacol 1998:42:423–428.

    PubMed  CAS  Google Scholar 

  107. Iven H, Brasch H. Cephalosporins increase the renal clearance of methotrexate and 7-hydroxymethotrexate in rabbits. Cancer Chemother Pharmacol 1990;26:139–143.

    PubMed  CAS  Google Scholar 

  108. Yamamoto K, Sawada Y, Mutsashita Y, et al. Delayed elimination of methotrexate associated with piperacillin administration. Ann Pharmacother 1997;31:1261–1262.

    PubMed  CAS  Google Scholar 

  109. Bloom NJ, Ignoffo RJ, Reis CA, et al. Delayed clearance (Cl) of methotrexate (MTX) associated with antibiotics and antiinflammatory agents [abstr]. Clin Res 1986;34:560A.

    Google Scholar 

  110. Nierenberg DW, Mamelok RD. Toxic reaction to methotrexate in a patient receiving penicillin and furosemide: a possible interaction [letter]. Arch Dermatol 1983;119:449,450.

    Google Scholar 

  111. Dean R, Nachman J, Lorenzana AN. Possible methotrexate-mezlocillin interaction. Am J Pediatr Hematol Oncol 1992;14:88–92.

    PubMed  CAS  Google Scholar 

  112. Ronchera CL, Hernández T, Peris JE. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit 1993;15:375–379.

    PubMed  CAS  Google Scholar 

  113. Titier K, Lagrange F, Péhourcq, Moore N, et al. Pharmacokinetic interaction between high-dose methotrexate and oxacillin. Ther Drug Monit 2002;24:570–572.

    Google Scholar 

  114. Zarychanski R, Wlodarczyk K, Ariano R, Bow E. Pharmacokinetic interaction between methotrexate and piperacillin/tazobactam resulting in prolonged toxic concentrations of methotrexate. 2006;58:228–230.

    Google Scholar 

  115. Herrick AL, Grennan DM, Aarons L. Lack of interaction between methotrexate and penicillins. Rheumatology 1999;38:284,285.

    PubMed  CAS  Google Scholar 

  116. Hill G, Cihlar T, Oo C, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion-correlation of in vivo and in vitro studies. Drug Metab Dispos 2002;30:13–19.

    PubMed  CAS  Google Scholar 

  117. Brunton LL, Lazo JS, Parker KL (ed.). Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11th Edition, New York: McGraw-Hill, 2005.

    Google Scholar 

  118. Dasgupta A, Sperelakis A, Mason A, et al. Phenytoin-oxacillin interactions in normal and uremic sera. Pharmacotherapy 1997;17:375–378.

    PubMed  CAS  Google Scholar 

  119. Dasgupta A, Dennen DA, Dean R, et al. Displacement of phenytoin from serum protein carriers by antibiotics: studies with ceftriaxone, nafcillin, and sulfamethoxazole. Clin Chem 1991;37:98–100.

    PubMed  CAS  Google Scholar 

  120. Welling PG, Selen SD, Kendall MJ, et al. Probenecid: an unexplained effect on cephalosporin pharmacology. Br J Clin Pharma 1979;8:491–495.

    CAS  Google Scholar 

  121. Gibaldi M, Schwartz MA. Apparent effect of probenecid on the distribution of penicillins in man. Clin Pharmacol Ther 1968;9:345–349.

    PubMed  CAS  Google Scholar 

  122. Barbhaiya R, Thin RN, Turner P, et al. Clinical pharmacological studies of amoxycillin: effect of probenecid. Br J Vener Dis 1979;55:211–213.

    PubMed  CAS  Google Scholar 

  123. Waller ES, Sharanevych MA, Yakatan GJ. The effect of probenecid on nafcillin disposition. J Clin Pharmacol 1982;22:482–489.

    PubMed  CAS  Google Scholar 

  124. Corvaia L, Li SC, Ioannides-Demos LL, et al. A prospective study of the effects of oral probenecid on the pharmacokinetics of intravenous ticarcillin in patients with cystic fibrosis. J Antimicrob Chemother 1992;30:875–878.

    PubMed  CAS  Google Scholar 

  125. Ziv G, Sulman FG. Effects of probenecid on the distribution, elimination, and passage into milk of benzylpenicillin, ampicillin, and cloxacillin. Arch Int Pharmacodyn Ther 1974;207:373–382.

    PubMed  CAS  Google Scholar 

  126. Shanson DC, McNabb R, Hajipieris P. The effect of probenecid on serum amoxycillin concentrations up to 18 hours after a single 3 g oral dose of amoxycillin: possible implications for preventing endocarditis. J Antimicrob Chemother 1984;13:629–632.

    PubMed  CAS  Google Scholar 

  127. Krogsgaard MR, Hansen BA, Slotsbjerg T, et al. Should probenecid be used to reduce the dicloxacillin dosage in orthopaedic infections? A study of the dicloxacillin-saving effect of probenecid. Pharmacol Toxicol 1994;74:181–184.

    PubMed  CAS  Google Scholar 

  128. Hoffstedt B, Haidl S, Walder M. Influence of probenecid on serum and subcutaneous tissue fluid concentrations of benzylpenicillin and ceftazidime in human volunteers. Eur J Clin Microbiol 1983;2:604–6.

    PubMed  CAS  Google Scholar 

  129. Ganes D, Batra A, Faulkner D, et al. Effect of probenecid on the pharmacokinetics of piperacillin and tazobactam in healthy volunteers. Pharm Res 1991;8:S299.

    Google Scholar 

  130. Babalola CP, Iwheye GB, Olaniyi AA. Effect of proguanil interaction on bioavailability of cloxacillin. J Clin Pharm Ther 2002;27:461–464.

    PubMed  CAS  Google Scholar 

  131. Speck RS, Jawetz E, Gunnison JB. Studies on antibiotic synergism and antagonism. The interference of aureomycin or terramycin with the action of penicillin in infections in mice. Arch Intern Med 1951;88:168–174.

    CAS  Google Scholar 

  132. Gunnison JB, Coleman VR, Jawetz E. Interference of aureomycin and of terramycin with the action of penicillin in vitro. Proc Soc Exp Biol Med 1950;75:549–452.

    PubMed  CAS  Google Scholar 

  133. Chuang YC, Liu JW, Ko WC, et al. In vitro synergism between cefotaxime and minocycline against Vibrio vulnificus. Antimicrob Agents Chemother 1997;41:2214–2217.

    PubMed  CAS  Google Scholar 

  134. Chuang YC, Ko WC, Wang ST, et al. Minocycline and cefotaxime in the treatment of experimental murine Vibrio vulnificus infection. Antimicrob Agents Chemother 1998;42:1319–1322.

    PubMed  CAS  Google Scholar 

  135. Ko WC, Lee HC, Chuang YC, et al. In vitro and in vivo combinations of cefotaxime and minocycline against Aeromonas hydrophilia. Antimicrob Agents Chemother 2001;45:1281–1283.

    PubMed  CAS  Google Scholar 

  136. Lepper MH, Dowling HP. Treatment of pneumococcic meningitis with penicillin compared with penicillin plus aureomycin: studies including observations on an apparent antagonism between penicillin and aureomycin. Arch Intern Med 1951:88:489–494.

    CAS  Google Scholar 

  137. Olsson RA, Kirby JC, Romansky MJ. Pneumococcal meningitis in the adult. Clinical, therapeutic and prognostic aspects in forty-three patients. Ann Intern Med 1961;55:545–549.

    PubMed  CAS  Google Scholar 

  138. Strom J. The question of antagonism between penicillin and chlortetracycline, illustrated by therapeutical experiments in scarlatina. Antibiot Med 1955;1:6–12.

    PubMed  CAS  Google Scholar 

  139. Ahern JJ, Kirby WMM. Lack of interference of aureomycin in treatment of pneumococcic pneumonia. Arch Intern Med 1953;91:197–203

    CAS  Google Scholar 

  140. Tryba M. Potentiation of non-depolarizing muscle relaxants of acetylaminopenicillin. Studies on the example of vecuronium [English abstr]. Anaethesist 1985;34:651–655.

    CAS  Google Scholar 

  141. Singh YN, Harvey AL, Marshall IG. Antibiotic-induced paralysis of the mouse phrenic nerve-hemidiaphragm preparation, and reversibility by calcium and by neostigmine. Anesthesiology 1978;48:418–424.

    PubMed  CAS  Google Scholar 

  142. Harwood TN, Moorthy SS. Prolonged vecuronium-induced neuromuscular blockade in children. Anesth Analg 1989;68:534–536.

    PubMed  CAS  Google Scholar 

  143. Mackie K, Pavlin EG. Recurrent paralysis following pipercillin administration. Anesthesiology 1990;72:561–563.

    PubMed  CAS  Google Scholar 

  144. Condon RE, Munshi CA, Arfman RC. Interaction of vecuronium with pipercillin or cefoxitin evaluated in a prospective, randomized, double-blind clinical trial. Am Surg 1995;61:403–406.

    PubMed  CAS  Google Scholar 

  145. Kadlec GJ, Ha LH, Jarboe CH, et al. Effect on ampicillin on theophylline half-life in infants and young children. South Med J 1978;71:1584.

    PubMed  CAS  Google Scholar 

  146. Jonkman JH, Van der Boon WJ, Schoenmaker R, et al. Lack of effect of amoxicillin on theophylline pharmacokinetics. Br J Clin Pharmacol 1985;19:99–101.

    PubMed  CAS  Google Scholar 

  147. Matera MG, Cazzola M, Lampa E, et al. Clinical pharmacokinetics of theophylline during co-treatment with ticarcillin plus clavulanic acid in patients suffering from acute exacerbation of chronic bronchitis. J Chemother 1993;5:233–236.

    PubMed  CAS  Google Scholar 

  148. Cazzola M, Santangelo G, Guidetti E, et al. Influence of sulbactam plus ampicillin on theophylline clearance. Int J Clin Pharmacol Res 1991;11:11–15.

    PubMed  CAS  Google Scholar 

  149. Jonkman JH, Van der Boon WJ, Schoenmaker R, et al. Clinical pharmacokinetics of amoxycillin and theophylline during cotreatment with both medicaments. Chemotherapy 1985;31:329–335.

    PubMed  CAS  Google Scholar 

  150. Hughes GS, Heald DL, Barker KB, et al. The effects of gastric pH and food on the pharmacokinetics of a new oral cephalosporin, cefpodoxime proxetil. Clin Pharmacol Ther 1989;46:674–685.

    PubMed  CAS  Google Scholar 

  151. Saathoff N, Lode H, Neider K, et al. Pharmacokinetics of cefpodoxime proxetil and interactions with an antacid and an H2 receptor antagonist. Antimicrob Agents Chemother 1992;36:796–800.

    PubMed  CAS  Google Scholar 

  152. Spectracef  ® (cefditoren) package insert, Purdue Pharmaceutical Products L. P., 2003.

    Google Scholar 

  153. Omnicef  ® (cefdinir) package insert, Abbott Laboratories, 2001.

    Google Scholar 

  154. Madara-Kelly K, Michas P, George M, May MP, Adejare A. A randomized crossover study investigating the influence of ranitidine or omeprazole on the pharmacokinetics of cephalexin monohydrate. J Clin Pharmacol 2004;44:1391–1397.

    Google Scholar 

  155. Satterwhite JH, Cerimele BJ, Coleman DL. Pharmacokinetics of cefaclor AF: effects of age, antacids, and H2-receptor antagonists. Postgrad Med J 1992;68:S3–S9.

    PubMed  CAS  Google Scholar 

  156. Healy DP, Sahia J, Sterling LP, et al. Influence of antacid containing aluminum and magnesium on the pharmacokinetics of cefixime. Antimicrob Agents Chemother 1989;33:1994–1997.

    PubMed  CAS  Google Scholar 

  157. Food and Drug Adminstration. Rocefin (ceftriaxone sodium) for injection. Available at. http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm152863.htm. Date accessed: August 3, 2010.

  158. Health Canada. Fatal interactions ceftriaxone-calcium-Notice to Hospitals. Available at http://www.hc-sc.gc.ca/dhp-mps/medeff/advisories-avis/prof/_2008/ceftriaxone_nth-aah-eng.php. Date accessed: August 3, 2010.

  159. Grasberger H, Otto B, Loeschke K. Ceftriaxone-associate nephrolithiasis. Ann Pharmacother 2000;34:1076,1077.

    PubMed  CAS  Google Scholar 

  160. Bradley JS, Wassel RT, Lee L, Nambiar S. Intravenous ceftriaxone and calcium in the neonate: Assessing the risk for cardiopulmonary adverse events. Pediatrics 2009;123:e609–e613.

    PubMed  Google Scholar 

  161. Avci Z, Koktener A, Uras N, Catal F, Karadag A, Tekin O, et al. Nephrolithiasis associated with ceftriaxone therapy: a prospective study in 51 children. Arch Dis Child 2004;89:1069–1072.

    PubMed  CAS  Google Scholar 

  162. Park HZ, Lee SP, Schy AL. Ceftriaxone-associated gallbladder sludge. Identification of calcium-ceftriaxone salt as a major component of gallbladder precipitate. Gastroenterology 1991;100:1665–1667.

    Google Scholar 

  163. Food and Drug Administration. Information for healthcare professionals, Ceftriaxone (marketed as Rocephin). Available at http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/DrugSafetyInformationforHeathcareProfessionals/ucm084263.htm. Date accessed: August 3, 2010.

  164. Steadman E, Raisch DW, Bennett CL, Esterly JS, Tischa B, Postelnick M, et al. Evaluation of a potential clinical interaction between ceftriaxone and calcium. Antimicrob Agents Chemother 2010;54:1534–1540.

    Google Scholar 

  165. Deslandes A, Camus F, Lacroix C, et al. Effects of nifedipine and diltiazem on pharmacokinetics of cefpodoxime following its oral administration. Antimicrob Agents Chemother 1996;40:2879–2881.

    PubMed  CAS  Google Scholar 

  166. Duverne C, Bouten A, Deslandes A, et al. Modification of cefixime bioavailability by nifedipine in humans: involvement of the dipeptide carrier system. Antimicrob Agents Chemother 1992;36:2462–2467.

    PubMed  CAS  Google Scholar 

  167. Berlioz F, Julien S, Tsocas A, et al. Neural modulation of cephalexin intestinal absorption through the di- and tripeptide brush border transporter of rat jejunum in vivo. J Pharmacol Exp Ther 1999;288:1037–1044.

    PubMed  CAS  Google Scholar 

  168. Marino EL, Vicente MT, Dominguez-Gil A. Influence of cholestyramine on the pharmacokinetic parameters of cefadroxil after simultaneous administration. Int J Pharmaceut 1983;16:23–30.

    CAS  Google Scholar 

  169. Parsons RL, Paddock GM, Hossack GM. Cholestryamine induced antibiotic malabsorption. Chemotherapy 4. In: Williams JD, Geddes AM (eds.). Pharmacology of Antibiotics. New York–London: Plenum, 1975; pp. 191–198.

    Google Scholar 

  170. Soto Alvarez J, Sacristan Del Castillo JA, Alsar Oritz MJ. Interaction between ciclosporin and ceftriaxone. Nephron 1991;59:681,682.

    Google Scholar 

  171. Cockburn I. Cyclosporin A: a clinical evaluation of drug interactions. Transplant Proc 1986;18 (Suppl 5):50–55.

    PubMed  CAS  Google Scholar 

  172. Verhagen C, De Pauw BE, de Witte T, Holdrinset RSG, Janssen JTP, Williams KJ. Ceftazidime does not enhance cyclosporine-A nephrotoxicity in febrile bone marrow transplantation patients. Blut 1986;53:333–339.

    PubMed  CAS  Google Scholar 

  173. Kannangara DW, Gallagher K, Lefrock JL. Disulfiram-like reactions with newer cephalosporins: cefmenoxime. Am J Med Sci 1984;287:45–47.

    Google Scholar 

  174. Foster TS, Raehl CL, Wilson HD. Disulfiram-like reaction associated with a parenteral cephalosporin. Am J Hosp Pharm 1980;37:858,859.

    Google Scholar 

  175. Uri JV, Parks DB. Disulfiram-like reaction to certain cephalosporins. Ther Drug Monit 1983;5:219–224.

    PubMed  CAS  Google Scholar 

  176. Ueno K, Tanaka K, Tsujimura K, et al. Impairment of cefdinir absorption by iron ion. Clin Pharmacol Ther 1993;54:473–475.

    PubMed  CAS  Google Scholar 

  177. Nelson J. Red stools and Omnicef. J Pediatr 2000;136:853,854.

    PubMed  CAS  Google Scholar 

  178. Lancaster J, Sylvia LM, Schainker E. Nonbloody, red stools from coadministration of cefdinir and iron-supplemented infant formulas. Pharmacotherapy 2008;28:678–681.

    PubMed  CAS  Google Scholar 

  179. Shukla UA, Pittman KA, Barbhiaya RH. Pharmacokinetic interactions of cefprozil with food, propantheline, metoclopramide, and probenecid in healthy volunteers. J Clin Pharmacol 1992;32:725–731.

    PubMed  CAS  Google Scholar 

  180. Neu HC. The in vitro activity, human pharmacology, and clinical effectiveness of new beta-lactam antibiotics. Annu Rev Pharmacol Toxicol 1982;22:599–642.

    PubMed  CAS  Google Scholar 

  181. Merle-Melet M, Bresler L, Lokiec F, et al. Effects of diclofenac on ceftriaxone pharmacokinetics in humans. Antimicrob Agents Chemother 1992;36:2331–2333.

    PubMed  CAS  Google Scholar 

  182. Andrassy K, Bechtold H, Ritz E. Hypoprothrombinemia caused by cephalosporins. J Antimicrob Chemother 1985;15:133–136.

    PubMed  CAS  Google Scholar 

  183. Freedy HR, Cetnarowski AB, Lumish RM, et al. Cefoperazone-induced coagulopathy. Drug Intell Clin Pharm 1986;20:281–283.

    PubMed  Google Scholar 

  184. Rymer W, Greenlaw CW. Hypoprothrombinemia associated with cefamandole. Drug Intell Clin Pharm 1980;40;780–783.

    Google Scholar 

  185. Osborne JC. Hypoprothrombinemia and bleeding due to cefoperazone [letter]. Ann Intern Med 1985;102:721,722.

    Google Scholar 

  186. Cristiano P. Hypoprothrombinemia associated with cefoperazone treatment. Drug Intell Clin Pharm 1984;18:314–316.

    PubMed  CAS  Google Scholar 

  187. Hooper CA, Haney BB, Stone HH. Gastrointestinal bleeding due to vitamin K deficiency in patients on parenteral cefamandole [letter]. Lancet 1980;1:39,40.

    Google Scholar 

  188. Pakter RL, Russell TR, Mielke CH, et al. Coagulopathy associated with the use of moxalactam. JAMA 1982;248:1100.

    PubMed  CAS  Google Scholar 

  189. Marier RL, Faro S, Sanders CV, et al. Moxalactam in the therapy of serious infections. Antimicrob Agents Chemother 1982;21:650–654.

    PubMed  CAS  Google Scholar 

  190. Angaran DM, Dias VC, Arom KV, et al. The influence of prophylactic antibiotics on the warfarin anticoagulation response in the postoperative prosthetic cardiac valve patient. Cefamandole versus vancomycin. Ann Surg 1984;199:107–111.

    PubMed  CAS  Google Scholar 

  191. Angaran DM, Virgil MS, Dias VC. The comparative influence of prophylactic antibiotics on the prothrombin response to warfarin in the postoperative prosthetic cardiac valve patient. Cafamandole, cefazolin, vancomycin. Ann Surg 1987;206:155–161.

    PubMed  CAS  Google Scholar 

  192. Bechtold H, Andrassy K, Jahnchen E, et al. Evidence for impaired hepatic vitamin K1 metabolism in patients treated with N-methyl-thiotetrazole cefalosporins. Thrombosis and Haemost 1984;51:358–361.

    CAS  Google Scholar 

  193. Frick P, Riedler G, Brogli H. Dose response and minimal daily requirement for vitamin K in man. Applied Physiol 1967;23:387–389.

    CAS  Google Scholar 

  194. Lipsky J. N-methyl-thio-tetrazole inhibition of the gamma carboxylation of glutamic acid: possible mechanism for antibiotic associated hypothrombinemia. Lancet 1983;2:192,193.

    Google Scholar 

  195. Lipsky J, Lewis J, Novick W. Production of hypoprothrombinemia by moxalactam and 1-methyl-5-thiotetrazole in rats. Antimicrob Agents Chemother 1984;25:380,381.

    Google Scholar 

  196. Verhagen CA, Mattie H, Van Strijen E. The renal clearance of cefuroxime and ceftazidime and the effect of probenecid on their tubular excretion. Br J Clin Pharmacol 1994;37:193–197.

    PubMed  CAS  Google Scholar 

  197. Luthy R, Blaser J, Bonetti A, et al. Comparative multiple-dose pharmacokinetics of cefotaxime, moxalactam, and ceftazidime. Antimicrob Agents Chemother 1981;20:567–575.

    PubMed  CAS  Google Scholar 

  198. LeBel M, Paone RP, Lewis GP. Effect of probenecid on the pharmacokinetics of ceftizoxime. J Antimicrob Chemother 1983;12:147–155.

    PubMed  CAS  Google Scholar 

  199. Reeves DS, Bullock DW, Bywater MJ, et al. The effect of probenecid on the pharmacokinetics and distribution of cefoxitin in healthy volunteers. Br J Clin Pharm 1981;11:353–359.

    CAS  Google Scholar 

  200. Marino EL, Dominquez-Gil A. The pharmacokinetics of cefadroxil associated with probenecid. Int J Clin Pharmacol Ther Toxicol 1981;19:506–508.

    PubMed  CAS  Google Scholar 

  201. Stoeckel K. Pharmacokinetics of Rocephin®, a highly active new cephalosporin with an exceptionally long biological half-life. Chemotherapy 1981;27:42–46.

    PubMed  CAS  Google Scholar 

  202. Kaplan KS, Reisberg BE, Weinstein L. Cephaloridine: antimicrobial activity and pharmacologic behavior. Am J Med Sci 1967;253:667–674.

    PubMed  CAS  Google Scholar 

  203. Duncan WC. Treatment of gonorrhoea with cefazolin plus probenecid. J Infect Dis 1974;130:398–401.

    PubMed  CAS  Google Scholar 

  204. Mischler TW, Sugerman AA, Willard SA, Barmick L, Neiss ES. Influence of probenecid and food on the bioavailability of cephradine in normal male subjects. J Clin Pharmacol 1974;14:604–611.

    PubMed  CAS  Google Scholar 

  205. Tuano SB, Brodie JL. Kirby WM. Cephaloridine versus cephalothin: relation of the kidney to blood level differences after parenteral administration. Antimicrob Agents Chemother 1966;6:101–106.

    PubMed  CAS  Google Scholar 

  206. Griffith RS, Black HR, Brier GL, et al. Effect of probenecid on the blood levels and urinary excretion of cefamandole. Antimicrob Agents Chemother 1977;11:809–812.

    PubMed  CAS  Google Scholar 

  207. Bint AJ, Reeves DS, Holt HA. Effect of probenecid on serum cefoxitin concentrations. J Antimicrob Chemother 1977;3:627,628.

    Google Scholar 

  208. Taylor WA, Holloway WJ. Cephalexin in the treatment of gonorrhea. Int J Clin Pharmacol 1972;6:7–9.

    PubMed  CAS  Google Scholar 

  209. Ko H, Cathcart KS, Griffith DL, et al. Pharmacokinetics of intravenously administered cefmetazole and cefoxitin and effects of probenecid on cefmetazole elimination. Antimicrob Agents Chemother 1989; 33:356–361.

    PubMed  CAS  Google Scholar 

  210. Vlasses PH, Holbrook AM, Schrogie J, et al. Effect of orally administered probenecid on the pharmacokinetics of cefoxitin. Antimicrob Agents Chemother 1980;17:847–855.

    PubMed  CAS  Google Scholar 

  211. Spina SP, Dillon EC Jr. Effect of chronic probenecid therapy on cefazolin serum concentrations. Ann Pharmother 2003;37:621–4.

    CAS  Google Scholar 

  212. Stoeckel K, Trueb V, Dubach UC, et al. Effect of probenecid on the elimination and protein binding of ceftriaxone. Eur J Clin Pharmacol 1988;34:151–156.

    PubMed  CAS  Google Scholar 

  213. O’Callaghan CH, Acred P, Harper PB, et al. GR 20263, a new broad-spectrum cephalosporin with antipseudomonal activity. Antimicrob Agents Chemother 1980;17:876–883.

    PubMed  Google Scholar 

  214. DeSante KA, Israel KS, Brier GL, et al. Effect of probenecid on the pharmacokinetics of moxalactam. Antimicrob Agents Chemother 1982;21:58–61.

    PubMed  CAS  Google Scholar 

  215. Patel IH, Soni PP, Carbone JJ, et al. Lack of probenecid effect on nonrenal excretion of ceftriaxone in anephric patients. J Clin Pharmacol 1990;30:449–453.

    PubMed  CAS  Google Scholar 

  216. Kercsmar CM, Stern RC, Reed MD, et al. Ceftazidime in cystic fibrosis: pharmacokinetics and therapeutic response. J Antimicrob Chemother 1983;12:289–295.

    PubMed  Google Scholar 

  217. Jovanovich JF, Saravolatz LD, Burch K, et al. Failure of probenecid to alter the pharmacokinetics of ceforanide. Antimicrob Agents Chemother 1981;20:530–532.

    PubMed  CAS  Google Scholar 

  218. Pfeifer HJ, Greenblatt DJ, Friedman P. Effects of three antibiotics on theophylline kinetics. Clin Pharmacol Ther 1979;26:36–40.

    PubMed  CAS  Google Scholar 

  219. Bachmann K, Schwartz J, Forney RB, et al. Impact of cefaclor on the pharmacokinetics of theophylline. Ther Drug Monitor 1986;8:151–154.

    CAS  Google Scholar 

  220. Jonkman JH, Van der Boon WJ, Schoenmaker R, et al. Clinical pharmacokinetics of theophylline during co-treatment with cefaclor. Int J Clin Pharmacol Ther Toxicol 1986;24:88–92.

    PubMed  CAS  Google Scholar 

  221. Hammond D, Abate MA. Theophylline toxicity, acute illness, and cefaclor. Drug Intell Clin Pharm 1989;23:339,340.

    Google Scholar 

  222. Foord RD. Cephaloridine, cephalothin, and the kidney. J Antimicrob Chemother 1975;1(suppl):119–133.

    PubMed  CAS  Google Scholar 

  223. Koch-Weser J, Sidel VW, Federman EB, et al. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann Intern Med 1970;72:857–868.

    PubMed  CAS  Google Scholar 

  224. Adler S, Segel DP. Nonoliguric renal failure secondary to sodium colistimethate: a report of four cases. Am J Med Sci 1971;262:109–114.

    PubMed  CAS  Google Scholar 

  225. Plager JE. Association of renal injury with combined cephalothin-gentamicin therapy among patients severely ill with malignant disease. Cancer 1976;37:1937–1943.

    PubMed  CAS  Google Scholar 

  226. Wade JC, Smith CR, Petty BG, et al. Cephalothin plus an aminoglycoside is more nephrotoxic than methicillin plus an aminoglycoside. Lancet 1978;2:604–606.

    PubMed  CAS  Google Scholar 

  227. Gurwich EL, Sula J, Hoy RH. Gentamicin-cephalothin drug reaction. Am J Hosp Pharm 1978;35:1402,1403.

    Google Scholar 

  228. Hansen MM, Kaaber K. Nephrotoxicity in combined cephalothin-gentamicin therapy among patients severely ill with malignant disease. Cancer 1976;37:1937–1943.

    Google Scholar 

  229. Cabanillas F, Burgos RC, Rodriquez RC, et al. Nephrotoxicity of combined cephalothin-gentamicin regimen. Arch Intern Med 1975;135:850–852.

    PubMed  CAS  Google Scholar 

  230. Fillastre JP, Laumonier R, Humbert G, et al. Acute renal failure associated with combined gentamicin and cephalothin therapy. Br Med J 1973;2:396,397.

    Google Scholar 

  231. Bobrow SL, Jaffe E, Young RC, et al. Anuria and acute tubular necrosis associated with gentamicin and cephalothin. JAMA 1972;222:1546,1547.

    Google Scholar 

  232. Kleinknecht D, Jungers P, Fillastre JP. Nephrotoxicity of cephaloridine. Ann Intern Med 1974;80:421,422.

    Google Scholar 

  233. Dodds MG, Foord RD. Enhancement by potent diuretics of renal tubular necrosis induced by cephaloridine. Br J Pharmacol 1970;40:227–236.

    PubMed  CAS  Google Scholar 

  234. Norrby R, Stenqvist K, Elgefors B, et al. Interaction between cephaloridine and furosemide in man. Scand J Infect Dis 1976;8:209–212.

    PubMed  CAS  Google Scholar 

  235. Simpson IJ. Nephrotoxicity and acute renal failure associated with cephalothin and cephaloridine. N Z Med J 1971;74:312–315.

    PubMed  CAS  Google Scholar 

  236. Trollfors B, Norrby R, Kristianson K. Effects on renal function of treatment with cefoxitin sodium alone or in combination with furosemide. J Antimicrob Chemother 1978;4:S85–S89.

    Google Scholar 

  237. Korn A, Eichler HG, Gasic S. A drug interaction study of ceftriaxone and frusemide in healthy volunteers. Int J Clin Pharmacol Ther Toxicol 1986;24:262–264.

    PubMed  CAS  Google Scholar 

  238. Walstad RA, Dahl K, Hellum KB, et al. The pharmacokinetics of ceftazidime in patients with impaired renal function and concurrent frusemide therapy. Eur J Clin Pharmacol 1988;35:273–279.

    PubMed  CAS  Google Scholar 

  239. Doribax® (doripenem) package insert. Ortho McNeil Janssen, 2008.

    Google Scholar 

  240. Bax RP, Bastain W, Featherstone A, et al. The pharmacokinetics of meropenem in volunteers. J Antimicrob Chemother 1989:24:311–320.

    PubMed  CAS  Google Scholar 

  241. Invanz® (ertapenem) package insert. Merck & Co, 2010.

    Google Scholar 

  242. Norrby SR, Alestig K, Ferber F, et al. Pharmacokinetics and tolerance of N-formimidoyl thienamycin (MK0787) in humans. Antimicrob Agents Chemother 1983;23:293–9.

    PubMed  CAS  Google Scholar 

  243. Suzuki E, Yamamura N, Ogura Y et al. Identification of valproic acid glucuronide hydrolase as a key enzyme for the interaction of valproic acid with carbapenem antibiotics. Drug Metab Dispos 2010; Dispos 2010;38:1538–1544.

    Google Scholar 

  244. Haroutiunian S, Ratz Y, Rabinovich B, et al. Valproic acid plasma concentration decreases in a dose-dependent manner following administration of meropenem: A retrospective study. J Clin Pharmacol 2009;49:1363–1369.

    PubMed  CAS  Google Scholar 

  245. Spriet I, Goyens J, Meersseman W, et al. Interaction between valproate and meropenem: a retrospective study. Ann Pharmacother 2007;41:1130–1136.

    PubMed  CAS  Google Scholar 

  246. Torii M, Takiguchi Y, Saito F, et al. Inhibition by carbapenem antibiotic imipenem of intestinal absorption of valproic acid in rats. Pharm Pharmacol 2001;53:823–829.

    CAS  Google Scholar 

  247. Yokogawa K, Iwashita S, Kubota A, et al. Effect of meropenem on disposition kinetics of valproate and its metabolites in rabbits. Pharm Res 2001;18:1320–1326.

    PubMed  CAS  Google Scholar 

  248. Yamamura N, Imura K, Naganuma H, et al. Panipenem, a carbapenem antibiotic, enhances the glucuronidation of intravenously administered valproic acid in rats. Drug Metab Dispos 1999;27:724–730.

    PubMed  CAS  Google Scholar 

  249. DeTurck BJ, Diltoer MW, Cornelis PJ, et al. Lowering of plasma valproic acid concentrations during concomitant therapy with meropenem and amikacin [letter]. J Antimicrob Chemother 1998;42:563,564.

    Google Scholar 

  250. Nagai K, Shimizu T, Togo A, et al. Decrease in serum levels of valproic acid during treatment with a new carbapenem, panipenem/betamipron. J Antimicrob Chemother 1997;39:295,296.

    Google Scholar 

  251. Coves-Orts FJ, Borrás-Blasco J, Navarro-Ruiz A, et al. Acute seizures due to a probable interaction between valproic acid and meropenem. Ann Pharmacother 2005;39:533–537.

    PubMed  Google Scholar 

  252. Santucci M, Parmeggiani A, Riva R. Seizure worsening caused by decreased serum valproate during meropenem therapy. J Child Neurol 2005;20:456,457.

    PubMed  Google Scholar 

  253. Fudio S, Carcas A, Piñana E, Ortega R. Epileptic seizures caused by low valproic acid levels from an interaction with meropenem. J Clin Pharm Ther 2006;31:393–396.

    PubMed  CAS  Google Scholar 

  254. Lunde JL, Nelson RE, Storandt HF. Acute seizures in a patient receiving divalproex sodium after starting ertapenem therapy. Pharmacotherapy 2007;27:1202–1205.

    PubMed  CAS  Google Scholar 

  255. Tobin JK, Golightly LK, Kick SD, Jones MA. Valproic acid-carbapenem interaction: report of six cases and a review of the literature. Drug Metabol Drug Interact 2009;24:153–182.

    PubMed  CAS  Google Scholar 

  256. Gu J, Huang Y. Effect of concomitant administration of meropenem and valproic acid in an elderly Chinese patient. Am J Geriatr Pharmacother 2009;7:26–33.

    PubMed  Google Scholar 

  257. Lioa F, HuangY, Chen C. Decrease in serum valproic acid levels during treatment with ertapenem. Am J Health-Syst Pharm 2010;67:1260–1264.

    Google Scholar 

  258. Bösmuller C, Steurer W, Königsrainer A, et al. Increased risk of central nervous system toxicity in patients treated with cyclosporine and imipenem/cilastatin. Nephron 1991;58:362–364.

    PubMed  Google Scholar 

  259. Zazgornik J, Schein W, Heimberger K, et al. Potentiation of neurotoxic side effects by coadministration of imipenem to cyclosporine therapy in a kidney transplant recipient—synergism of side effects or drug interaction. Clin Nephrol 1986;26:265,266.

    Google Scholar 

  260. Mraz W, Sido B, Knedel M, et al. Concomitant immunosuppressive and antibiotic therapy—reduction of cyclosporine A blood levels due to treatment with imipenem/cilastatin. Transplant Proc 1992;24:1704–1708.

    PubMed  CAS  Google Scholar 

  261. Semel JD, Allen N. Seizures in patients simultaneously receiving theophylline and imipenem or ciprofloxacin or metronidazole. South Med J 1991;84:465–468.

    PubMed  CAS  Google Scholar 

  262. Primaxin® (imipenem and cilastatin) package insert. Merck & Co, 2010.

    Google Scholar 

  263. Jung D, Dorr A. Single dose pharmacokinetics of valganciclovir in HIV- and CMV- seropositive subjects. J Clin Pharmacol 1999;39:800–804.

    PubMed  CAS  Google Scholar 

  264. Valcyte® (valganciclovir) package insert. Roche, 2010.

    Google Scholar 

  265. Valcyte® (valganciclovir powder for Oral Solution) Roche Products Ltd. UK Summary of Product Characteristics, June 2010.

    Google Scholar 

  266. Swabb EA, Sugerman AA, Frantz M, et al. Renal handling of the monobactam aztreonam in healthy subjects. Clin Pharmacol Ther 1983;33:609–614.

    PubMed  CAS  Google Scholar 

  267. Sisson TL, Jungbluth GL, Hopkins NK. A pharmacokinetic evaluation of concomitant administration of linezold and astreonam. J Clin Pharmacol 1999;39:1277–1282.

    PubMed  CAS  Google Scholar 

  268. Cubicin® (daptomycin) package insert. Cubist Pharmaceuticals, Inc. August 2010.

    Google Scholar 

  269. Creasy WA, Adamvics J, Dhruv R, Platt TB, Sugerman AA. Pharmacokinetic interaction of aztreonam with other antibiotics. J Clin Pharmacol 1984;24:174–180.

    Google Scholar 

  270. Adamis G, Papaioannou MG, Giamarellos-Bourboulis EJ, Gargalianos P, Kosmidis J, Giamarellou H. Pharmacokinetic interactions of ceftazidime, imipenem and aztreonam with amikacin in healthy volunteers. Int J Antimicrob Agents 2004;23:144–149.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry H. Danziger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Danziger, L.H., Neuhauser, M. (2011). Beta-Lactam Antibiotics. In: Piscitelli, S., Rodvold, K., Pai, M. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-61779-213-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-213-7_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-212-0

  • Online ISBN: 978-1-61779-213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics