Skip to main content

Regenerating Function In Vivo with Myocytes Derived from Embryonic Stem Cells

  • Chapter
  • First Online:
Regenerating the Heart

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1010 Accesses

Abstract

Myocardial infarction, or heart attack, is a principal cause of congestive heart failure and adult morbidity and mortality in the western world. Since the adult myocardium lacks the inherent ability to repair itself following ischemic injury, a number of exogenous cell sources with differing cardiomyogenic potential have been investigated for the restoration of infarcted myocardium. To this end, the ability of embryonic-stem-cell-derived cardiomyocytes (ESC-CMs) to successfully engraft within host myocardium, fully differentiate to a mature cardiomyogenic phenotype, and electromechanically couple with host cardiomyocytes upon transplantation has been a subject of much inquiry in recent years. Overall, these studies demonstrate that the use of ESC-CMs alone or in conjunction with a biodegradable scaffold serves as a novel route to restore cardiomyocytes to the heart and thereby facilitate myocardial repair and functional regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heart Disease and Stroke Statistics – 2005 Update. 2005, American Heart Association: Dallas, TX.

    Google Scholar 

  2. Rosenthal, N. and A. Musaro, Gene therapy for cardiac cachexia? Int J Cardiol, 2002. 85(1): p. 185–91.

    Article  PubMed  Google Scholar 

  3. Fujimoto, K.L., et al., An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J Am Coll Cardiol, 2007. 49(23): p. 2292–300.

    Article  PubMed  CAS  Google Scholar 

  4. Gnecchi, M., et al., Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med, 2005. 11(4): p. 367–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ott, H.C., J. McCue, and D.A. Taylor, Cell-based cardiovascular repair – the hurdles and the opportunities. Basic Res Cardiol, 2005. 100(6): p. 504–17.

    Article  PubMed  CAS  Google Scholar 

  6. Lietz, K. and L.W. Miller, Will left-ventricular assist device therapy replace heart transplantation in the foreseeable future? Curr Opin Cardiol, 2005. 20(2): p. 132–7.

    PubMed  Google Scholar 

  7. Taylor, D.A., Cell-based myocardial repair: how should we proceed? Int J Cardiol, 2004. 95 Suppl 1: p. S8–12.

    Article  PubMed  Google Scholar 

  8. Chachques, J.C., et al., Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg, 2008. 85(3): p. 901–8.

    Article  PubMed  Google Scholar 

  9. de la Fuente, L.M., et al., Transendocardial autologous bone marrow in chronic myocardial infarction using a helical needle catheter: 1-year follow-up in an open-label, nonrandomized, single-center pilot study (the TABMMI study). Am Heart J, 2007. 154(1): p. 79.e1–7.

    Article  Google Scholar 

  10. Lunde, K., et al., Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects. Scand Cardiovasc J, 2005. 39(3): p. 150–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lunde, K., et al., Exercise capacity and quality of life after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: results from the autologous stem cell transplantation in acute myocardial infarction (ASTAMI) randomized controlled trial. Am Heart J, 2007. 154(4): p. 710.e1–8.

    Article  Google Scholar 

  12. Ripa, R.S., et al., Bone marrow derived mesenchymal cell mobilization by granulocyte-colony stimulaWting factor after acute myocardial infarction: results from the Stem Cells in Myocardial Infarction (STEMMI) trial. Circulation, 2007. 116(11 Suppl): p. I24–30.

    PubMed  CAS  Google Scholar 

  13. Schachinger, V., et al., Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI trial. J Am Coll Cardiol, 2004. 44(8): p. 1690–9.

    Article  PubMed  Google Scholar 

  14. Wollert, K.C., et al., Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 2004. 364(9429): p. 141–8.

    Article  PubMed  Google Scholar 

  15. Hamdi, H., et al., Cell delivery: intramyocardial injections or epicardial deposition? A head-to-head comparison. Ann Thorac Surg, 2009. 87(4): p. 1196–203.

    Article  PubMed  Google Scholar 

  16. Moscoso, I., et al., Analysis of different routes of administration of heterologous 5-azacytidine-treated mesenchymal stem cells in a porcine model of myocardial infarction. Transplant Proc, 2009. 41(6): p. 2273–5.

    Article  PubMed  CAS  Google Scholar 

  17. Alperin, C., P.W. Zandstra, and K.A. Woodhouse, Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials, 2005. 26(35): p. 7377–86.

    Article  PubMed  CAS  Google Scholar 

  18. Shimko, V.F. and W.C. Claycomb, Effect of mechanical loading on three-dimensional ­cultures of embryonic stem cell-derived cardiomyocytes. Tissue Eng Part A, 2008. 14(1): p. 49–58.

    Article  PubMed  CAS  Google Scholar 

  19. Wang, X., et al., Scalable producing embryoid bodies by rotary cell culture system and constructing engineered cardiac tissue with ES-derived cardiomyocytes in vitro. Biotechnol Prog, 2006. 22(3): p. 811–8.

    Article  PubMed  Google Scholar 

  20. Singla, D.K. and B.E. Sobel, Enhancement by growth factors of cardiac myocyte differentiation from embryonic stem cells: a promising foundation for cardiac regeneration. Biochem Biophys Res Commun, 2005. 335(3): p. 637–42.

    Article  PubMed  CAS  Google Scholar 

  21. Caspi, O., et al., Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol, 2007. 50(19): p. 1884–93.

    Article  PubMed  Google Scholar 

  22. Singla, D.K., et al., Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol, 2006. 40(1): p. 195–200.

    Article  PubMed  CAS  Google Scholar 

  23. Kehat, I., et al., Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest, 2001. 108(3): p. 407–14.

    PubMed  CAS  Google Scholar 

  24. Sargent, C., G. Berguig, and T. McDevitt, Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture. Tissue Engineering Part A, 2009. 15(2): p. 331–32.

    Article  PubMed  CAS  Google Scholar 

  25. Wei, H., et al., Embryonic stem cells and cardiomyocyte differentiation: phenotypic and molecular analyses. J Cell Mol Med, 2005. 9(4): p. 804–17.

    Article  PubMed  Google Scholar 

  26. Dai, W., et al., Survival and maturation of human embryonic stem cell-derived cardiomyocytes in rat hearts. J Mol Cell Cardiol, 2007. 43(4): p. 504–16.

    Article  PubMed  CAS  Google Scholar 

  27. Chen, Y., et al., Cyclic adenosine 3′,5′-monophosphate induces differentiation of mouse embryonic stem cells into cardiomyocytes. Cell Biol Int, 2006. 30(4): p. 301–7.

    Article  PubMed  CAS  Google Scholar 

  28. Paquin, J., et al., Oxytocin induces differentiation of P19 embryonic stem cells to cardiomyocytes. Proc Natl Acad Sci USA, 2002. 99(14): p. 9550–5.

    Article  PubMed  CAS  Google Scholar 

  29. Hatami, L., M.R. Valojerdi, and S.J. Mowla, Effects of oxytocin on cardiomyocyte differentiation from mouse embryonic stem cells. Int J Cardiol, 2007. 117(1): p. 80–9.

    Article  PubMed  Google Scholar 

  30. Bugorsky, R., J.C. Perriard, and G. Vassalli, N-cadherin is essential for retinoic acid-mediated cardiomyogenic differentiation in mouse embryonic stem cells. Eur J Histochem, 2007. 51(3): p. 181–92.

    PubMed  CAS  Google Scholar 

  31. Niebruegge, S., et al., Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A, 2008. 14(10): p. 1591–601.

    Article  PubMed  CAS  Google Scholar 

  32. Roggia, C., et al., Hepatocyte growth factor (HGF) enhances cardiac commitment of ­differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res, 2007. 313(5): p. 921–30.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, Z., et al., Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput, 2009. 47(1): p. 41–8.

    Article  PubMed  Google Scholar 

  34. Khezri, S., et al., Effect of basic fibroblast growth factor on cardiomyocyte differentiation from mouse embryonic stem cells. Saudi Med J, 2007. 28(2): p. 181–6.

    PubMed  Google Scholar 

  35. Singla, D.K. and B. Sun, Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun, 2005. 332(1): p. 135–41.

    Article  PubMed  Google Scholar 

  36. Laflamme, M.A., et al., Cardiomyocytes derived from human embryonic stem cells in pro-­survival factors enhance function of infarcted rat hearts. Nat Biotechnol, 2007. 25(9): p. 1015–24.

    Article  PubMed  CAS  Google Scholar 

  37. Rajasingh, J., et al., STAT3-dependent mouse embryonic stem cell differentiation into ­cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res, 2007. 101(9): p. 910–8.

    Article  PubMed  CAS  Google Scholar 

  38. Sachinidis, A., et al., Identification of platelet-derived growth factor-BB as cardiogenesis-inducing factor in mouse embryonic stem cells under serum-free conditions. Cell Physiol Biochem, 2003. 13(6): p. 423–9.

    Article  PubMed  CAS  Google Scholar 

  39. Graichen, R., et al., Enhanced cardiomyogenesis of human embryonic stem cells by a small molecular inhibitor of p38 MAPK. Differentiation, 2008. 76(4): p. 357–70.

    Article  PubMed  CAS  Google Scholar 

  40. Mummery, C., et al., Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation, 2003. 107(21): p. 2733–40.

    Article  PubMed  CAS  Google Scholar 

  41. Xu, X.Q., et al., Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation, 2008. 76(9): p. 958–70.

    PubMed  CAS  Google Scholar 

  42. Singla, D.K., Embryonic stem cells in cardiac repair and regeneration. Antioxid Redox Signal, 2009. 11(8): p. 1857–63.

    Article  PubMed  CAS  Google Scholar 

  43. Doss, M.X., et al., Global transcriptome analysis of murine embryonic stem cell-derived cardiomyocytes. Genome Biol, 2007. 8(4): p. R56.

    Article  PubMed  Google Scholar 

  44. Klug, M.G., et al., Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest, 1996. 98(1): p. 216–24.

    Article  PubMed  CAS  Google Scholar 

  45. Bugorsky, R., J.C. Perriard, and G. Vassalli, Genetic selection system allowing monitoring of myofibrillogenesis in living cardiomyocytes derived from mouse embryonic stem cells. Eur J Histochem, 2008. 52(1): p. 1–10.

    PubMed  CAS  Google Scholar 

  46. Zandstra, P.W., et al., Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng, 2003. 9(4): p. 767–78.

    Article  PubMed  CAS  Google Scholar 

  47. Muller, M., et al., Selection of ventricular-like cardiomyocytes from ES cells in vitro. FASEB J, 2000. 14(15): p. 2540–8.

    Article  PubMed  CAS  Google Scholar 

  48. Moretti, A., et al., Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 2006. 127(6): p. 1151–65.

    Article  PubMed  CAS  Google Scholar 

  49. Bu, L., et al., Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature, 2009. 460(7251): p. 113–7.

    Article  PubMed  CAS  Google Scholar 

  50. Xu, C., et al., Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res, 2002. 91(6): p. 501–8.

    Article  PubMed  CAS  Google Scholar 

  51. Xu, C., et al., Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev, 2006. 15(5): p. 631–9.

    Article  PubMed  CAS  Google Scholar 

  52. Min, J.Y., et al., Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol, 2002. 92(1): p. 288–96.

    Article  PubMed  Google Scholar 

  53. Menard, C., et al., Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: a preclinical study. Lancet, 2005. 366(9490): p. 1005–12.

    Article  PubMed  Google Scholar 

  54. Laflamme, M.A., et al., Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol, 2005. 167(3): p. 663–71.

    Article  PubMed  CAS  Google Scholar 

  55. Kofidis, T., et al., Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur J Cardiothorac Surg, 2006. 29(1): p. 50–5.

    Article  PubMed  Google Scholar 

  56. van Laake, L.W., et al., Human embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents. Circ Res, 2008. 102(9): p. 1008–10.

    Article  PubMed  Google Scholar 

  57. van Laake, L.W., et al., Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res, 2007. 1(1): p. 9–24.

    Article  PubMed  Google Scholar 

  58. van Laake, L.W., et al., Improvement of mouse cardiac function by hESC-derived cardiomyocytes correlates with vascularity but not graft size. Stem Cell Res, 2009. 3(2–3): p. 106–12.

    Article  PubMed  Google Scholar 

  59. van Laake, L.W., et al., Extracellular matrix formation after transplantation of human ­embryonic stem cell-derived cardiomyocytes. Cell Mol Life Sci, 2010. 67(2): p. 277–90

    Article  PubMed  Google Scholar 

  60. Stevens, K.R., et al., Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A, 2009. 15(6): p. 1211–22.

    Article  PubMed  CAS  Google Scholar 

  61. Stevens, K.R., et al., Physiological function and transplantation of scaffold-free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA, 2009. 106(39): p. 16568–73.

    Article  PubMed  CAS  Google Scholar 

  62. Nussbaum, J., et al., Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J, 2007. 21(7): p. 1345–57.

    Article  PubMed  CAS  Google Scholar 

  63. McDevitt, T.C., et al., Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A, 2003. 66(3): p. 586–95.

    Article  PubMed  Google Scholar 

  64. Fromstein, J.D., et al., Seeding bioreactor-produced embryonic stem cell-derived cardiomyocytes on different porous, degradable, polyurethane scaffolds reveals the effect of scaffold architecture on cell morphology. Tissue Eng Part A, 2008. 14(3): p. 369–78.

    Article  PubMed  CAS  Google Scholar 

  65. Guo, X.M., et al., Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation, 2006. 113(18): p. 2229–37.

    Article  PubMed  Google Scholar 

  66. Shapira-Schweitzer, K., et al., A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells. J Mol Cell Cardiol, 2009. 46(2): p. 213–24.

    Article  PubMed  CAS  Google Scholar 

  67. Kofidis, T., et al., Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 2005. 112(9 Suppl): p. I173–7.

    PubMed  Google Scholar 

  68. Ke, Q., et al., Embryonic stem cells cultured in biodegradable scaffold repair infarcted ­myocardium in mice. Sheng Li Xue Bao, 2005. 57(6): p. 673–81.

    PubMed  CAS  Google Scholar 

  69. Baraniak, P.R. and T.C. McDevitt, Stem cell paracrine actions and tissue regeneration. Regen Med, 2010. 5(1): p. 121–43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. McDevitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baraniak, P.R., McDevitt, T.C. (2011). Regenerating Function In Vivo with Myocytes Derived from Embryonic Stem Cells. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_3

Download citation

Publish with us

Policies and ethics