Skip to main content

Non-HIV Antiviral Agents

  • Chapter
  • First Online:
Drug Interactions in Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 1711 Accesses

Abstract

During the past several decades, viruses have been increasingly recognized as frequent and important pathogens. Critically ill and immunocompromised patients, particularly within the transplant and human immunodeficiency virus (HIV)-infected populations, are at particularly high risk for severe viral infections such as those caused by cytomegalovirus (CMV), adenovirus, disseminated herpes simplex virus (HSV), and infections with hepatitis B virus (HBV) and hepatitis C virus (HCV). Influenza continues to be a significant public and global health ­problem as well. Many of the currently available antiviral agents have been in clinical use for many years and clinical data related to important drug interactions often concern the use of older drugs with which significant interactions were likely to frequently occur (e.g., zidovudine, didanosine). Unfortunately, however, interaction data are often unavailable for drugs such as the newer antiretroviral and immunosuppressant agents which are now considered standards of care for management of populations at high risk for serious viral infections. Some of the non-HIV antiviral drugs such as acyclovir, famciclovir, oseltamivir, and amantadine are associated with relatively few clinically significant drug interactions. However, there are a number of significant interactions which must be considered for the safe and effective use of drugs such as ganciclovir, foscarnet, cidofovir, ribavirin, and the interferons. This chapter summarizes available data regarding pharmacokinetic and toxic interactions with the current non-HIV antiviral agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zovirax (acyclovir) product information. Research Triangle Park, NC: GlaxoSmithKline, 2007.

    Google Scholar 

  2. Valtrex (valacyclovir) product information. Research triangle park, NC: GlaxoSmithKline, 2010.

    Google Scholar 

  3. Sitar D, Aoki FY, Bow EJ. Acyclovir bioavailability in patients with acute myelogenous leukemia treated with daunorubicin and cytarabine. J Clin Pharmacol 2008;48:995–998.

    Article  PubMed  CAS  Google Scholar 

  4. Parmeggiani A, Riva R, Posar A, Rossi PG. Possible interaction between acyclovir and antiepileptic treatment. Ther Drug Monit 1995;17:312–315.

    Article  PubMed  CAS  Google Scholar 

  5. Laskin OL, de Miranda P, Kinh DH, et al. Effects of probenecid on the pharmacokinetics and elimination of acyclovir in humans. Antimicrob Agents Chemother 1982;21:691–715.

    Google Scholar 

  6. Sylvester RK, Leitch J, Granum C. Does acyclovir increase serum lithium levels? Pharmacotherapy 1996;16:466–468.

    CAS  Google Scholar 

  7. Bullingham R, Nicholls A, Kamm B. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998;34:429–455.

    Article  PubMed  CAS  Google Scholar 

  8. Shah J, Juan D, Bullingham R. A single dose drug interaction study of mycophenolate mofetil and acyclovir in normal subjects [abstract]. J Clin Pharmacol 1994;34:1029–1033.

    Google Scholar 

  9. Gimenez F, Foeillet E, Bourdon O, et al. Evaluation of pharmacokinetic interactions after oral administration of mycophenolate mofetil and valacyclovir or acyclovir to healthy subjects. Clin Pharmacokinet 2004;43:685–692.

    Article  PubMed  CAS  Google Scholar 

  10. Vomiero G, Carpenter B, Robb I, Filler G. Combination of ceftriaxone and acyclovir – an underestimated nephrotoxic potential? Pediatr Nephrol 2002;17:633–637.

    Article  PubMed  Google Scholar 

  11. Maeda Y, Konishi T, Omoda K, et al. Inhibition of theophylline metabolism by aciclovir. Biol Pharm Bull 1996;19:1591–1595.

    Article  PubMed  CAS  Google Scholar 

  12. Tartaglione TA, Collier AC, Opheim K, Gianola FG, Benedetti J, Corey L. Pharmacokinetic evaluations of low-and high-dose zidovudine plus high-dose acyclovir in patients with symptomatic human immunodeficiency virus infection. Antimicrob Agents Chemother 1991;35:2225–2231.

    PubMed  CAS  Google Scholar 

  13. Cooper DA, Pedersen C, Aiuti F, et al. The efficacy and safety of zidovudine with or without acyclovir in the treatment of patients with AIDS-related complex. The European-Australian Collaborative Group. AIDS 1991;5:933–943.

    Article  PubMed  CAS  Google Scholar 

  14. Pedersen C, Cooper DA, Brun-Vezinet F, et al. The effect of treatment with zidovudine with or without acyclovir on HIV p24 antigenaemia in patient with AIDS or AIDS-related complex. AIDS 1992;6:821–825.

    Article  PubMed  CAS  Google Scholar 

  15. Cooper DA, Pehrson PO, Pedersen C, et al. The efficacy and safety of zidovudine alone or as cotherapy with acyclovir for the treatment of patients with AIDS and AIDS-related complex: a double-blind randomized trial. European-Australian Collaborative Group. AIDS 1993;7:197–207.

    Article  PubMed  CAS  Google Scholar 

  16. Stein DS, Graham NM, Park LP, et al. The effect of the interaction of acyclovir with zidovudine on progression to AIDS and survival. Analysis of data in the Multicenter AIDS Cohort Study. Ann Intern Med 1994;121:100–108.

    PubMed  CAS  Google Scholar 

  17. Gallant JE, Moore RD, Keruly J, Richman DD, Chaisson RE. Lack of association between acyclovir use and survival in patients with advanced acquired immunodeficiency virus disease treated with zidovudine. Zidovudine Epidemiology Study Group. J Infect Dis 1995;172:346–352.

    Article  PubMed  CAS  Google Scholar 

  18. Famvir (famciclovir) product information. East Hanover, NJ: Novartis Pharmaceuticals Corporation, 2009.

    Google Scholar 

  19. Fowles SE, Pierce MC, Prince WT, et al. Effect of food on the bioavailability and pharmacokinetics of penciclovir, a novel antiherpes agent, following oral administration of the prodrug, famciclovir. Br J Clin Pharmacol 1990;29:620P,621P.

    Google Scholar 

  20. Fowles SE, Fairless AJ, Pierce DM, et al. A further study of the effect of food on the bioavailability and pharmacokinetics of penciclovir after oral administration of famciclovir. Br J Clin Pharmacol 1991;32:657P.

    Google Scholar 

  21. Lavella J, Follansbee S, Trapnell CB, et al. Effect of food on the relative bioavailability of oral ganciclovir. J Clin Pharmacol 1996;36:238–241.

    Google Scholar 

  22. Brown F, Banken L, Saywell K, et al. Pharmacokinetics of valganciclovir and ganciclovir following multiple oral dosages of valganciclovir in HIV- and CMV-seropositive volunteers. Clin Pharmacokinet 1999;37:167–176.

    Article  PubMed  CAS  Google Scholar 

  23. Markham A, Faulds D. Ganciclovir: an update of its therapeutic use in cytomegalovirus infection. Drugs 1994;48:455–484.

    Article  PubMed  CAS  Google Scholar 

  24. Valcyte (valganciclovir) product information. Nutley, NJ: Roche laboratories, Inc, 2001.

    Google Scholar 

  25. Cytovene (ganciclovir) product information. South San Francisco, CA: Genentech USA, Inc, 2010.

    Google Scholar 

  26. Hochster H, Dieterich D, Bozzette S, et al. Toxicity of combined ganciclovir and zidovudine for cytomegalovirus disease associated with AIDS: an AIDS clinical trials group study. Ann Intern Med 1990;113:111–117.

    PubMed  CAS  Google Scholar 

  27. Pinching AJ, Helbert M, Peddle B, Robinson D, Janes K, Gor D. Clinical experience with zidovudine for patients with acquired immune deficiency syndrome and acquired immune deficiency syndrome-related complex. J Infect 1989;18(Suppl1):33–40.

    Article  PubMed  Google Scholar 

  28. Snoeck R, Lagneaux L, Delforge A, et al. Inhibitory effects of potent inhibitors of human immunodeficiency virus and cytomegalovirus on the growth of human granulocyte-macrophage progenitor cells in vitro. Eur J Clin Micro Infect Dis 1990;9:615–618.

    Article  CAS  Google Scholar 

  29. Causey D. Concomitant ganciclovir and zidovudine treatment for cytomegalovirus retinitis in patients with HIV infection: an approach to treatment. J Acquir Immune Defic Synd 1991; 4(Suppl 1):S16–21.

    Google Scholar 

  30. Burger DM, Meenhorst PL, Koks CHW, Beijnen JH. Drug interactions with zidovudine. AIDS 1993;7:445–460.

    Article  PubMed  CAS  Google Scholar 

  31. Millar AB, Miller RF, Patou G, Mindel A, Marsh R, Semple SJG. Treatment of cytomegalovirus retinitis with zidovudine and ganciclovir in patients with AIDS: outcome and toxicity. Genitourin Med 1990;66:156–158.

    PubMed  CAS  Google Scholar 

  32. Freitas VR, Fraser-Smith EB, Matthews TR. Efficacy of ganciclovir in combination with other antimicrobial agents against cytomegalovirus in vitro and in vivo. Antiviral Res 1993;20:1–12.

    Article  PubMed  CAS  Google Scholar 

  33. Cimoch PJ, Lavelle J, Pollard R, et al. Pharmacokinetics of oral ganciclovir alone and in combination with zidovudine, didanosine, and probenecid in HIV-infected subjects. J Acquir Immune Defic Syndr Hum Retrovirol 1998;17:227–234.

    Article  PubMed  CAS  Google Scholar 

  34. Frascino RJ, Gaines Griffy K, Jung D, Yu S. Multiple dose crossover study of IV ganciclovir induction dose (5 mg/kg IV q12h) and didanosine (200 mg po q12h) in HIV-infected persons. In: Abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, September 17–20, 1995, Abstract A-27.

    Google Scholar 

  35. Jung D, Griffy K, Dorr A, et al. Effect of high-dose oral ganciclovir on didanosine disposition in human immunodeficiency virus (HIV)-positive patients. J Clin Pharmacol 1998;38:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  36. Tseng AL, Salit IE. CD4+ cell count decline despite HIV suppression: a probable didanosine-valganciclovir interaction. Ann Pharmacother 2007;41:512–517.

    Article  PubMed  CAS  Google Scholar 

  37. Ray AS, Olson L, Fridland A. Role of purine nucleoside phosphorylase in interactions between 2′,3′-dideoxyinosine and allopurinol, ganciclovir, or tenofovir. Antimicrob Agents Chemother 2004;48:1089–1095.

    Article  PubMed  CAS  Google Scholar 

  38. Studies of Ocular Complications of AIDS Research Group in collaboration with the AIDS Clinical Trials Group. Mortality in patients with the acquired immune deficiency syndrome treated with either foscarnet or ganciclovir for cytomegalovirus retinitis. N Engl J Med 1992;326:213–220.

    Google Scholar 

  39. Studies of Ocular Complications of AIDS Research Group in collaboration with the AIDS Clinical Trials Group. Morbidity and toxic effects associated with ganciclovir or foscarnet therapy in a randomized cytomegalovirus retinitis trial. Arch Intern Med 1995;155:65–74.

    Google Scholar 

  40. Merigan TC, Renlund DG, Keay S, et al. A controlled trial of ganciclovir to prevent cytomegalovirus disease after heart transplantation. N Engl J Med 1992;326:1182–1186.

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt GM, Horak DA, Niland JC, et al. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants. N Engl J Med 1991;324:1005–1011.

    Article  PubMed  CAS  Google Scholar 

  42. Michaelis M, Ha TAT, Doerr HW, Cinati J Jr. Valproic acid interferes with antiviral treatment in human cytomegalovirus-infected endothelial cells. Cardiovasc Res 2008;77:544–550.

    Article  PubMed  CAS  Google Scholar 

  43. Faulds D, Heel RC. Ganciclovir – a review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in cytomegalovirus infections. Drugs 1990;39:597–638.

    Article  PubMed  CAS  Google Scholar 

  44. Vistide (cidofovir) product information. Foster City, CA: Gilead Sciences, Inc., 2000.

    Google Scholar 

  45. Lalezari J, Jaffe HS, Schaker T, et al. A randomized, double-blind placebo controlled trial of cidofovir gel for the treatment of acyclovir-unresponsive mucocutaneous herpes simplex virus infection in patients with AIDS. J Infect Dis 1997;176:892–898.

    Article  PubMed  CAS  Google Scholar 

  46. Lalezari JP, Stagg RJ, Kuppermann BD, et al. Intravenous cidofovir for peripheral cytomegalovirus retinitis in patients with AIDS. Ann Intern Med 1997;126:257–263.

    PubMed  CAS  Google Scholar 

  47. Studies of Ocular Complications of AIDS Research Group in Collaboration with the AIDS Clinical Trials Group. Parenteral cidofovir for cytomegalovirus retinitis in patients with AIDS: the HPMPC peripheral cytomegalovirus retinitis trial. Ann Intern Med 1997;126:264–274.

    Google Scholar 

  48. Lalezari JP, Drew WL, Glutzer E, et al. (S)-1-[3-hydroxy-2-(phosphonylmethoxy)propyl]cytosine (cidofovir): results of a phase I/II study of a novel antiviral nucleoside analogue. J Infect Dis 1995;171:788–796.

    Article  PubMed  CAS  Google Scholar 

  49. Polis MA, Spooner KM, Baird BF, et al. Anticytomegaloviral activity and safety of cidofovir in patients with human immunodeficiency virus infection and cytomegalovirus viruria. Antimicrob Agents Chemother 1995;39:882–886.

    PubMed  CAS  Google Scholar 

  50. Wachsman M, Petty BG, Cundy KC, et al. Pharmacokinetics, safety and bioavailability of HPMPC (cidofovir) in human immunodeficiency virus-infected subjects. Antiviral Res 1996;29:153–161.

    Article  PubMed  CAS  Google Scholar 

  51. Tseng AL, Walmsley SL. Rifabutin-associated uveitis. Ann Pharmacother 1995;29:1149–1155.

    PubMed  CAS  Google Scholar 

  52. Davis JL, Taskintuna I, Freeman WR, Weinberg DV, Feuer WR, Leonard RE. Iritis and hypotony after treatment with intravenous cidofovir for cytomegalovirus retinitis. Arch Ophthalmol 1997;115:733–737.

    PubMed  CAS  Google Scholar 

  53. Palau LA, Tufty GT, Pankey GA. Recurrent iritis after intravenous administration of cidofovir. Clin Infect Dis 1997;25:337,338.

    Article  PubMed  CAS  Google Scholar 

  54. Tseng AL, Mortimer CB, Salit IE. Iritis associated with intravenous cidofovir. Ann Pharmacother 1999;33:167–171.

    Article  PubMed  CAS  Google Scholar 

  55. Foscavir (foscarnet sodium) product information. Wilmington, DE: AstraZeneca, 2006.

    Google Scholar 

  56. Aweeka FT, Brody SR, Jacobson M, Botwin K, Martin-Munley S. Is there a pharmacokinetic interaction between foscarnet and zalcitabine during concomitant administration? Clin Ther 1998;20:232–243.

    Article  PubMed  CAS  Google Scholar 

  57. Morales JM, Muñoz MA, Fernandez Zatarain G, et al. Reversible acute renal failure caused by the combined use of foscarnet and cyclosporin in organ transplanted patients. Nephrol Dial Transplant 1995;10:882,883.

    PubMed  CAS  Google Scholar 

  58. Fan-Havard P, Sanchorawala V, Oh J, Moser EM, Smith SP. Concurrent use of foscarnet and ciprofloxacin may increase the propensity for seizures. Ann Pharmacother 1994;28:869–872.

    Google Scholar 

  59. Matsuo H, Ryu M, Nagata A, et al. Neurotoxicodynamics of the interaction between ciprofloxacin and foscarnet in mice. Antimicrob Agents Chemother 1998;42:691–694.

    PubMed  CAS  Google Scholar 

  60. Koshida R, Vrang L, Gilljam G, Harmenberg J, Oberg B, Wahren B. Inhibition of human immunodeficiency virus in vitro by combinations of 3′-azido-3′-deoxythymidine and foscarnet. Antimicrob Agents Chemother 1989;33:778–780.

    PubMed  CAS  Google Scholar 

  61. Eriksson BF, Schinazi RF. Combinations of 3′-azido-3′-deoxythymidine (zidovudine) and phosphonoformate (foscarnet) against human immunodeficiency virus type 1 and cytomegalovirus replication in vitro. Antimicrob Agents Chemother 1989;33:778–780.

    Google Scholar 

  62. Aweeka FT, Gambertoglio JG, van der Horst C, Raasch R, Jacobson MA. Pharmacokinetics of concomitantly administered foscarnet and zidovudine for treatment of human immunodeficiency virus infection (AIDS Clinical Trials Group protocol 053). Antimicrob Agents Chemother 1992;36:1773–1778.

    PubMed  CAS  Google Scholar 

  63. Aoki FY, Sitar DS. Clinical pharmacokinetics of amantadine hydrochloride. Clin Pharmacokinet 1988;14:35–51.

    Article  PubMed  CAS  Google Scholar 

  64. Wills RJ, Rodriguez LC, Choma N, Oakes M. Influence of meal on the bioavailability of rimantadine HCL. J Clin Pharmacol 1987;27:821–823.

    PubMed  CAS  Google Scholar 

  65. Symmetrel (amantadine) product information. Chadds Ford, PA: Endo Pharmaceuticals, 2007.

    Google Scholar 

  66. Flumadine (rimantadine hydrochloride) product infection. St. Louis, MO: Forest Pharmaceuticals, Inc, 2010.

    Google Scholar 

  67. Wilson TW, Rajput AH. Amantadine-dyazide interaction. Can Med Assoc J 1983;12:974,975.

    Google Scholar 

  68. Speeg KV, Leighton JA, Maldonado AL. Toxic delirium in a patient taking amantadine and trimethoprim-sulfamethoxazole. Am J Med Sci 1989;29:410–412.

    Google Scholar 

  69. Wills RJ. Update on rimantadine’s clinical pharmacokinetics. J Resp Dis 1989;10:S20-S25.

    Google Scholar 

  70. Millet VM, Dreisbach M, Bryson YJ. Double-blind controlled study of central nervous system side effects of amantadine, rimantadine, and chlorpheniramine. Antimicrob Agents Chemother 1982;211:1–4.

    Google Scholar 

  71. Harper RW, Knothe BU. Coloured Lilliputian hallucinations with amantadine. Med J Aust 1973;19:444,445.

    Google Scholar 

  72. Postma JU, Tilburg WV. Visual hallucinations and delirium during treatment with amantadine (Symmetrel). J Am Geriatr Soc 1975;23:212–215.

    PubMed  CAS  Google Scholar 

  73. Stroe AE, Hall J, Amin F. Psychotic episode related to phenylpropanolamine and amantadine in a healthy female. Gen Hosp Psych 1995;17:457,458.

    Article  CAS  Google Scholar 

  74. Trappler B, Miyashiro AM. Buproprion-amantadine-associated neurotoxicity. J Clin Psych 2000;61:61,62.

    CAS  Google Scholar 

  75. Tamiflu (oseltamivir) product information. South San Francisco, CA: Genentech USA, Inc., 2010.

    Google Scholar 

  76. Snell P, Oo C, Dorr A, Barrett J. Lack of pharmacokinetic interaction between the oral anti-influenza neuraminidase inhibitor prodrug oseltamivir and antacids. Br J Clin Pharmacol 2002;544:372–377.

    Article  Google Scholar 

  77. Hill G, Cihlar T, Oo C, et al. The anti-influenza drug oseltamivir exhibits low potential to induce pharmacokinetic drug interactions via renal secretion – correlation of in vivo and in vitro studies. Drug Metab Disposit 2002;301:13–19.

    Article  Google Scholar 

  78. Tang M, Mukundan M, Yang J et al. Antiplatelet agents aspirin and clopidogrel are hydrolyzed by distinct carboxylesterases and the hydrolyses are markedly altered with certain polymorphistic variants. J Pharmacol Exp Ther 2006;319:1467–1476.

    Article  PubMed  CAS  Google Scholar 

  79. Shi D, Yang J, Yang D, et al. Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxyesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel. J Pharmacol Exp Ther 2006;319:1477–1484.

    Article  PubMed  CAS  Google Scholar 

  80. Fowler S, Lennon SM, Hoffmann G, Rayner C. Comments on “Anti-influenza prodrug oseltamivir is activated by carboxylesterase human carboxyesterase 1, and the activation is inhibited by antiplatelet agent clopidogrel” [letter]. J Pharmacol Exp Ther 2006;322:422,423.

    Article  CAS  Google Scholar 

  81. Davies BE. Pharmacokinetics of oseltamivir: an oral antiviral for the treatment and prophylaxis of influenza in diverse populations. J Antimicrob Chemother 2010;65(Suppl 2):ii5–10.

    Article  PubMed  CAS  Google Scholar 

  82. Butler D. Wartime tactic doubles power of scarce bird-flu drug. Nature 2005;438:6.

    Article  PubMed  CAS  Google Scholar 

  83. Howton JC. Probenecid with oseltamivir for human influenza A (H5N1) virus infection? N Engl J Med 2006;354:879,880.

    Article  PubMed  CAS  Google Scholar 

  84. Holodniy M, Penzak SR, Stright TM, et al. Pharmacokinetics and tolerability of oseltamivir combined with probenecid. Antimicrob Agents Chemother 2008;52:3013–3021.

    Article  PubMed  CAS  Google Scholar 

  85. Rayner CR, Chanu P, Gieschke R, Boak LM, Jonsson EN. Population pharmacokinetics of oseltamivir when coadministered with probenecid. J Clin Pharmacol 2008;48:935–947.

    Article  PubMed  CAS  Google Scholar 

  86. Raisch DW, Straight TM, Holodniy M. Thrombocytopenia from combination treatment with oseltamivir and probenecid: case report, MedWatch data summary, and review of the literature. Pharmacotherapy 2009;29:988–992.

    Article  Google Scholar 

  87. He G, Massarella J, Aitken M, et al. The safety and pharmacokinetics of the neuraminidase inhibitor RO 64-0796 when administered concurrently with paracetamol. Clin Microbiol Infect 1999;5:150 [abstract P.247].

    Google Scholar 

  88. Oo C, Barrett J, Dorr A, Liu B, Ward P. Lack of pharmacokinetic interaction between the oral anti-influenza prodrug oseltamivir and aspirin. Antimicrob Agents Chemother 2002;466:1993–1995.

    Article  CAS  Google Scholar 

  89. Davies BE, Aceves BP, Brewster M. Effect of oseltamivir on anticoagulation: a crossover study in patients stabilized on warfarin. In: Abstracts of the 49th Interscience Conference on Antimicrobiao Agents and Chemotherapy, San Francisco, CA, September 12–15, 2009, Abstract A1-596.

    Google Scholar 

  90. Morrison D, Roy S, Rayner C, et al. A randomized, crossover study to evaluate the pharmacokinetics of amantadine and oseltamivir administered alone and in combination. PLoS ONE 2007;2:e1305.

    Article  PubMed  Google Scholar 

  91. Daniel MJ, Barnett JM, Pearson BA. The low potential for drug interactions with zanamivir. Clin Pharmacokinet 1999;36:41–50.

    Article  PubMed  CAS  Google Scholar 

  92. Relenza (zanamivir) product information. Research Triangle Park, NC: GlaxoSmithKline, 2010.

    Google Scholar 

  93. Rockstroh JK. Management of hepatitis B and C in HIV co-infected patients. J Acquir Immune Defic Syndr 2003;34:S59–S65.

    Article  PubMed  Google Scholar 

  94. Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: an update. Hepatol 2009;49:1335–1374.

    Article  CAS  Google Scholar 

  95. Gutfreund KS, Bain VC. Chronic viral hepatitis C: management update. Can Med Assoc J 2000;162:827–833.

    CAS  Google Scholar 

  96. Bodenheimer HC Jr, Lindsay KL, Davis GL, et al. Tolerance and efficacy of oral ribavirin treatment of chronic hepatitis C: a multicenter trial. Hepatol 1997;26:473–477.

    Article  CAS  Google Scholar 

  97. Buckwold VE. Implications of finding synergistic in vitro drug-drug interactions between of interferon-α and ribavirin for the treatment of chronic hepatitis C. J Antimicrob Chemother 2004;53:413,414.

    Article  PubMed  CAS  Google Scholar 

  98. Buckwold VE, Wei J, Wenzel-Mathers M, et al. Synergistic in vitro interactions between alpha interferon and ribavirin against bovine viral diarrhea virus and yellow fever virus as surrogate models of hepatitis C viral replication. Antimicrob Agents Chemother 2003;47:2293–2298.

    Article  PubMed  CAS  Google Scholar 

  99. Rebetol (ribavirin) product information. Kenilworth, NJ: Schering Corporation, 2009.

    Google Scholar 

  100. Copegus (ribavirin) product information. Nutley, NJ: Roche Laboratories, Inc., 2010.

    Google Scholar 

  101. Intron A (interferon alfa-2b) product information. Kenilworth, NJ: Schering Corporation, 2009.

    Google Scholar 

  102. Virazole (ribavirin for inhalation) product information. Costa Mesa, CA: Valeant Pharmaceuticals North America, 2006.

    Google Scholar 

  103. Paroni R, Del Puppo M, Borghi C, Sirtori CR, Galli Kienle M. Pharmacokinetics of ribavirin and urinary excretion of the major metabolite 1,2,4-triazole-3-carboxamide in normal volunteers. Int J Clin Pharmacol Ther Toxicol 1989;27:302–307.

    PubMed  CAS  Google Scholar 

  104. Huggins JW. Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev Infect Dis 1989;2:S750-S761.

    Article  Google Scholar 

  105. Chaparro M, Trapero-Marugan M, Moreno-Otero R, Gisbert JP. Azathioprine plus ribavirin treatment and pancytopenia [letter]. Aliment Pharmacol Ther 2009;30:962,963.

    Article  Google Scholar 

  106. Peyrin-Biroulet L, Cadranel JF, Nousbaum JB, et al. Interaction of ribavirin with azathioprine metabolism potentially induces myelosuppression. Aliment Pharmacol Ther 2008;28:984–993.

    Article  PubMed  CAS  Google Scholar 

  107. Hindorf U, Lindqvist M, Peterson C, et al. Pharmacogenetics during standardized initiation of thiopurine treatment in inflammatory bowel disease. Gut 2006;55:1423–1431.

    Article  PubMed  CAS  Google Scholar 

  108. Gilissen LP, Derijks LJ, Verhoeven HM, et al. Pancytopenia due to high 6-methylmercaptopurine levels in a 6-mercaptopurine treated patient with Crohn’s disease. Dig Liver Dis 2007;39:182–186.

    Article  PubMed  CAS  Google Scholar 

  109. Perronne C. Antiviral hepatitis and antiretroviral drug interactions. J Hepatol 2006;44: 119–125.

    Article  CAS  Google Scholar 

  110. Retrovir (zidovudine) package insert. Research Triangle Park, NC: GlaxoWellcome; Sept 2005.

    Google Scholar 

  111. Vogt MW, Hartshorn KL, Furman PA, et al. Ribavirin antagonizes the effect of azidothymidine on HIV replication. Science 1987;235:1376–1379.

    Article  PubMed  CAS  Google Scholar 

  112. Sim SM, Hoggard PG, Sales SD, Phiboonbanakit D, Hard CA, Back DJ. Effect of ribavirin on zidovudine efficacy and toxicity in vitro: a concentration-dependent interaction. AIDS Res Hum Retrovir 1998;14:1661–1667.

    Article  PubMed  CAS  Google Scholar 

  113. Tornevik Y, Ullman B, Balzarini J, Wahren B, Eriksson S. Cytotoxicity of 3′-azido-3′deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas anti-human immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol 1995;49:829–837.

    Article  PubMed  CAS  Google Scholar 

  114. Chung RT,, Andersen J, Volberding P, et al. Peginterferon Alfa-2a plus ribavirin versus interferon alfa-2a plus ribavirin for chronic hepatitis C in HIV-coinfected persons. N Engl J Med 2004;351:451–459.

    Article  PubMed  CAS  Google Scholar 

  115. Torriani FJ, Rodriguez-Torres M, Rockstroh JK, et al. Peginterferon Alfa-2a plus ribavirin for chronic hepatitis C virus infection in HIV-infected patients. N Engl J Med 2004;351: 438–450.

    Article  PubMed  CAS  Google Scholar 

  116. Gries J-M, Torriani FJ, Rodriguez-Torres M, et al. Effect of ribavirin on intracellular and plasma pharmacokinetics of nucleoside reverse transcriptase inhibitors in patients with human immunodeficiency virus-hepatitis C coinfection: results of a randomized clinical study. Antimicrob Agents Chemother 2005;49:3997–4008.

    Article  PubMed  CAS  Google Scholar 

  117. Aweeka FT, Kang M, Yu J-Y, et al. Pharmacokinetic evaluation of the effects of ribavirin on zidovudine triphosphate formation: ACTG 5092 s Study Team. HIV Medicine 2007;8:288–294.

    Article  PubMed  CAS  Google Scholar 

  118. Margot NA, Miller MD. In vitro combination studies of tenofovir and other nucleoside analogues with ribavirin against HIV-1. Antiviral Therapy 2006;10:343–348.

    Google Scholar 

  119. Ramanathan S, Cheng A, Mittan A, Ebrahimi R, Kearney BP. Absence of clinically relevant pharmacokinetic interaction between ribavirin and tenofovir in healthy subjects. J Clin Pharmacol 2006;46:559–566.

    Article  PubMed  CAS  Google Scholar 

  120. Morsica G, De Bona A, Foppa CU, Sitia G, Finazzi R, Lazzarin A. Ribaviring therapy for chronic hepatitis C does not modify HIV viral load in HIV-1 positive patients under antiretroviral treatment. AIDS 2000;154:1656–1658.

    Article  Google Scholar 

  121. Landau A, Batisse D, Piketty C, Jian R, Kazatchkine MD. Lack of interference between ribavirin and nucleoside analogues in HIV/HCV co-infected individuals undergoing concomitant antiretroviral and anti-HCV combination therapy. AIDS 2000;14:1857,1858.

    Google Scholar 

  122. Balzarini J, Naesens L, Robins MJ, DeClercq E. Potentiating effects of ribavirin on the in vitro and in vivo antiretrovirus activities of 2′,3′-dideoxyinosine and 2′,3′-dideoxy-2,6-diaminiopurine riboside. J AIDS 1990;3:1140–1147.

    CAS  Google Scholar 

  123. Videx (didanosine) product information. Princeton, NJ: Bristol-Myers Squibb Company, 2010.

    Google Scholar 

  124. Butt AA. Fatal lactic acidosis and pancreatitis associated with ribavirin and didanosine therapy. AIDS Reader 2003;13:344–348.

    PubMed  Google Scholar 

  125. Japour AJ, Lertora JJ, Meehan PM, et al. A phase-1 study of the safety, pharmacokinetics, and antiviral activity of combination didanosine and ribavirin in patients with HIV-1 disease. J AIDS 1996;13:235–246.

    Google Scholar 

  126. Lafeuillade A, Hittinger G, Chadapaud S. Increased mitochondrial toxicity with ribavirin in HIV/HCV coinfection. Lancet 2001;357:280,281.

    Article  PubMed  CAS  Google Scholar 

  127. Salmon-Ceron D, Chauvelot-Moachon L, Abad S, Silbermann B, Sogni P. Mitochondrial toxic effects and ribavirin [letter]. Lancet 2001;357:1803,1804.

    Article  PubMed  CAS  Google Scholar 

  128. Kakuda TN, Brinkman K. Mitochondrial toxic effects and ribavirin [letter]. Lancet 2001;357:1802,1803.

    Article  PubMed  CAS  Google Scholar 

  129. Soriano V, Sulkowski M, Bergin C, et al. Care of patients with chronic hepatitis C and HIV co-infection: recommendations from the HIV-HCV International Panel. AIDS 2002;16:813–828.

    Article  PubMed  Google Scholar 

  130. Rodriguez-Novoa S, Morello J, Gonzalez M, et al. Increase in serum bilirubin in HIV/hepatitis-C virus co-infected patients on atazanavir therapy following initiation of pegylated-interferon and ribavirin [letter]. AIDS 2008;22:2535–2537.

    Article  PubMed  CAS  Google Scholar 

  131. Schulman S. Inhibition of warfarin activity by ribavirin. Ann Pharmacother 2002;36:72–74.

    Article  PubMed  Google Scholar 

  132. Pegasys (peginterferon alfa-2a) product information. Nutley, NJ: Hoffman-LaRoche, Inc., 2002.

    Google Scholar 

  133. PegIntron (peginterferon alfa-2b) product information. Kenilworth, NJ: Schering Corporation, 2010.

    Google Scholar 

  134. Alferon N (interferon alfa-n3, human leukocyte derived). Philadelphia, PA: Hemispherx Biopharma, Inc, 2010.

    Google Scholar 

  135. Rebif (interferon beta-1a) product information. Rockland, MA: Serono, Inc., 2003.

    Google Scholar 

  136. Avonex (interferon beta-1a) product information. Cambridge, MA: Biogen, Ind., 2003.

    Google Scholar 

  137. Actimmune (interferon gamma-1b) product information. Brisbane, CA: InterMune, Inc., 2009.

    Google Scholar 

  138. Bleau AM, Levitchi MC, Maurice H, du Souich P. Cytochrome P450 inactivation by serum from humans with a viral infection and serum from rabbits with a turpentine-induced inflammation: the role of cytokines. Br J Pharmacol 2000;130:1777–1784.

    Article  PubMed  CAS  Google Scholar 

  139. Renton KW. Mannering GJ. Depression of hepatic cytochrome P-450-dependent monoxygenase systems with administered interferon inducing agents. Biochem Biophys Res Commun 1976;2:343–348.

    Article  Google Scholar 

  140. Singh G, Renton KW. Interferon-mediated depression of ctyochrome P450-dependent drug biotransformation. Mol Pharmacol 1981;20:681–684.

    PubMed  CAS  Google Scholar 

  141. Okuno H, Kitao Y, Takasu M, et al. Depression of drug-metabolizing activity in the human liver by interferon-α. Eur J Clin Pharmacol 1990;39:365–367.

    Article  PubMed  CAS  Google Scholar 

  142. Israel BC, Blouin RA, McIntyre W, Shedlofsky SI. Effects of interferon-α monotherapy on hepatic drug metabolism in cancer patients. Br J Clin Pharmacol 1993;36:229–235.

    PubMed  CAS  Google Scholar 

  143. Pageaux GP, LeBricquir Y, Berthou F, et al. Effects of interferon-α on cytochrome P-450 isoforms 1A2 and 3A activities in patients with chronic hepatitis C. Eur J Gastro Hepatol 1998;10:491–495.

    Article  CAS  Google Scholar 

  144. Carlson TJ, Billings RE. Role of nitric oxide in the cytokine-mediated regulation of cytochrome P-450. Mol Pharmacol 1996;49:796–801.

    PubMed  CAS  Google Scholar 

  145. Brockmeyer NH. Barthel B. Mertins L. Goos M. Changes in antipyrine pharmacokinetics during influenza and after administration of interferon-alpha and –beta. Int J Clin Pharmacol Ther 1998;36:309–311.

    PubMed  CAS  Google Scholar 

  146. Williams SJ, Farrell GC. Inhibition of antipyrine metabolism by interferon. Br J Clin Pharmacol 1986;22:610–612.

    PubMed  CAS  Google Scholar 

  147. Williams SJ, Baird-Lambert JA, Farrell GC. Inhibition of theophylline metabolism by interferon. Lancet 1987;2:939–941.

    Article  PubMed  CAS  Google Scholar 

  148. Okuno H, Takasu M, Kano H, et al. Depression of drug-metabolizing activity in the human liver by interferon-β. Hepatology 1993;17:65–69.

    Article  CAS  Google Scholar 

  149. Craig PI, Tapner M, Farrell GC. Interferon suppresses erythromycin metabolism in rats and human subjects. Hepatology 1993;17:230–235.

    Google Scholar 

  150. Sewer MB, Morgan ET. Nitric oxide-independent suppression of P450 2CII expression by interleukin-1β and endotoxin in primary rat hepatocytes. Biochem Pharmacol 1997;54: 729–737.

    Article  PubMed  CAS  Google Scholar 

  151. Adachi Y, Yokoyama Y, Nanno T, Yamamoto T. Potentiation of warfarin by interferon. BMJ 1995;311:292.

    PubMed  CAS  Google Scholar 

  152. Serratrice J, Durand JM, Morange S. Interferon-alpha 2b interaction with acenocoumarol. Am J Hematol 1998;57:89.

    Article  PubMed  CAS  Google Scholar 

  153. Nokta M, Loh JP, Douidar SM, Ahmed AE, Pollard RE. Metabolic interaction of recombinant interferon-β and zidovudine in AIDS patients. J Interferon Res 1991;11:159–164.

    Article  PubMed  CAS  Google Scholar 

  154. Piscitelli SC, Amantea MA, Vogel S, et al. Effects of cytokines on antiviral pharmacokinetics: an alternative approach to assessment of drug interactions using bioequivalence guidelines. Antimicrob Agents Chemother 1996;40:161–165.

    PubMed  CAS  Google Scholar 

  155. Casato M, Pucillo LP, Leoni M, et al. Granulocytopenia alter combined therapy with interferon and angiotensin-converting enzyme inhibitors: evidence for a synergistic hematologic toxicity. Am J Med 1995;99:386–391.

    Article  PubMed  CAS  Google Scholar 

  156. Jacquot C, Caudwell V, Belenfant X. Granulocytopenia after combined therapy with interferon and angiotensin-converting enzyme inhibitors: evidence for a synergistic hematologic toxicity. Am J Med 1996;101:235,236.

    Article  PubMed  CAS  Google Scholar 

  157. Raderer M. Scheithauer W. Treatment of advanced colorectal cancer with 5-fluorouracil and interferon-alpha: an overview of clinical trials. Eur J Cancer 1995;31:1002–1008.

    Article  Google Scholar 

  158. Al-Zahrani H, Gupta V, Minden MD, Messner HA, Lipton JH. Vascular events associated with alpha interferon therapy. Leuk Lymphoma 2003;44:471–475.

    Article  PubMed  CAS  Google Scholar 

  159. Österborg A, Björkholm M, Björeman M, et al. Natural interferon-α in combination with melphalan/prednisone versus melphalan/prednisone in the treatment of multiple myeloma stages II and III: a randomized study from the Myeloma Group of Central Sweden. Blood 1993;81:1428–1434.

    PubMed  Google Scholar 

  160. Cooper MR, Dear K, McIntyre OR, et al. A randomized clinical trial comparing melphalan/prednisone with or without interferon alfa-2b in newly diagnosed patients with multiple myeloma: a Cancer and Leukemia Group B study. J Clin Oncol 1993;11:155–160.

    PubMed  CAS  Google Scholar 

  161. Pittman K, Perren T, Ward U, et al. Pharmacokinetics of 5-fluorouracil in colorectal cancer patients receiving interferon. Ann Oncol 1993;4:515,516.

    PubMed  CAS  Google Scholar 

  162. Seymour MT, Patel N, Johnston A, Joel SP, Slevin ML. Lack of effect of interferon α2a upon fluorouracil pharmacokinetics. Br J Cancer 1994;70:724–728.

    Article  PubMed  CAS  Google Scholar 

  163. Schueller J, Czejka MJ, Schernthaner G, Fogl U, Jaeger W, Micksche M. Influence of interferon alfa-2b with or without folinic acid on pharmacokinetics of fluorouracil. Semin Oncol 1992;19(Suppl 2):93–97.

    CAS  Google Scholar 

  164. Danhauser LL, Freimann JH, Gilchrist TL, et al. Phase I and plasma pharmacokinetic study of infusional fluorouracil combined with recombinant interferon alfa-2b in patients with advanced cancer. J Clin Oncol 1993;11:751–761.

    PubMed  CAS  Google Scholar 

  165. Schueller J, Czejka M. Pharmacokinetic interaction of 5-fluorouracil and interferon alpha-2b with or without folinic acid. Med Oncol 1995;12:47–53.

    Article  Google Scholar 

  166. Ehrsson H, Eksborg S, Wallin I, Österborg A, Mellstedt H. Oral melphalan pharmacokinetics: influence of interferon-induced fever. Clin Pharmacol Ther 1990;47:86–90.

    Article  PubMed  CAS  Google Scholar 

  167. Gomez-Rangel JD, Ruiz-Delgado GJ, Ruiz-Arguelles GJ. Pegylated-interferon induced severe bone marrow hypoplasia in a patient with multiple myeloma receiving thalidomide. Am J Hematol 2003;74:290,291.

    Article  PubMed  Google Scholar 

  168. Hoffmann RM, Ott S, Parhofer KG, Batrl R, Pape GR. Interferon-a induced agranulocytosis in a patient on long-term clozapine therapy. J Hepatol 1998;29:170–175.

    Article  PubMed  CAS  Google Scholar 

  169. Okazaki K, Yoshihara H, Suzuki K, et al. Efficacy of interferon therapy in patients with chronic hepatitis C. Scand J Gastroenterol 1994;29:1039–1043.

    Article  PubMed  CAS  Google Scholar 

  170. Mochida S, Ohnishi K, Matsuo S, Kakihara K, Fujiwara K. Effect of alcohol intake on the efficacy of interferon therapy in patients with chronic hepatitis C as evaluated by multivariate logistic regression analysis. Alcohol Clin Exp Res 1996;20:A371-A377.

    Article  Google Scholar 

  171. Ohnishi K, Matsuo S, Matsutani K, et al. Interferon therapy for chronic hepatitis C in habitual drinkers: comparison with chronic hepatitis C in infrequent drinkers. Am J Gastroenterol 1996;91:1374–1379.

    PubMed  CAS  Google Scholar 

  172. Loguercio C, Di Pierro M, Di Marino MP, et al. Drinking habits of subjects with hepatitis C virus-related chronic liver disease: prevalence and effect on clinical, virological and pathological aspects. Alcohol Alcohol 2000;35:296–301.

    PubMed  CAS  Google Scholar 

  173. Safdar K, Schiff ER. Alcohol and hepatitis C. Semin Liver Dis 2004;24:305–315.

    Article  PubMed  Google Scholar 

  174. McCartney EM, Beard MR. Impact of alcohol on hepatitis C virus replication and interferon signaling. World J Gastroenterol 2010;16:1337–1343.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas N. Fish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fish, D.N. (2011). Non-HIV Antiviral Agents. In: Piscitelli, S., Rodvold, K., Pai, M. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-61779-213-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-213-7_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-212-0

  • Online ISBN: 978-1-61779-213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics