Skip to main content

Opioid Receptor Trafficking

  • Chapter
  • First Online:
  • 1615 Accesses

Part of the book series: The Receptors ((REC))

Abstract

The functioning of opioid receptors involves a wide range of processes. Their association with G-proteins is clearly one of the most important. However, receptor trafficking also plays a crucial role in their activation, inactivation and desensitization. This review will attempt to summarize the receptors from their synthesis to their eventual proteolytic elimination.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chavan M, Lennarz W (2006) The molecular basis of coupling of translocation and N-glycosylation. Trends Biochem Sci 31(1):17–20

    Article  PubMed  CAS  Google Scholar 

  2. Ruddock LW, Molinari M (2006) N-glycan processing in ER quality control. J Cell Sci 119(Pt 21):4373–4380

    Article  PubMed  CAS  Google Scholar 

  3. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369

    Article  PubMed  CAS  Google Scholar 

  4. Petaja-Repo UE et al (2000) Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 276:4416–4423

    Article  PubMed  Google Scholar 

  5. Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27(1):97–106

    Article  PubMed  CAS  Google Scholar 

  6. Simonds WF et al (1985) Purification of the opiate receptor of NG108-15 neuroblastoma-glioma hybrid cells. Proc Natl Acad Sci USA 82(15):4974–4978

    Article  PubMed  CAS  Google Scholar 

  7. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399(6737):697–700

    Article  PubMed  CAS  Google Scholar 

  8. Hasbi A et al (2007) Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry 46(45):12997–13009

    Article  PubMed  CAS  Google Scholar 

  9. Loo TW, Clarke DM (2007) Chemical and pharmacological chaperones as new therapeutic agents. Expert Rev Mol Med 9(16):1–18

    Article  PubMed  Google Scholar 

  10. Petaja-Repo UE et al (2002) Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation. Embo J 21(7):1628–1637

    Article  PubMed  CAS  Google Scholar 

  11. Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8(1):2–10

    Article  PubMed  CAS  Google Scholar 

  12. Wang H, Pickel VM (2001) Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors. J Neurosci 21(9):3242–3250

    PubMed  CAS  Google Scholar 

  13. Cheng PY, Liu-Chen LY, Pickel VM (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res 778(2):367–380

    Article  PubMed  CAS  Google Scholar 

  14. Cahill CM et al (2001) Prolonged morphine treatment targets delta opioid receptors to neuronal plasma membranes and enhances delta-mediated antinociception. J Neurosci 21(19):7598–7607

    PubMed  CAS  Google Scholar 

  15. Kim KA, von Zastrow M (2003) Neurotrophin-regulated sorting of opioid receptors in the biosynthetic pathway of neurosecretory cells. J Neurosci 23(6):2075–2085

    PubMed  CAS  Google Scholar 

  16. Guan JS et al (2005) Interaction with vesicle luminal protachykinin regulates surface expression of delta-opioid receptors and opioid analgesia. Cell 122(4):619–631

    Article  PubMed  CAS  Google Scholar 

  17. Lefkowitz RJ et al (1998) Mechanisms of beta-adrenergic receptor desensitization and resensitization. Adv Pharmacol 42(2):416–420

    PubMed  CAS  Google Scholar 

  18. Kovoor A et al (1998) Agonist induced homologous desensitization of mu-opioid receptors mediated by G protein-coupled receptor kinases is dependent on agonist efficacy. Mol Pharmacol 54(4):704–711

    PubMed  CAS  Google Scholar 

  19. Terman GW et al (2004) G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. Br J Pharmacol 141(1):55–64

    Article  PubMed  CAS  Google Scholar 

  20. Bohn LM et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286(5449):2495–2498

    Article  PubMed  CAS  Google Scholar 

  21. Zhang J et al (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA 95(12):7157–7162

    Article  PubMed  CAS  Google Scholar 

  22. Whistler JL, von Zastrow M (1998) Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA 95:9914–9919

    Article  PubMed  CAS  Google Scholar 

  23. Gainetdinov RR et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  PubMed  CAS  Google Scholar 

  24. Law P-Y, Hom DS, Loh HH (1982) Loss of opiate receptor activity in neuroblastoma × glioma NG108-15 cells after chronic etorphine treatment: a multiple step process. Mol Pharmacol 72:1–4

    Google Scholar 

  25. von Zastrow M, Keith DEJ, Evans CJ (1993) Agonist-induced state of the delta-opioid receptor that discriminates between opioid peptides and opiate alkaloids. Mol Pharmacol 44(1):166–172

    Google Scholar 

  26. Keith DE et al (1996) Morphine activates opioid receptors without causing their rapid internalization. J Biol Chem 271(32):19021–19024

    Article  PubMed  CAS  Google Scholar 

  27. Chu P et al (1997) Delta and kappa opioid receptors are differentially regulated by dynamin-dependent endocytosis when activated by the same alkaloid agonist. J Biol Chem 272(43):27124–27130

    Article  PubMed  CAS  Google Scholar 

  28. Tsao PI, von Zastrow M (2001) Diversity and specificity in the regulated endocytic membrane trafficking of G-protein-coupled receptors. Pharmacol Ther 89(2):139–147

    Article  PubMed  CAS  Google Scholar 

  29. Gruenberg J, Maxfield FR (1995) Membrane transport in the endocytic pathway. Curr Opin Cell Biol 7(4):552–563

    Article  PubMed  CAS  Google Scholar 

  30. Goodman OJ et al (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383(6599):447–450

    Article  PubMed  CAS  Google Scholar 

  31. Ferguson SS et al (1996) Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 271(5247):363–366

    Article  PubMed  CAS  Google Scholar 

  32. Goodman OB Jr et al (1998) Role of arrestins in G-protein-coupled receptor endocytosis. Adv Pharmacol 42(4):429–433

    PubMed  CAS  Google Scholar 

  33. Carman CV, Benovic JL (1998) G-protein-coupled receptors: turn-ons and turn-offs. Curr Opin Neurobiol 8(3):335–344

    Article  PubMed  CAS  Google Scholar 

  34. Ferguson SS et al (1998) Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Life Sci 62(17–18):1561–1565

    Article  PubMed  CAS  Google Scholar 

  35. Zhang J et al (1999) Agonist-specific regulation of delta-opioid receptor trafficking by G protein-coupled receptor kinase and beta-arrestin. J Receptor Signal Transduct Res 19(1–4):301–313

    Article  CAS  Google Scholar 

  36. Pasternak GW (2004) Multiple opiate receptors: deja vu all over again. Neuropharmacology 47(Suppl 1):312–323

    Article  PubMed  CAS  Google Scholar 

  37. Koch T et al (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem 276(33):31408–31414

    Article  PubMed  CAS  Google Scholar 

  38. Cvejic S, Devi LA (1997) Dimerization of the delta opioid receptor: implication for a role in receptor internalization. J Biol Chem 272(43):26959–26964

    Article  PubMed  CAS  Google Scholar 

  39. Rios CD et al (2001) G-protein-coupled receptor dimerization: modulation of receptor function. Pharmacol Ther 92(2–3):71–87

    Article  PubMed  CAS  Google Scholar 

  40. He L et al (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108(2):271–282

    Article  PubMed  CAS  Google Scholar 

  41. Keith DE et al (1998) mu-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol Pharmacol 53(3):377–384

    PubMed  CAS  Google Scholar 

  42. Alvarez VA et al (2002) mu-opioid receptors: ligand-dependent activation of potassium conductance, desensitization, and internalization. J Neurosci 22(13):5769–5776

    PubMed  CAS  Google Scholar 

  43. Yu Y et al (1997) Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J Biol Chem 272(46):28869–28874

    Article  PubMed  CAS  Google Scholar 

  44. Whistler JL et al (1999) Functional dissociation of mu opioid receptor signaling and endocytosis: implications for the biology of opiate tolerance and addiction. Neuron 23(4):737–746

    Article  PubMed  CAS  Google Scholar 

  45. Celver J et al (2004) Distinct domains of the mu-opioid receptor control uncoupling and internalization. Mol Pharmacol 65(3):528–537

    Article  PubMed  CAS  Google Scholar 

  46. Groer CE et al (2007) An opioid agonist that does not induce micro-opioid receptor–arrestin interactions or receptor internalization. Mol Pharmacol 71(2):549–557

    Article  PubMed  CAS  Google Scholar 

  47. Urban JD et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13

    Article  PubMed  CAS  Google Scholar 

  48. Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406

    Article  PubMed  CAS  Google Scholar 

  49. Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72(6):1393–1401

    Article  PubMed  CAS  Google Scholar 

  50. Swaminath G et al (2004) Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J Biol Chem 279(1):686–691

    Article  PubMed  CAS  Google Scholar 

  51. Tsao PI, von Zastrow M (2000) Type-specific sorting of G protein-coupled receptors after endocytosis. J Biol Chem 275(15):11130–11140

    Article  PubMed  CAS  Google Scholar 

  52. Saksena S et al (2007) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32(12):561–573

    Article  PubMed  CAS  Google Scholar 

  53. Bache KG et al (2003) STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 278(14):12513–12521

    Article  PubMed  CAS  Google Scholar 

  54. Hislop JN, Marley A, Von Zastrow M (2004) Role of mammalian VPS proteins in endocytic trafficking of a non-ubiquitinated G protein-coupled receptor to lysosomes. J Biol Chem 279:22522–22531

    Article  PubMed  CAS  Google Scholar 

  55. Babst M et al (1998) The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. Embo J 17(11):2982–2993

    Article  PubMed  CAS  Google Scholar 

  56. Tanowitz M, von Zastrow M (2002) Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes. J Biol Chem 277(52):50219–50222

    Article  PubMed  CAS  Google Scholar 

  57. Whistler JL et al (2002) Modulation of post-endocytic sorting of G protein-coupled receptors. Science 297:615–620

    Article  PubMed  CAS  Google Scholar 

  58. Simonin F et al (2004) Identification of a novel family of G protein-coupled receptor associated sorting proteins. J Neurochem 89(3):766–775

    Article  PubMed  CAS  Google Scholar 

  59. Tanowitz M, von Zastrow M (2003) A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 278(46):45978–45986

    Article  PubMed  CAS  Google Scholar 

  60. Hanyaloglu AC, von Zastrow M (2008) Regulation of GPCRs by membrane trafficking and its potential implications. Annu Rev Pharmacol Toxicol 48:537–568

    Article  PubMed  CAS  Google Scholar 

  61. Pak Y et al (1996) Agonist-induced functional desensitization of the mu-opioid receptor is mediated by loss of membrane receptors rather than uncoupling from G protein. Mol Pharmacol 50(5):1214–1222

    PubMed  CAS  Google Scholar 

  62. Koch T et al (1998) Carboxyl-terminal splicing of the rat mu opioid receptor modulates agonist-mediated internalization and receptor resensitization. J Biol Chem 273(22):13652–13657

    Article  PubMed  CAS  Google Scholar 

  63. Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40:389–430

    Article  PubMed  CAS  Google Scholar 

  64. Qiu Y, Law PY, Loh HH (2003) Mu-opioid receptor desensitization: role of receptor phosphorylation, internalization, and representation. J Biol Chem 278(38):36733–36739

    Article  PubMed  CAS  Google Scholar 

  65. Arttamangkul S et al (2006) Separation of mu-opioid receptor desensitization and internalization: endogenous receptors in primary neuronal cultures. J Neurosci 26(15):4118–4125

    Article  PubMed  CAS  Google Scholar 

  66. Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153:S379–S388

    Article  PubMed  CAS  Google Scholar 

  67. Pippig S, Andexinger S, Lohse MJ (1995) Sequestration and recycling of beta 2-adrenergic receptors permit receptor resensitization. Mol Pharmacol 47(4):666–676

    PubMed  CAS  Google Scholar 

  68. Yu SS, Lefkowitz RJ, Hausdorff WP (1993) Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J Biol Chem 268(1):337–341

    PubMed  CAS  Google Scholar 

  69. Koch T, Hollt V (2008) Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther 117:199–206

    Article  PubMed  Google Scholar 

  70. Schulz S et al (2004) Morphine induces terminal micro-opioid receptor desensitization by sustained phosphorylation of serine-375. Embo J 23(16):3282–3289

    Article  PubMed  CAS  Google Scholar 

  71. Law P-Y, Hom DS, Loh HH (1984) Down-regulation of opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells: chloroquine promotes accumulation of tritiated enkephalin in the lysosomes. J Biol Chem 259:4096–4104

    PubMed  CAS  Google Scholar 

  72. Tsao P, Cao T, von Zastrow M (2001) Role of endocytosis in mediating downregulation of G-protein-coupled receptors. Trends Pharmacol Sci 22(2):91–96

    Article  PubMed  CAS  Google Scholar 

  73. Martini L, Whistler JL (2007) The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol 17(5):556–564

    Article  PubMed  CAS  Google Scholar 

  74. Scherrer G et al (2006) Knockin mice expressing fluorescent delta-opioid receptors uncover G protein-coupled receptor dynamics in vivo. Proc Natl Acad Sci USA 103(25):9691–9696

    Article  PubMed  CAS  Google Scholar 

  75. Coolen LM et al (2004) Activation of mu opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience 124(1):11–21

    Article  PubMed  CAS  Google Scholar 

  76. Bohn LM et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408(6813):720–723

    Article  PubMed  CAS  Google Scholar 

  77. Kim JA et al (2008) Morphine-induced receptor endocytosis in a novel knockin mouse reduces tolerance and dependence. Curr Biol 18(2):129–135

    Article  PubMed  CAS  Google Scholar 

  78. Rasmussen SG et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387

    Article  PubMed  CAS  Google Scholar 

  79. Cherezov V et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Many investigators have made major contributions to this field; I regret that only a limited subset of important papers could be cited in the present review. I am personally indebted to my mentors, colleagues, and trainees, whose intelligence and energy have driven the field forward and made working in it highly enjoyable. I gratefully acknowledge the National Institutes of Health, and particularly the National Institute on Drug Abuse, for critical financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark von Zastrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

von Zastrow, M. (2011). Opioid Receptor Trafficking. In: Pasternak, G. (eds) The Opiate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-993-2_14

Download citation

Publish with us

Policies and ethics