Skip to main content

Long-Term Prospects for Arrhythmia Treatment: Advantages and Limitations of Gene and Cell Therapies

  • Chapter
  • First Online:
Regenerating the Heart

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 989 Accesses

Abstract

Gene and cell therapies of cardiac arrhythmias are novel approaches to long-standing clinical problems. They have been developed in recognition of the fact that the many drug and device treatments available for arrhythmias, all have shortcomings. In this chapter the current status of therapies for bradyarr­hythmias and tachyarrhythmias is reviewed, the prospects for gene and cell therapies are considered, and the steps required in moving toward clinical application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liem LB, DiBiase A, Schroeder JS. Arrhythmias and clinical electrophysiology of the transplanted human heart. Semin Thorac Cardiovasc Surg. 1990:2:271–8.

    PubMed  CAS  Google Scholar 

  2. Moss AJ, Schwartz PJ. 25th Anniversary of the International Long-QT Syndrome Registry: an ongoing quest to uncover the secrets of long-QT syndrome. Circulation. 2005:111:1199–201.

    Article  PubMed  Google Scholar 

  3. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, Gussak I, LeMarec H, Nademanee K, Perez Riera AR, Shimizu W, Schulze-Bahr E, Tan H, Wilde A. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005:111:659–70.

    Article  PubMed  Google Scholar 

  4. Hayashi M, Denjoy I, Extramiana F, Maltret A, Buisson NR, Lupoglazoff JM, Klug D, Hayashi M, Takatsuki S, Villain E, Kamblock J, Messali A, Guicheney P, Lunardi J, Leenhardt A. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009:119:2426–34.

    Article  PubMed  CAS  Google Scholar 

  5. Gregoratos G, Abrams J, Epstein AE, Freedman RA, Hayes DL, Hlatky MA, Kerber RE, Naccarelli GV, Schoenfeld MH, Silka MJ, Winters SL, Gibbons RJ, Antman EM, Alpert JS, Gregoratos G, Hiratzka LF, Faxon DP, Jacobs AK, Fuster V, Smith SC Jr. ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Circulation. 2002:106:2145–61.

    Article  PubMed  Google Scholar 

  6. Passman R, Kadish A. Sudden death prevention with implantable devices. Circulation. 2007:116:561–71.

    Article  PubMed  Google Scholar 

  7. Hall MCS, Todd DM. Modern management of arrhythmias. Postgrad Med J. 2006:82:117–25.

    Article  PubMed  CAS  Google Scholar 

  8. Boyle A. Current status of cardiac transplantation and mechanical circulatory support. Curr Heart Fail Rep. 2009:6:28–33.

    Article  PubMed  Google Scholar 

  9. Members of the Sicilian Gambit. The search for novel antiarrhythmic strategies. Eur Heart J. 1998:19:1178–96.

    Article  Google Scholar 

  10. Members of the Sicilian Gambit. New approaches to antiarrhythmic therapy. Emerging therapeutic applications of the cell biology of cardiac arrhythmias. Cardiovasc Res. 2001:52:345–60.

    Article  Google Scholar 

  11. Allessie MA, Boyden PA, Camm AJ, Kleber AG, Lab MJ, Legato MJ, Rosen MR, Schwartz PJ, Spooner PM, Van Wagoner DR, Waldo AL. Pathophysiology and prevention of atrial fibrillation. Circulation. 2001:103:769–77.

    PubMed  CAS  Google Scholar 

  12. Sohara H, Amitani S, Kurose M, Miyahara K. Atrial fibrillation activates platelets and coagulation in a time-dependent manner: a study in patients with paroxysmal atrial fibrillation. J Am Coll Cardiol. 1997:29:106–12.

    Article  PubMed  CAS  Google Scholar 

  13. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med. 2001:345:1473–82.

    Article  PubMed  CAS  Google Scholar 

  14. Gallagher MG, Camm AJ. Classification of atrial fibrillation. Pacing Clin Electrophysiol. 1997:20:1603–5.

    Article  PubMed  CAS  Google Scholar 

  15. Hirose M, Laurita KR. Calcium-mediated triggered activity is an underlying cellular mechanism of ectopy originating from the pulmonary vein in dogs. Am J Physiol. 2007:292:H1861–7.

    CAS  Google Scholar 

  16. Wit AL, Boyden PA. Triggered activity and atrial fibrillation. Heart Rhythm. 2007:4(Suppl):S17–23.

    Article  PubMed  Google Scholar 

  17. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998:339:659–66.

    Article  PubMed  CAS  Google Scholar 

  18. O’Neill MD, Jais P, Hocini M, Sacher F, Klein GJ, Clementy J, Haissaguerre M. Catheter ablation for atrial fibrillation. Circulation. 2007:116:1515–23.

    Article  PubMed  Google Scholar 

  19. Kantachuvessiri A. Pulmonary veins: preferred site for catheter ablation of atrial fibrillation. Heart Lung. 2002:31:271–8.

    Article  PubMed  Google Scholar 

  20. Fuster V, Ryden LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA, Halperin JL, Le Heuzey JY, Kay GN, Lowe JE, Olsson SB, Prystowsky EN, Tamargo JL, Wann S, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Halperin JL, Hunt SA, Nishimura R, Ornato JP, Page RL, Riegel B, Priori SG, Blanc JJ, Budaj A, Camm AJ, Dean V, Deckers JW, Despres C, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo JL, Zamorano JL. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: full text: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the European Society of Cardiology Committee for Practice Guidelines. Circulation. 2006:114:e257–354.

    Article  PubMed  Google Scholar 

  21. Vaughan Williams EM. The relevance of cellular to clinical electrophysiology in classifying antiarrhythmic actions. J Cardiovasc Pharmacol. 1992:20(Suppl 2):S1–7.

    Article  PubMed  Google Scholar 

  22. Guglin M, Garcia M, Yarnoz MJ, Curtis AB. Non-antiarrhythmic medications for atrial fibrillation: from bench to clinical practice. J Interv Card Electrophysiol. 2008:22:119–28.

    Article  PubMed  Google Scholar 

  23. Vermes E, Tardif JC, Bourassa MG, Racine N, Levesque S, White M, Guerra PG, Ducharme A. Enalapril decreases the incidence of atrial fibrillation in patients with left ventricular dysfunction. Circulation. 2003:107:2926–31.

    Article  PubMed  Google Scholar 

  24. Schaff HV, Dearani JA, Daly RC, Orszulak TA, Danielson GK. Cox-Maze procedure for atrial fibrillation: Mayo Clinic experience. Semin Thorac Cardiovasc Surg. 2000:12:30–7.

    PubMed  CAS  Google Scholar 

  25. Akhtar M, Breithardt G, Camm AJ, Coumel P, Janse MJ, Lazzara R, Myerburg RJ, Schwartz PJ, Waldo AL, Wellens HJ. CAST and beyond. Implications of the Cardiac Arrhythmia Suppression Trial. Circulation. 1990:81:1123–7.

    PubMed  CAS  Google Scholar 

  26. Pratt CM, Camm AJ, Cooper W, Friedman PL, MacNeil DJ, Moulton KM, Pitt B, Schwartz PJ, Veltri EP, Waldo AL. Mortality in the Survival with ORal D-sotalol (SWORD) trial: why did patients die? Am J Cardiol. 1998:81:869–76.

    Article  PubMed  CAS  Google Scholar 

  27. Gilman JK, Jalal S, Naccarelli GV. Predicting and preventing sudden death from cardiac causes. Circulation. 1994:90:1083–92.

    PubMed  CAS  Google Scholar 

  28. Rosen MR, Brink PR, Cohen IS, Robinson RB. Genes, stem cells and biological pacemakers. Cardiovasc Res. 2004:64:12–23.

    Article  PubMed  CAS  Google Scholar 

  29. Rosen MR, Brink PR, Cohen IS, Robinson RB. Cardiac pacing: from biological to electronic… to biological? Circ Arrhythm Electrophysiol. 2008:1:54–61.

    Article  PubMed  Google Scholar 

  30. Puck JM. Severe combined immunodeficiency: new advances in diagnosis and treatment. Immunol Res. 2007:38:64–7.

    Article  PubMed  Google Scholar 

  31. Bekeredjian R, Shohet RV. Cardiovascular gene therapy: angiogenesis and beyond. Am J Med Sci. 2004:327:139–48.

    Article  PubMed  Google Scholar 

  32. Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009:11:671–81.

    Article  PubMed  CAS  Google Scholar 

  33. Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005:23:967–77.

    Article  PubMed  CAS  Google Scholar 

  34. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 2009:19:1279–88.

    Article  PubMed  CAS  Google Scholar 

  35. Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 2008:16:352–8.

    Article  PubMed  CAS  Google Scholar 

  36. Zimmett JM, Hare JM. Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol. 2005:100:471–81.

    Article  Google Scholar 

  37. Rosen MR. Are stem cells drugs? The regulation of stem cell research and development. Circulation. 2006:114:1992–2000.

    Article  PubMed  Google Scholar 

  38. Menasche P. Myoblast transplantation: feasibility, safety and efficacy. Ann Med. 2002:34:314–5.

    Article  PubMed  CAS  Google Scholar 

  39. Stagg MA, Coppen SR, Suzuki K, Varela-Carver A, Lee J, Brand NJ, Fukushima S, Yacoub MH, Terracciano CMN. Evaluation of frequency, type, and function of gap junctions between skeletal myoblasts overexpressing connexin43 and cardiomyocytes: relevance to cell transplantation. FASEB J. 2006:20:744–6.

    PubMed  CAS  Google Scholar 

  40. Groh ME, Maitra B, Szekely E, Koc ON. Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Exp Hematol. 2005:33:928–34.

    Article  PubMed  CAS  Google Scholar 

  41. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002:99:3838–43.

    Article  PubMed  Google Scholar 

  42. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA. Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation. 2009:120:2077–87.

    Article  PubMed  CAS  Google Scholar 

  43. Plotnikov AP, Shlapakova I, Szabolcs MJ, Danilo P Jr, Lorell BH, Potapova IA, Lu Z, Rosen AB, Mathias RT, Brink PR, Robinson RB, Cohen IS, Rosen MR. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation. 2007:116:706–13.

    Article  PubMed  Google Scholar 

  44. Feinberg AW, Feigel A, Shevkoplyas SS, Sheehy S, Whitesides GM, Parker KK. Muscular thin films for building actuators and powering devices. Science. 2007:317:1366–70.

    Article  PubMed  CAS  Google Scholar 

  45. Kallen RG, Sheng Z, Yang Y, Chen L, Rogart RB, Barchi RL. Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron. 1990:4:233–42.

    Article  PubMed  CAS  Google Scholar 

  46. Lau DH, Clausen C, Sosunov EA, Shlapakova IN, Anyukhovsky EP, Danilo P Jr, Rosen TS, Kelly CW, Duffy HS, Szabolcs MJ, Chen M, Robinson RB, Lu J, Kumari S, Cohen IS, Rosen MR. Epicardial border zone overexpression of skeletal muscle sodium channel, SkM1, normalizes activation, preserves conduction and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation. 2009:119:19–27.

    Article  PubMed  CAS  Google Scholar 

  47. Protas L, Dun W, Jia Z, Lu J, Bucchi A, Kumari S, Chen M, Cohen IS, Rosen MR, Entcheva E, Robinson RB. Expression of skeletal but not cardiac Na+ channel isoform preserves normal conduction in a depolarized cardiac syncytium. Cardiovasc Res. 2009:81:528–35.

    Article  PubMed  CAS  Google Scholar 

  48. Coronel R, Lau DH, Sosunov EA, Janse MJ, Danilo P, Anyukhovsky EP, Wilms-Schopman FJG, Opthof T, Shlapakova IN, Ozgen N, Prestia K, Kryukova Y, Cohen IS, Robinson RB, Rosen MR. Cardiac expression of skeletal muscle sodium channels increases longitudinal conduction velocity in the canine one week myocardial infarction. Heart Rhythm. 2010:7(8):1104–10.

    Article  PubMed  Google Scholar 

  49. http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/UCM164345.pdf.

  50. Bucchi A, Plotnikov AN, Shlapakova I, Danilo P Jr, Kryukova Y, Qu J, Lu Z, Liu H, Pan Z, Potapova I, Knight BK, Girouard S, Cohen IS, Brink PR, Robinson RB, Rosen MR. Wild-Type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation. 2006:114:992–9.

    Article  PubMed  Google Scholar 

  51. Rosen MR. Of oocytes and runny noses. Circulation. 1996:94:607–9.

    PubMed  CAS  Google Scholar 

  52. Lund LH, Ekman I. Individual rights and autonomy in clinical research. Eur J Heart Fail. 2010:12:311–2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by USPHS-NHLBI grant HL-094410 and NYSTEM grant CO24344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Rosen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rosen, M.R. (2011). Long-Term Prospects for Arrhythmia Treatment: Advantages and Limitations of Gene and Cell Therapies. In: Cohen, I., Gaudette, G. (eds) Regenerating the Heart. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-021-8_20

Download citation

Publish with us

Policies and ethics