Skip to main content

Neuroprotection in Traumatic Brain Injury

  • Chapter
  • First Online:
The Handbook of Neuroprotection
  • 1375 Accesses

Abstract

Neuroprotection is important in injuries of the central nervous system (CNS). Immediate damage from the injury may not be reversible but the progression of the chain of events, which aggravate brain damage, can be prevented by an effective strategy for neuroprotection. Two major forms of CNS injury are traumatic brain injury (TBI) and spinal cord injury (SCI), which will be discussed in the following chapter. A patient with CNS injury may have multiple injuries, which may produce complications in the brain that require neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST. Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann Neurol 2009;66:407–14.

    Article  PubMed  CAS  Google Scholar 

  • Adembri C, Venturi L, Pellegrini-Giampietro DE. Neuroprotective effects of propofol in acute cerebral injury. CNS Drug Rev 2007;13:333–51.

    Article  PubMed  CAS  Google Scholar 

  • Ang BT, Xu G, Xiao ZC. Therapeutic vaccination for central nervous system repair. Clin Exp Pharmacol Physiol 2006;33:541–5.

    Article  PubMed  CAS  Google Scholar 

  • Arbabi S, Campion EM, Hemmila MR, et al. Beta-blocker use is associated with improved outcomes in adult trauma patients. J Trauma 2007;62:56–62.

    Article  PubMed  CAS  Google Scholar 

  • Büki A, Povlishock JT. All roads lead to disconnection? – Traumatic axonal injury revisited. Acta Neurochir (Wien) 2006;148:181–94.

    Article  Google Scholar 

  • Cole JT, Mitala CM, Kundu S, et al. Dietary branched chain amino acids ameliorate injury-induced cognitive impairment. Proc Natl Acad Sci U S A 2010;107:366–71.

    Article  PubMed  CAS  Google Scholar 

  • Cotton BA, Snodgrass KB, Fleming SB, et al. Beta-blocker exposure is associated with improved survival after severe traumatic brain injury. J Trauma 2007;62:26–35.

    Article  PubMed  CAS  Google Scholar 

  • Cutler SM, Cekic M, Miller DM, et al. Progesterone improves acute recovery after traumatic brain injury in the aged rat. J Neurotrauma 2007;24:1475–86.

    Article  PubMed  Google Scholar 

  • DeKosky ST, Ikonomovic MD, Gandy S. Traumatic brain injury – football, warfare, and long-term effects. N Engl J Med 2010;363:1293–6.

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni S, Movsesyan V, Ahmed F, et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 2005;102:8333–8; DOI:10.1073/pnas.0500989102.

    Article  PubMed  Google Scholar 

  • Dinkel K, Dhabhar FS, Sapolsky RM. Neurotoxic effects of polymorphonuclear granulocytes on hippocampal primary cultures. Proc Natl Acad Sci U S A 2003;101:331–6.

    Article  PubMed  Google Scholar 

  • Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 2005;365:1957–9.

    Article  PubMed  Google Scholar 

  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 2007;26:86–93.

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Knoblach SM, Cernak I, et al. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro and in vivo. J Cereb Blood Flow Metab 2003;23:342–54.

    Article  PubMed  CAS  Google Scholar 

  • Gavett BE, Stern RA, Cantu RC, et al. Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimers Res Ther 2010;2:18.

    Article  PubMed  Google Scholar 

  • Gopez JJ, Yue H, Vasudevan R, et al. Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 2005;56:590–604.

    Article  PubMed  Google Scholar 

  • Guennoun R, Meffre D, Labombard F, et al. The membrane-associated progesterone-binding protein 25-Dx: expression, cellular localization and up-regulation after brain and spinal cord injuries. Brain Res Rev 2008;57:493–505.

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Baumgartner JE, Worth LL, et al. Cell therapies for traumatic brain injury. Neurosurg Focus 2008;24(3–4):E18.

    Article  PubMed  Google Scholar 

  • Hoane MR, Gilbert DR, Holland MA, et al. Nicotinamide reduces acute cortical neuronal death and edema in the traumatically injured brain. Neurosci Lett 2006;408:35–9.

    Article  PubMed  CAS  Google Scholar 

  • Hoane MR, Pierce JL, Holland MA, Anderson GD. Nicotinamide treatment induces behavioral recovery when administered up to 4 hours following cortical contusion injury in the rat. Neuroscience 2008;154:861–8.

    Article  PubMed  CAS  Google Scholar 

  • Homsi S, Piaggio T, Croci N, et al. Blockade of acute microglial activation by minocycline promotes neuroprotection and reduces locomotor hyperactivity after closed head injury in mice: a twelve-week follow-up study. J Neurotrauma 2010;27:911–21.

    Article  PubMed  Google Scholar 

  • Huh JW, Widing AG, Raghupathi R. Repetitive mild non-contusive brain trauma in immature rats exacerbates traumatic axonal injury and axonal calpain activation: a preliminary report. J Neurotrauma 2007;24:15–27.

    Article  PubMed  Google Scholar 

  • Hutchison JS, Ward RE, Lacroix J, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med 2008;358:2447–56.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa Y, Uchino H, Morota S, et al. Search for novel gene markers of traumatic brain injury by time differential microarray analysis. Acta Neurochir Suppl 2006;96:163–7.

    Article  PubMed  CAS  Google Scholar 

  • Jain KK. Neuroprotection in traumatic brain injury. Drug Discov Today 2008;13:1082–9.

    Article  PubMed  CAS  Google Scholar 

  • Jain KK. Scientific and Commercial Aspects of Neuroprotection. Jain PharmaBiotech Publications, Basel, 2010.

    Google Scholar 

  • Jayakumar AR, Rao KV, Panickar KS, et al. Trauma-induced cell swelling in cultured astrocytes. J Neuropathol Exp Neurol 2008;67:417–27.

    Article  PubMed  CAS  Google Scholar 

  • Jiang JY, Yang XF. Current status of cerebral protection with mild-to-moderate hypothermia after traumatic brain injury. Curr Opin Crit Care 2007;13:153–5.

    Article  PubMed  Google Scholar 

  • Jordan BD. Genetic influences on outcome following traumatic brain injury. Neurochem Res 2007;32:905–15.

    Article  PubMed  CAS  Google Scholar 

  • Koob AO, Borgens RB. Polyethylene glycol treatment after traumatic brain injury reduces β-amyloid precursor protein accumulation in degenerating axons. J Neurosci Res 2006;83:1558–63.

    Article  PubMed  CAS  Google Scholar 

  • Larsen A, Kolind K, Pedersen DS, et al. Gold ions bio-released from metallic gold particles reduce inflammation and apoptosis and increase the regenerative responses in focal brain injury. Histochem Cell Biol 2008;130:681–92.

    Article  PubMed  CAS  Google Scholar 

  • Liao ZB, Zhi XG, Shi QH, He ZH. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur J Neurol 2008;15:140–9.

    Article  PubMed  CAS  Google Scholar 

  • Lima FD, Oliveira MS, Furian AF, et al. Adaptation to oxidative challenge induced by chronic physical exercise prevents Na+,K+-ATPase activity inhibition after traumatic brain injury. Brain Res 2009;1279:147–55.

    Article  PubMed  CAS  Google Scholar 

  • Loane DJ, Pocivavsek A, Moussa CE, et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 2009;15:377–9.

    Article  PubMed  CAS  Google Scholar 

  • Maas AI, Murray G, Henney H III, et al. Efficacy and safety of dexanabinol in severe traumatic brain injury: results of a phase III randomised, placebo-controlled, clinical trial. Lancet Neurol 2006;5:38–45.

    Article  PubMed  CAS  Google Scholar 

  • Maas AI, Marmarou A, Murray GD, et al. Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J Neurotrauma 2007;24:232–8.

    Article  PubMed  Google Scholar 

  • Maegele M, Schaefer U. Stem cell-based cellular replacement strategies following traumatic brain injury (TBI). Minim Invasive Ther Allied Technol 2008;17:119–31.

    Article  PubMed  Google Scholar 

  • Marklund N, Bareyre FM, Royo NC, et al. Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43 expression. J Neurosurg 2007;107:844–53.

    Article  PubMed  CAS  Google Scholar 

  • Mauler F, Horvath E, De Vry J, et al. BAY 38-7271: a novel highly selective and highly potent cannabinoid receptor agonist for the treatment of traumatic brain injury. CNS Drug Rev 2003;9:343–58.

    Article  PubMed  CAS  Google Scholar 

  • McCrory P, Zazryn T, Cameron P. The evidence for chronic traumatic encephalopathy in boxing. Sports Med 2007;37:467–76.

    Article  PubMed  Google Scholar 

  • McKee JA, Brewer RP, Macy GE, et al. Analysis of the brain bioavailability of peripherally administered magnesium sulfate: a study in humans with acute brain injury undergoing prolonged induced hypermagnesemia. Crit Care Med 2005;33:661–6.

    Article  PubMed  CAS  Google Scholar 

  • McKee AC, Cantu RC, Nowinski CJ, et al. Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 2009;68:709–35.

    Article  PubMed  Google Scholar 

  • Nadler Y, Alexandrovich A, Grigoriadis N, et al. Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia 2008;56:552–67.

    Article  PubMed  Google Scholar 

  • Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007;40:609–19.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Barcena J, Llompart-Pou JA, Homar J, et al. Pentobarbital versus thiopental in the treatment of refractory intracranial hypertension in patients with traumatic brain injury: a randomized controlled trial. Crit Care 2008;12:R112.

    Article  PubMed  Google Scholar 

  • Redell JB, Zhao J, Dash PK. Acutely increased cyclophilin a expression after brain injury: a role in blood-brain barrier function and tissue preservation. J Neurosci Res 2007;85:1980–8.

    Article  PubMed  CAS  Google Scholar 

  • Rockswold SB, Rockswold GL, Defillo A. Hyperbaric oxygen in traumatic brain injury. Neurol Res 2007;29:162–72.

    Article  PubMed  Google Scholar 

  • Sakellaris G, Kotsiou M, Tamiolaki M, et al. Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. J Trauma 2006;61:322–9.

    Article  PubMed  CAS  Google Scholar 

  • Schiff ND, Giacino JT, Kalmar K, et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007;448:600–3.

    Article  PubMed  CAS  Google Scholar 

  • Schouten JW. Neuroprotection in traumatic brain injury: a complex struggle against the biology of nature. Curr Opin Crit Care 2007;13:134–42.

    Article  PubMed  Google Scholar 

  • Sen AP, Gulati A. Use of magnesium in traumatic brain injury. Neurotherapeutics 2010;7:91–9.

    Article  PubMed  CAS  Google Scholar 

  • Shakur H, Andrews P, Asser T, et al. The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials 2009;10:109.

    Article  PubMed  Google Scholar 

  • Shen F, Wen L, Yang X, Liu W. The potential application of gene therapy in the treatment of traumatic brain injury. Neurosurg Rev 2007;30:291–8.

    Article  PubMed  Google Scholar 

  • Spaethling JM, Geddes-Klein DM, Miller WJ, et al. Modeling in vivo complexity with in vitro simplicity. Prog Brain Res 2007;161:27–39.

    Article  PubMed  Google Scholar 

  • Stein DG, Wright DW, Kellermann AL. Does progesterone have neuroprotective properties? Ann Emerg Med 2008;51:164–72.

    Article  PubMed  Google Scholar 

  • Sukoff MH, Jain KK. Hyperbaric oxygen therapy in neurosurgery. In Jain KK (ed) Textbook of Hyperbaric Medicine, 5th ed. Hogrefe & Huber, Seattle/Göttingen, 2009.

    Google Scholar 

  • Temkin NR, Anderson GD, Winn HR, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol 2007;6:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Trabold R, Erös C, Zweckberger K, et al. The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 2010;30:130–9.

    Article  PubMed  CAS  Google Scholar 

  • VanLandingham JW, Cutler SM, Virmani S, et al. The enantiomer of progesterone acts as a molecular neuroprotectant after traumatic brain injury. Neuropharmacology 2006;51:1078–85.

    Article  PubMed  CAS  Google Scholar 

  • Vanlandingham JW, Cekic M, Cutler S, et al. Neurosteroids reduce inflammation after TBI through CD55 induction. Neurosci Lett 2007;425:94–8.

    Article  PubMed  CAS  Google Scholar 

  • Wagner AK, Sokoloski JE, Chen X, et al. Controlled cortical impact injury influences ­methylphenidate-induced changes in striatal dopamine neurotransmission. J Neurochem 2009;110:801–10.

    Article  PubMed  CAS  Google Scholar 

  • Wright DW, Kellermann AL, Hertzberg VS, et al. ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 2007;49:391–402.

    Article  PubMed  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F. Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 2004;21:1457–67.

    Article  PubMed  Google Scholar 

  • Wu H, Lu D, Jiang H, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury. J Neurosurg 2008;109:691–8.

    Article  PubMed  CAS  Google Scholar 

  • Xilouri M, Avlonitis N, Calogeropoulou T, Papazafiri P. Neuroprotective effects of steroid analogues on P19-N neurons. Neurochem Int 2007;50:660–70.

    Article  PubMed  CAS  Google Scholar 

  • Yurkewicz L, Weaver J, Bullock MR, Marshall LF. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 2005;22:1428–43.

    Article  PubMed  Google Scholar 

  • Zhou Z, Sun D, Levasseur JE, et al. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injury in rats. Neurosurgery 2008;63:799–807.

    Article  PubMed  Google Scholar 

  • Zweckberger K, Plesnila N. Anatibant, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neurosci Lett 2009;454:115–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewal K. Jain .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, K.K. (2011). Neuroprotection in Traumatic Brain Injury. In: The Handbook of Neuroprotection. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-049-2_4

Download citation

Publish with us

Policies and ethics