Skip to main content

Heterocyclic Aromatic Amines: Potential Human Carcinogens

  • Chapter
  • First Online:
Chemical Carcinogenesis

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Heterocyclic aromatic amines (HAAs) are formed at parts per billion concentrations during the cooking of meats, poultry, and fish. All of the HAAs tested thus far are carcinogenic in experimental animals and induce tumors in multiple organs. Because of the presence of HAAs in a wide range of food items, the exposure to them can be appreciable. Some epidemiological studies have linked an increased risk for cancer development of the colon, prostate, and female mammary gland with frequent consumption of well-done cooked meats containing HAAs. Therefore, much research has been devoted to determining the potential role of HAAs in the etiology of human cancer. This chapter highlights investigations on the biochemistry of metabolism of several prototypical HAAs, the formation of DNA adducts by these HAAs and the ensuing biological effects, and the analytical approaches that are employed for biomonitoring of these procarcinogens in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AαC:

2-Amino-9H-pyrido[2,3-b]indole

4,8-DiMeIQx:

2-Amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline

7,8-DiMeIQx:

2-Amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline

7,9-DiMeIgQx:

2-Amino-1,7,9-trimethylimidazo[4,5-g]quinoxaline

Glu-P-1:

2-Amino-6-methyldipyrido[1,2-a:3′,2′-d]imidazole

Glu-P-2:

2-Aminodipyrido[1,2-a:3′,2′-d]imidazole

IQ:

2-Amino-3-methylimidazo[4,5-f]quinoline

IQx:

2-Amino-3-methylimidazo[4,5-f]quinoxaline

MeAαC:

2-Amino-3-methyl-9H-pyrido[2,3-b]indole

MeIQ:

2-Amino-3,4-dimethylimidazo[4,5-f]quinoline

7-MeIgQx:

2-Amino-1,7-dimethylimidazo[4,5-g]quinoxaline

MeIQx:

2-Amino-3,8-dimethylimidazo[4,5-f  ]quinoxaline

PhIP:

2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine

Trp-P-1:

3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole

Trp-P-2:

3-Amino-1-methyl-5H-pyrido[4,3-b]indole

References

  • Alexander J, Heidenreich B, Reistad R, Holme JA (1995) Metabolism of the food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the rat and other rodents. In: Adamson RH, Gustafsson J-A, Ito N, Nagao M, Sugimura T, Wakabayashi K, Yamazoe Y (eds) Heterocyclic amines in cooked foods: Possible human carcinogens. 23rd Proceedings of the Princess Takamatusu Cancer Society, Princeton Scientific Publishing Co., Inc., New Jersey

    Google Scholar 

  • Alexander J, Reistad R, Hegstad S, et al (2002) Biomarkers of exposure to heterocyclic amines: approaches to improve the exposure assessment. Food Chem Toxicol 40:1131–1137

    Article  PubMed  CAS  Google Scholar 

  • Bashir M, Kingston DGI, Carmen RJ, Van Tassel RL, Wilkins TD (1990) Isolation, structure ­elucidation, and synthesis of the major anaerobic bacterial metabolite of the dietary carcinogen 2-amino-3,8-dimethylimidazo[4,5-f  ]quinoxaline (MeIQx), Heterocycles 31:1333–1338.

    Article  PubMed  CAS  Google Scholar 

  • Bendaly J, Zhao S, Neale JR, et al (2007) 2-Amino-3,8-dimethylimidazo-[4,5-f]quinoxaline-induced DNA adduct formation and mutagenesis in DNA repair-deficient Chinese hamster ovary cells expressing human cytochrome P4501A1 and rapid or slow acetylator N-acetyltransferase 2. Cancer Epidemiol Biomarkers Prev 16:1503–1509

    Article  PubMed  CAS  Google Scholar 

  • Bessette EE, Yasa I, Dunbar D, et al (2009) Biomonitoring of carcinogenic heterocyclic aromatic amines in hair: A validation study. Chem Res Toxicol 22:1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Boobis AR, Lynch AM, Murray S, et al (1994) CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res 54:89–94

    PubMed  CAS  Google Scholar 

  • Broyde S, Wang L, Zhang L, et al (2008) DNA adduct structure-function relationships: comparing solution with polymerase structures. Chem Res Toxicol 21:45–52

    Article  PubMed  CAS  Google Scholar 

  • Burnouf D, Miturski R, Nagao M, et al (2001) Early detection of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine(PhIP)-induced mutations within the Apc gene of rat colon. Carcinogenesis 22:329–335

    Article  PubMed  CAS  Google Scholar 

  • Butler MA, Iwasaki M, Guengerich FP, et al (1989) Human cytochrome P-450PA (P450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci USA 86:7696–7700

    Article  PubMed  CAS  Google Scholar 

  • Choi JY, Stover JS, Angel KC, et al (2006) Biochemical basis of genotoxicity of heterocyclic arylamine food mutagens: Human DNA polymerase eta selectively produces a two-base deletion in copying the N2-guanyl adduct of 2-amino-3-methylimidazo[4,5-f]quinoline but not the C8 adduct at the NarI G3 site. J Biol Chem 281:25297–25306

    Article  PubMed  CAS  Google Scholar 

  • Crofts FG, Sutter TR, Strickland PT (1998) Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis 19:1969–1973

    Article  PubMed  CAS  Google Scholar 

  • Dingley KH, Curtis KD, Nowell S, et al (1999) DNA and protein adduct formation in the colon and blood of humans after exposure to a dietary-relevant dose of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Epidemiol Biomarkers Prev 8:507–512

    PubMed  CAS  Google Scholar 

  • DuPont RL, Baumgartner WA (1995) Drug testing by urine and hair analysis: complementary features and scientific issues. Forensic Sci Int 70:63–76

    Article  PubMed  CAS  Google Scholar 

  • Fede JM, Thakur AP, Gooderham NJ, et al (2009) Biomonitoring of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and its carcinogenic metabolites in urine. Chem Res Toxicol 22:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Felton JS, Jagerstad M, Knize MG, Skog K, Wakabayashi K (2000) Contents in foods, beverages and tobacco. In: Nagao M, Sugimura T (eds) Food Borne Carcinogens Heterocyclic Amines, John Wiley & Sons Ltd., Chichester, England

    Google Scholar 

  • Friesen MD, Kaderlik K, Lin D, et al (1994) Analysis of DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rat and human tissues by alkaline hydrolysis and gas chromatography/electron capture mass spectrometry: validation by comparison with 32P-postlabeling. Chem Res Toxicol 7:733–739

    Article  PubMed  CAS  Google Scholar 

  • Fuscoe JC, Wu R, Shen NH, et al (1988) Base-change analysis of revertants of the hisD3052 allele in Salmonella typhimurium. Mutat Res 201:241–251

    PubMed  CAS  Google Scholar 

  • Glatt H (2006) Metabolic factors affecting the mutagenicity of heteroyclic amines. In: Skog K, Alexander J (eds) Acrylamide and Other Hazardous Compounds in Heat-Treated Foods, Woodhead Publishing Ltd., Cambridge, England

    Google Scholar 

  • Gossen JA, de Leeuw WJ, Vijg J (1994) LacZ transgenic mouse models: their application in genetic toxicology. Mutat Res 307:451–459

    PubMed  CAS  Google Scholar 

  • Hecht SS (2003) Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3:733–744

    Article  PubMed  CAS  Google Scholar 

  • Hein DW (2006) N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GR, Fuchs RP (1997) Mechanisms of frameshift mutations: insight from aromatic amines. Chem Res Toxicol 10:347–359

    Article  PubMed  CAS  Google Scholar 

  • IARC monographs on the evaluation of carcinogenic risks to humans (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. 56:165–243

    Google Scholar 

  • Jagerstad M, Skog K, Grivas S, et al (1991) Formation of heterocyclic amines using model systems. Mutat Res 259:219–233

    Article  PubMed  CAS  Google Scholar 

  • Jiang Z, Dragin N, Jorge-Nebert LF, et al (2006) Search for an association between the human CYP1A2 genotype and CYP1A2 metabolic phenotype. Pharmacogenet Genomics 16:359–367

    Article  PubMed  CAS  Google Scholar 

  • Josephy PD (1996) The role of peroxidase-catalyzed activation of aromatic amines in breast cancer. Mutagenesis 11:3–7

    Article  PubMed  CAS  Google Scholar 

  • Josephy PD (2002) Genetically-engineered bacteria expressing human enzymes and their use in the study of mutagens and mutagenesis. Toxicology 181–182:255–260

    Article  PubMed  Google Scholar 

  • King RS, Teitel CH, Kadlubar FF (2000) In vitro bioactivation of N-hydroxy-2-amino-alpha-carboline. Carcinogenesis 21:1347–1354

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Hanaoka T, Hashimoto H, et al (2005) 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) level in human hair as biomarkers for dietary grilled/stir-fried meat and fish intake. Mutat Res 588:136–142

    PubMed  CAS  Google Scholar 

  • Kohler SW, Provost GS, Kretz PL, et al (1990) The use of transgenic mice for short-term, in vivo mutagenicity testing. Genet Anal Tech Appl 7:212–218

    Article  PubMed  CAS  Google Scholar 

  • Langouët S, Welti DH, Kerriguy N, et al (2001) Metabolism of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2. Chem Res Toxicol 14:211–221

    Article  PubMed  Google Scholar 

  • Le Marchand L (2002) Meat intake, metabolic genes and colorectal cancer. IARC Sci Publ 156:481–485

    PubMed  Google Scholar 

  • Lin D-X, Meyer DJ, Ketterer B, et al (1994) Effects of human and rat glutathione-S-transferase on the covalent binding of the N-acetoxy derivatives of heterocyclic amine carcinogens in vitro: a possible mechanism of organ specificity in their carcinogensis. Cancer Res 54:4920–4926

    PubMed  CAS  Google Scholar 

  • Magagnotti C, Orsi F, Bagnati R, et al (2000) Effect of diet on serum albumin and hemoglobin adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in humans. Int J Cancer 88:1–6

    Article  PubMed  CAS  Google Scholar 

  • Magagnotti C, Pastorelli R, Pozzi S, et al (2003) Genetic polymorphisms and modulation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adducts in human lymphocytes. Int J Cancer 107:878–884

    Article  PubMed  CAS  Google Scholar 

  • Malfatti MA, Dingley KH, Nowell-Kadlubar S, et al (2006) The urinary metabolite profile of the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine is predictive of colon DNA adducts after a low-dose exposure in humans. Cancer Res 66:10541–10547

    Article  PubMed  CAS  Google Scholar 

  • Manabe S, Tohyama K, Wada O, et al (1991) Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, in cigarette smoke condensate. Carcinogenesis 12:1945–1947

    Article  PubMed  CAS  Google Scholar 

  • Metry KJ, Zhao S, Neale JR, et al (2007) 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine-induced DNA adducts and genotoxicity in chinese hamster ovary (CHO) cells expressing human CYP1A2 and rapid or slow acetylator N-acetyltransferase 2. Mol Carcinog 46:553–563

    Article  PubMed  CAS  Google Scholar 

  • Nagao M (2000) Mutagenicity. In: Nagao M, Sugimura T (eds) Food Borne Carcinogens Heterocyclic Amines, John Wiley & Sons Ltd., Chichester, England

    Google Scholar 

  • Nagao M, Ushijima T, Toyota M, et al (1997) Genetic changes induced by heterocyclic amines. Mutat Res 376:161–167

    PubMed  CAS  Google Scholar 

  • Nakai Y, Nelson WG, De Marzo AM (2007) The dietary charred meat carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine acts as both a tumor initiator and promoter in the rat ventral prostate. Cancer Res 67:1378–1384

    Article  PubMed  CAS  Google Scholar 

  • National Toxicology Program. (2005) Report on Carcinogenesis, Eleventh Edition. U.S. Department of Health and Human Services, Public Health Service, Research Triangle Park, NC.

    Google Scholar 

  • Oda Y, Aryal P, Terashita T, et al (2001) Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mutat Res 492:81–90

    PubMed  CAS  Google Scholar 

  • Powell SM, Zilz N, Beazer-Barclay Y, et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    Article  PubMed  CAS  Google Scholar 

  • Schut HA, Snyderwine EG (1999) DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis 20:353–368

    Article  PubMed  CAS  Google Scholar 

  • Shibutani S, Fernandes A, Suzuki N, et al (1999) Mutagenesis of the N-(deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine DNA adduct in mammalian cells. Sequence context effects. J Biol Chem 274:27433–27438

    Article  PubMed  CAS  Google Scholar 

  • Shioya M, Wakabayashi K, Sato S, et al (1987) Formation of a mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP) in cooked beef, by heating a mixture containing creatinine, phenylalanine and glucose. Mutat Res 191:133–138

    Article  PubMed  CAS  Google Scholar 

  • Sinha R (2002) An epidemiologic approach to studying heterocyclic amines. Mutat Res 506–507:197–204

    PubMed  Google Scholar 

  • Snyderwine EG, Turesky RJ, Turteltaub KW, et al (1997) Metabolism of food-derived heterocyclic amines in nonhuman primates. Mutat Res 376:203–210

    PubMed  CAS  Google Scholar 

  • Stillwell WG, Turesky RJ, Sinha R, et al (1999) N-oxidative metabolism of 2-amino-3,8-dimethylimidazo[4,5-f  ]quinoxaline (MeIQx) in humans: excretion of the N2-glucuronide conjugate of 2-hydroxyamino-MeIQx in urine. Cancer Res 59:5154–5159

    PubMed  CAS  Google Scholar 

  • Stover JS, Chowdhury G, Zang H, et al (2006) Translesion synthesis past the C8- and N2-deoxyguanosine adducts of the dietary mutagen 2-Amino-3-methylimidazo[4,5-f  ]quinoline in the NarI recognition sequence by prokaryotic DNA polymerases. Chem Res Toxicol 19:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Sugimura T, Wakabayashi K, Nakagama H, et al (2004) Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 95:290–299

    Article  PubMed  CAS  Google Scholar 

  • Totsuka Y, Fukutome K, Takahashi M, et al (1996) Presence of N  2-(deoxyguanosin-8-yl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (dG-C8-MeIQx) in human tissues. Carcinogenesis 17:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Turesky RJ (2005) Interspecies metabolism of heterocyclic aromatic amines and the uncertainties in extrapolation of animal toxicity data for human risk assessment. Mol Nutr Food Res 49:101–117

    Article  PubMed  CAS  Google Scholar 

  • Turesky RJ, Vouros P (2004) Formation and analysis of heterocyclic aromatic amine-DNA adducts in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 802:155–166

    Article  PubMed  CAS  Google Scholar 

  • Turesky RJ, Garner RC, Welti DH, et al (1998) Metabolism of the food-borne mutagen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline in humans. Chem Res Toxicol 11:217–225

    Article  PubMed  CAS  Google Scholar 

  • Wogan GN, Hecht SS, Felton JS, et al (2004) Environmental and chemical carcinogenesis. Semin Cancer Biol 14:473–486

    Article  PubMed  CAS  Google Scholar 

  • Yoshida D, Matsumoto T (1980) Amino-alpha-carbolines as mutagenic agents in cigarette smoke condensate. Cancer Lett 10:141–149

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Turesky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Turesky, R.J. (2011). Heterocyclic Aromatic Amines: Potential Human Carcinogens. In: Penning, T. (eds) Chemical Carcinogenesis. Current Cancer Research. Humana Press. https://doi.org/10.1007/978-1-61737-995-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-995-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-994-9

  • Online ISBN: 978-1-61737-995-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics