Skip to main content

Metabolic Activation of Chemical Carcinogens

  • Chapter
  • First Online:
Chemical Carcinogenesis

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Many chemical carcinogens require metabolic activation to biologically reactive intermediates which if not detoxified will react with DNA (covalently) or will lesion DNA through the production of reactive oxygen species. The enzymes involved in bioactivation are often phase I enzymes (i.e., those involved in functionalization), while phase II enzymes are involved in conjugation of the functional groups leading to elimination of the carcinogen. Effective elimination can also depend on the presence/absence of transport systems. It is the balance of these events that often determines the carcinogenicity of a chemical in a target tissue and also explains why certain carcinogens give rise to tumors in different organs based on route of administration. In addition, the phase I and phase II enzymes are highly inducible and these genomic responses can determine whether bioactivation or detoxication predominates. Furthermore, many genes involved in these events are highly polymorphic leading to the concept of poor and rapid metabolizers of a particular carcinogen which in turn may govern individual susceptibility to carcinogen exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonio, L., Xu, J., Little, J.M., Burchell, B., et al. (2003). Glucuronidation of catechols by human hepatic, gastric, and intestinal microsomal UDP-glucuronosyltransferases (UGT) and recombinant UGT1A6, UGT1A9, and UGT2B7. Arch Biochem Biophys 411: 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, W.M., Wang, R.W., Bird, A.W., et al. (1993). The catalytic mechanism of glutathione-S-transferase (GST): spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem 268: 19188–19191.

    PubMed  CAS  Google Scholar 

  • Baez, S., Segura-Aguilar, J., Widersten, M., Johansson, A.S., and Mannervik, B. (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem J 324: 25–28.

    PubMed  CAS  Google Scholar 

  • Balu, N., Padgett, W.T., Lambert, G.R., Swank, A.E., et al. (2004). Identification and characterization of novel stable deoxyguanosine and deoxyadenosine adducts of benzo[a]pyrene-7,8-quinone from reactions at physiological pH. Chem Res Toxicol 17: 827–838.

    Article  PubMed  CAS  Google Scholar 

  • Balu, N., Padgett, W.T., Nelson, G.B., Lambert, G.R., et al. (2006). Benzo[a]pyrene-7,8-quinone-3′-mononucleotide adduct standards for 32P post-labeling analyses: detection of benzo[a]pyrene-7,8-quinone-calf thymus DNA adducts. Anal Biochem 355: 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, R.L., Freimuth, R.R., Buck, J., Weinshilboum, R.M., and Coughtrie, M.W. (2004). A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 14: 199–211.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, J.L. and Thatcher, G.R. (2008). Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol 21: 93–101.

    Article  PubMed  Google Scholar 

  • Breyer-Pfaff, U., Martin, H.-J., Ernst, M., and Maser, E. (2004). Enantioselectivity of carbonyl reduction of 4-methylnitrosamino-1-(3-pyridyl)-1-butanone by tissue fractions from human and rat and by enzymes isolated from human liver. Drug Metab Dispos 32: 915–922.

    PubMed  CAS  Google Scholar 

  • Burczynski, M.E., Sridhar, G.R., Palackal, N.T., and Penning, T.M. (2001). The reactive oxygen species and Michael-acceptor-inducible human aldo-keto reductase AKR1C1 reduces the α,β-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene. J Biol Chem 276: 2890–2897.

    Article  PubMed  CAS  Google Scholar 

  • Cavalieri, E.L. and Rogan, E.G. (1995). Central role of radical cations in the metabolic activation of polycyclic aromatic hydrocarbons. Xenobiotica 25: 677–688.

    Article  PubMed  CAS  Google Scholar 

  • Cavalieri, E.L., Stack, D.E., Devanesan, P.D., Todorovic, R., et al. (1997). Molecular origin of cancer: catechol estrogen-3,4-quinones as endogenous tumor initiators. Proc Natl Acad Sci USA 94: 10937–10942.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasena, R.E., Edirisinghe, P.D., Bolton, J.L., and Thatcher, G.R. (2008). Problematic detoxification of estrogen quinones by NAD(P)H-dependent quinone oxidoreductase and glutathione-S-transferase. Chem Res Toxicol 21: 1324–1329.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., Liu, X., Pisha, E., Constantinou, A.I., et al. (2000). A metabolite of equine estrogens, 4-hydroxyequilenin, induces DNA damage and apoptosis in breast cancer cell lines. Chem Res Toxicol 13: 342–350.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, G., Wang, M., Upadhyaya, P., Villalta, P.W., and Hecht, S.S. (2008). Formation of formaldehyde adducts in the reactions of DNA and deoxyribonucleosides and α-acetates of 4-(methylnitrosamino)(-1,3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)(-1,3-pyridyl)-1-butanol (NNAL) and N-nitrosodimethylamine (NDMA). Chem Res Toxicol 21: 746–751.

    Article  PubMed  CAS  Google Scholar 

  • Conney, A.H. (1982). Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons. G.H.A. Clowes Memorial Lecture. Cancer Res 42: 4875–4917.

    PubMed  CAS  Google Scholar 

  • Dawson, J. (1988). Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240: 433–439.

    Article  PubMed  CAS  Google Scholar 

  • Deeley, R.G. and Cole, S.P. (2006). Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett 580: 1103–1111.

    Article  PubMed  CAS  Google Scholar 

  • Dellinger, R.W., Fang, J.L., Chen, G., Weinberg, R., and Lazarus, P. (2006). Importance of UDP-glucuronosyltransferase 1A10 (UGT1A10) in the detoxification of polycyclic aromatic hydrocarbons: decreased glucuronidative activity of the UGT1A10139Lys isoform. Drug Metab Dispos 34: 943–949.

    PubMed  CAS  Google Scholar 

  • Denison, M.S. and Nagy, S.R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43: 309–334.

    Article  PubMed  CAS  Google Scholar 

  • Dirr, H., Reinemer, P., and Huber, R. (1994). X-ray crystal structures of cytosolic glutathione-S-transferases. Eur J Biochem 220: 645–661.

    Article  PubMed  CAS  Google Scholar 

  • Duan, J., Wainwright, M.S., Comeron, J.M., Saitou, N., et al. (2003). Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12: 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H., Schauer, R.J., and Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radic Biol Med 11: 81–128.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D. (1992). N-acetyltransferase. Pharmacogenetics of Drug Metabolism, W. Kalow (ed). New York, Pergamon Press: 95–178.

    Google Scholar 

  • Fang, J.L., Beland, F.A., Doerge, D.R., Wiener, D., and Guillemette, C., et al. (2002). Characterization of benzo(a)pyrene-trans-7,8-dihydrodiol glucuronidation by human tissue microsomes and overexpressed UDP-glucuronosyltransferase enzymes. Cancer Res 62: 1978–1986.

    PubMed  CAS  Google Scholar 

  • Finckh, C., Atalla, A., Nagel, G., Stinner, B., and Maser, E. (2001). Expression and NNK reducing activities of carbonyl reductase and 11β-hydroxysteroid dehydrogenase type 1 in human lung. Chem Biol Interact 130–132: 761–773.

    Article  PubMed  Google Scholar 

  • Fretland, A.J. and Omiecinski, C.J. (2000). Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129: 41–59.

    Article  PubMed  CAS  Google Scholar 

  • Gamage, N., Barnett, A., Hempel, N., Duggleby, R.G., Windmill, K.F., et al. (2006). Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90: 5–22.

    Article  PubMed  CAS  Google Scholar 

  • Gelboin, H.V. (1980). Benzo[a]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed function oxidases and related enzymes. Physiol Rev 60: 1107–1166.

    PubMed  CAS  Google Scholar 

  • Gonzalez, F.J. and Kimura, S. (2003). Study of P450 function using gene knockout and transgenic mice. Arch Biochem Biophys 409: 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O.W. and Meister, A. (1979). Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254: 7558–7560.

    PubMed  CAS  Google Scholar 

  • Groopman, J.D., Zhu, J.Q., Donahue, P.R., Pikul, A., et al. (1992). Molecular dosimetry of urinary aflatoxin-DNA adducts in people living in Guangxi Autonomous Region, People’s Republic of China. Cancer Res 52: 45–52.

    PubMed  CAS  Google Scholar 

  • Guengerich, F.P. and Shimada, T. (1991). Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4: 391–407.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F.P. and Martin, M.V. (2006). Purification of cytochromes P450: products of bacterial recombinant expression systems. Methods Mol Biol 320: 31–37.

    PubMed  CAS  Google Scholar 

  • Hankinson, O. (1995). The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol 35: 307–340.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, J.D. and Pulford, D.J. (1995). The glutathione-S-transferase supergene family: regulation of GST and the contribution of the isozymes to cancer chemoprevention. Crit Rev Biochem Mol Biol 30: 445–600.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, J.D., Flanagan, J.U., and Jowsey, I.R. (2004). Glutathione-S-transferases. Annu Rev Pharmacol Toxicol 45: 51–88.

    Article  Google Scholar 

  • Hecht, S.S. (1998). Biochemistry, biology and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol 11: 560–603.

    Article  Google Scholar 

  • Hecht, S.S. (1999). Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91: 1194–1210.

    Article  PubMed  CAS  Google Scholar 

  • Heidel, S.M., MacWilliams, P.S., Baird, W.M., Dashwood, W.M., et al. (2000). Cytochrome P4501B1 mediates induction of bone marrow cytotoxicity and preleukemia cells in mice treated with 7,12-dimethylbenz[a]anthracene. Cancer Res 60: 3454–3460.

    PubMed  CAS  Google Scholar 

  • Hein, D. (1988). Acetylator genotype and arylamine-induced carcinogenesis. Biochem Biophys Acta 948: 37–66.

    PubMed  CAS  Google Scholar 

  • Hein, D. (2002). Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis. Mutat Res 506–507: 65–77.

    PubMed  Google Scholar 

  • Hein, D. (2006). N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25: 1649–1658.

    Article  PubMed  CAS  Google Scholar 

  • Hubatsch, I., Ridderstrom, M., and Mannervik, B. (1998). Human glutathione transferase A4-4: an alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 330: 175–179.

    PubMed  CAS  Google Scholar 

  • Hunt, R., Sauna, Z.E., Ambudkar, S.V., Gottesman, M.M., and Kimichi-Sarfaty, C. (2009). Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 578: 23–39.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, H., Fujia, K., Kushida, H., Suzuki, A., et al. (1998). High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem Pharmacol 55: 1315–1325.

    Article  PubMed  CAS  Google Scholar 

  • Jernstrom, B., Funk, M., Frank, H., Mannervik, B., and Seidel, A. (1996). Glutathione S-transferase A1-1-catalyzed conjugation of bay and fjord region diol epoxides of polycyclic aromatic hydrocarbons with glutathione. Carcinogenesis 17: 1491–1498.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y. and Penning, T.M. (2007). Aldo-keto reductases and bioactivation/de-toxication. Annu Rev Pharmacol Toxicol 47: 263–292.

    Article  PubMed  CAS  Google Scholar 

  • Kamataki, T., Fujieda, M., Kiyotani, K., Iwano, S., and Kunitoh, H. (2005). Genetic polymorphism of CYP2A6 as one of the potential determinants of tobacco-related cancer risk. Biochem Biophys Res Commun 338: 306–310.

    Article  PubMed  CAS  Google Scholar 

  • Kapitulnik, J., Wislocki, P.G., Levin, W., Yagi, H., et al. (1978). Tumorigenicity studies with diol-epoxides of benzo[a]pyrene which indicate that (+)-trans-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is an ultimate carcinogen in newborn mice. Cancer Res 38: 354–358.

    PubMed  CAS  Google Scholar 

  • Kensler, T.W., Wakabayashi, N., and Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47: 89–116.

    Article  PubMed  CAS  Google Scholar 

  • Koabayashi, T., Sleeman, J.E., Coughtree, M.W., and Burchell, B. (2006). Molecular and functional characterization of microsomal UDP-glucuronic acid uptake by members of the nucleotide sugar transporter (NST) family. Biochem J 400: 281–289.

    Article  Google Scholar 

  • Lao, Y., Yu, N., Kassie, F., Villata, P.W., and Hecht, S.S. (2007). Formation and accumulation of pyridyloxobutyl DNA adducts in F334 rats chronically treated with 4-(methylnitrosamino)(-1,3-pyridyl)-1-butanone and enantiomers of its metabolite, 4-(methylnitrosamino)(-1,3-pyridyl)-1-butanol. Chem Res Toxicol 20: 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Li, R., Bianchet, M.A., Talalay, P., and Amzel, L.M. (1995). The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci USA 92: 8846–8850.

    Article  PubMed  CAS  Google Scholar 

  • Lind, C., Hochstein, P., and Ernster, L. (1982). DT-Diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch Biochem Biophys 216: 178–185.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, P.I., Walter, B.K., Burchell, B., et al. (2005). Nomenclature update for the mammalian UDP-glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics 15: 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Malaveille, C., Kuroki, T., Sims, P., Grover, P.L., and Bartsch, H. (1977). Mutagenicity of isomeric diol-epoxides of benzo[a]pyrene and benz[a]anthracene in S. typhimurium TA98 and TA100 and in V79 Chinese hamster cells. Mutat Res 44: 313–326.

    PubMed  CAS  Google Scholar 

  • Mannervik, B., Board, P.G., Hayes, J.D., Listowsky, I., and Pearson, W.R. (2005). Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 401: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Maser, E., Friebertshauser, J., and Volker, B. (2003). Purification, characterization and NNK carbonyl reductase activities of 11β-hydroxysteroid dehydrogenase type 1 from human liver: enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen. Chem Biol Interact 143–144: 435–448.

    Article  PubMed  Google Scholar 

  • Miller, J.A. (1968). Summary of informal discussion on the mechanisms involved in carcinogenesis. Cancer Res 28: 1875–1879.

    Google Scholar 

  • Miller, J.A. and Miller, E.C. (1967). The activation of carcinogenic aromatic amines and amides by N-hydroxylation in vivo. Carcinogenesis: A Broad Citique, M. Mandel (ed). Baltimore, Williams and Wilkins: 397–420.

    Google Scholar 

  • Moore, L.B., Parks, D.J., Jones, S.A., Bledsoe, R.K., et al. (2000). Orphan nuclear receptors constitutive androstane receptor and pregnane X receptor share xenobiotic and steroid ligands. J Biol Chem 275: 15122–15127.

    Article  PubMed  CAS  Google Scholar 

  • Morisseau, C. and Hammock, B.D. (2005). Epoxide hydrolases: mechanisms, inhibitor design, and biological roles. Annu Rev Pharmacol Toxicol 45: 311–333.

    Article  PubMed  CAS  Google Scholar 

  • Murty, V.S. and Penning, T.M. (1992a). Characterization of mercapturic acid and glutathionyl conjugates of benzo[a]pyrene-7,8-dione by two dimensional NMR. Bioconjug Chem 3: 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Murty, V.S. and Penning, T.M. (1992b). Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: kinetics of thiol addition to PAH ortho-quinones and structures of thiol-ether adducts of naphthalene-1,2-dione. Chem Biol Interact 84: 169–188.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor, T., Ireland, L.S., Harrison, D.J., and Hayes, J.D. (1999). Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductases AKR1 family members. Biochem J 343: 487–504.

    Article  PubMed  Google Scholar 

  • Opperman, U. (2007). Carbonyl reductases: the complex relationships of mammalian carbonyl and quinone-reducing enzymes and their role in physiology. Annu Rev Pharmacol Toxicol 47: 293–322.

    Article  Google Scholar 

  • Palackal, N.T., Burczynski, M.E., Harvey, R.G., and Penning, T.M. (2001). The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 40: 10901–10910.

    Article  PubMed  CAS  Google Scholar 

  • Palackal, N.T., Lee, S.H., Harvey, R.G., Blair, I.A., and Penning, T.M. (2002). Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung adenocarcinoma (A549) cells. J Biol Chem 277: 24799–24808.

    Article  PubMed  CAS  Google Scholar 

  • Park, J.H., Mangal, D., Frey, A.J., Harvey, R.G., et al. (2009). Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2′-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione. J Biol Chem 284: 29725–29734.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, A. and Ogilvie, B.W. (2007). Biotransformation of xenobiotics. Casarett and Doull’s Toxicology. The Basic Science of Poisons, C.D. Klaassen (ed). New York, McGraw Hill Medical: 161–304.

    Google Scholar 

  • Penning, T.M., Ohnishi, S.T., Ohnishi, T., and Harvey, R.G. (1996). Generation of reactive oxygen species during the enzymatic oxidation of polycyclic aromatic hydrocarbon trans-dihydrodiols catalyzed by dihydrodiol dehydrogenase. Chem Res Toxicol 9: 84–92.

    Article  PubMed  CAS  Google Scholar 

  • Probst, M.R., Reisz-Porszasz, S., Agbuag, R.V., Ong, M.S., and Hankinson, O. (1993). Role of the aryl hydrocarbon receptor nuclear translocator protein in aryl hydrocarbon (dioxin) receptor action. Mol Pharmacol 44: 511–518.

    PubMed  CAS  Google Scholar 

  • Prochaska, H.J. and Talalay, P. (1988). Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res 48: 4776–4782.

    PubMed  CAS  Google Scholar 

  • Quinn, A.M. and Penning, T.M. (2008). Comparisons of (+/−)-benzo[a]pyrene-trans-7,8-dihydrodiol activation by human cytochrome P450 and aldo-keto reductase enzymes: effect of redox state and expression levels. Chem Res Toxicol 21: 1086–1094.

    Article  PubMed  CAS  Google Scholar 

  • Ramana, K., Dixit, B.L., Srivastava, S., Balendiran, G.K., et al. (2000). Selective recognition of glutathiolated aldehydes by aldose reductase. Biochemistry 39: 12172–12180.

    Article  PubMed  CAS  Google Scholar 

  • Ramírez, J., Iyer, L., Journault, K., Bélanger, P., Innocenti, F., et al. (2002). In vitro characterization of hepatic flavopiridol metabolism using human liver microsomes and recombinant UGT enzymes. Pharm Res 19: 588–594.

    Article  PubMed  Google Scholar 

  • Rodrigues, A.D. (1999). Integrated cytochrome P450 reaction phenotyping: attempting to bridge the gap between cDNA-expressed cytochromes P450 and native liver microsomes. Biochem Pharmacol 57: 465–480.

    Article  PubMed  CAS  Google Scholar 

  • Ross, D., Kepa, J.K., Winksi, S.L., Beall, H.D., et al. (2000). NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129: 77–97.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Pisha, E., Huang, Z., Pezzuto, J.M., et al. (1997). Bioreductive activation of catechol estrogen ortho-quinones: aromatization of the B-ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity. Carcinogenesis 18: 1093–1101.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T., Martin, M.V., Pruess-Schwartz, D., Marnett, L.J., and Guengerich, F.P. (1989). Roles of individual human cytochrome P-450 enzymes in the bioactivation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res 49: 6304–6312.

    PubMed  CAS  Google Scholar 

  • Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., et al. (1996). Activation of chemically diverse procarcinogens by human cytochrome P450 1B1. Cancer Res 56: 2979–2984.

    PubMed  CAS  Google Scholar 

  • Shimada, T., Gillam, E.M.J., Oda, Y., Tsumura, F., et al. (1999). Metabolism of benzo[a]pyrene to trans-7,8-dihydroxybenzo[a]pyrene by recombinant human cytochrome P4501B1 and purified liver epoxide hydrolase. Chem Res Toxicol 12: 623–629.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T., Oda, Y., Gillam, E.M., Guengerich, F.P., and Inoue, K. (2001). Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab Dispos 29: 1176–1182.

    PubMed  CAS  Google Scholar 

  • Shou, M., Harvey, R.G., and Penning, T.M. (1993). Reactivity of benzo[a]pyrene-7,8-dione with DNA. Evidence for the formation of deoxyguanosine adducts. Carcinogenesis 14: 475–482.

    Article  PubMed  CAS  Google Scholar 

  • Smithgall, T.E., Harvey, R.G., and Penning, T.M. (1986). Regio- and stereospecificity of homogeneous 3α-hydroxysteroid-dihydrodiol dehydrogenase for trans-dihydrodiol metabolites of polycyclic aromatic hydrocarbons. J Biol Chem 261: 6184–6191.

    PubMed  CAS  Google Scholar 

  • Smithgall, T.E., Harvey, R.G., and Penning, T.M. (1988). Spectroscopic identification of ortho-quinones as the products of polycyclic aromatic trans-dihydrodiol oxidation catalyzed by dihydrodiol dehydrogenase. A potential route of proximate carcinogen metabolism. J Biol Chem 263: 1814–1820.

    PubMed  CAS  Google Scholar 

  • Sundberg, K., Widersten, M., Seidel, A., Mannervik, B., and Jernstrom, B., et al. (1997). Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1. Chem Res Toxicol 10: 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  • Taskinen, J., Ethell, B.T., et al. (2003). Conjugation of catechols by recombinant human sulfotransferases, UDP-glucuronosyltransferases, and soluble catechol O-methyltransferase: structure-conjugation relationships and predictive models. Drug Metab Dispos 31: 1187–1197.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, Y., Haiya, Y., Adachi, T., Hoshijima, K., et al. (2008). MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 38: 833–862.

    Article  PubMed  CAS  Google Scholar 

  • Tukey, R.H. and Strassburg, C.P. (2000). Human UDP-glucuronyslytransferases: metabolism, expression and disease. Annu Rev Pharmacol Toxicol 40: 581–616.

    Article  PubMed  CAS  Google Scholar 

  • Uno, S., Dalton, T.P., Shertzer, H.G., Genter, M.B., et al. (2001). Benzo[a]pyrene-induced toxicity: paradoxical protection in Cyp1a1(−/−) knockout mice having increased hepatic B[a]P-DNA adduct levels. Biochem Biophys Res Commun 289: 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  • Uno, S., Dalton, T.P., Derkenne, S., Curran, C.P., et al. (2004). Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 65: 1225–1237.

    Article  PubMed  CAS  Google Scholar 

  • Uno, S., Dalton, T.P., Dragin, N., Curran, C.P., et al. (2006). Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total body burden and clearance rate. Mol Pharmacol 69: 1103–1114.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A., et al. (2004). Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101: 2040–2045.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R.M. (2006). Pharmacogenomics: catechol O-methyltransferase to thiopurine S-methyltransferase. Cell Mol Neurobiol 26: 539–561.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R., Otterness, D., and Szumlanksi, C. (1999). Methylation pharmacogenetics: catechol-O-methyltransferase, thiopurine methyltransferase, and histamine-N-methyl transferase. Annu Rev Pharmacol Toxicol 39: 19–52.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinari, K., Petrotchenko, E.V., Pedersen, L.C., and Negishi, M. (2001). Crystal structure-based studies of cytosolic sulfotransferase. J Biochem Mol Toxicol 15: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Wang, M., Villalta, P.W., Lindgren, B.R., Upadhyaya, P., Lao, Y., and Hecht, S.S. (2009). Analysis of pyridyloxobutyl and pyridylhydroxybutyl DNA adducts in extraphepatic tissues of F334 rats treated chronically with 4-(methylnitrosamino)(-1,3-pyridyl)-1-butanone and enantiomers of 4-(methylnitrosamino)(-1,3-pyridyl)-1-butanol. Chem Res Toxicol 22: 926–936.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor M. Penning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Penning, T.M. (2011). Metabolic Activation of Chemical Carcinogens. In: Penning, T. (eds) Chemical Carcinogenesis. Current Cancer Research. Humana Press. https://doi.org/10.1007/978-1-61737-995-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-995-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-994-9

  • Online ISBN: 978-1-61737-995-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics