Skip to main content

Mammary Cancer in Rats

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A need exists for a useful, practical, model for breast cancer not only to rapidly produce invasive, autochthonous tumors that can be used for screening of new compounds for treatment of advanced disease, but also for evaluation of candidate agents for the prevention of breast cancer. Such a model exists, is easy to set up in the laboratory, relatively inexpensive in that it requires only a single dose of a carcinogen, reproducible when adequately powered statistically, and relevant to human disease. This chapter will focus on this rat model for breast cancer induced by injection of the carcinogen, 1-methyl-1-nitrosourea, as the initiating agent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Medina D. Chemical carcinogenesis of rat and mouse mammary glands. Breast Dis. 2007;28:63–8.

    PubMed  CAS  Google Scholar 

  2. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7(9):659–72.

    Article  PubMed  CAS  Google Scholar 

  3. Li Y, Brown PH. Prevention of ER-negative breast cancer. Recent Results Cancer Res. 2009;181:121–34.

    Article  PubMed  CAS  Google Scholar 

  4. Uray IP, Brown PH. Prevention of breast cancer: current state of the science and future opportunities. Expert Opin Investig Drugs. 2006;15(12):1583–600.

    Article  PubMed  CAS  Google Scholar 

  5. William WN, Jr., Heymach JV, Kim ES, Lippman SM. Molecular targets for cancer chemoprevention. Nat Rev Drug Discov. 2009;8(3):213–25.

    Article  PubMed  CAS  Google Scholar 

  6. Howe LR, Lippman SM. Modulation of breast cancer risk by nonsteroidal anti-inflammatory drugs. J Natl Cancer Inst. 2008;100(20):1420–3.

    Article  PubMed  CAS  Google Scholar 

  7. Sporn MB. Dichotomies in cancer research: some suggestions for a new synthesis. Nat Clin Pract Oncol. 2006;3(7):364–73.

    Article  PubMed  Google Scholar 

  8. Sporn MB, Liby KT. Cancer chemoprevention: scientific promise, clinical uncertainty. Nat Clin Pract Oncol. 2005;2(10):518–25.

    Article  PubMed  CAS  Google Scholar 

  9. Gottardis MM, Jordan VC. Antitumor actions of keoxifene and tamoxifen in the N-nitrosomethylurea-induced rat mammary carcinoma model. Cancer Res. 1987;47(15):4020–4.

    PubMed  CAS  Google Scholar 

  10. Chlebowski RT, Col N, Winer EP et al. American Society of Clinical Oncology technology assessment of pharmacologic interventions for breast cancer risk reduction including tamoxifen, raloxifene, and aromatase inhibition. J Clin Oncol. 2002;20(15):3328–43.

    Article  PubMed  CAS  Google Scholar 

  11. Cummings SR, Eckert S, Krueger KA et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA. 1999;281(23):2189–97.

    Article  PubMed  CAS  Google Scholar 

  12. Decensi A, Zanardi S, Argusti A, Bonanni B, Costa A, Veronesi U. Fenretinide and risk reduction of second breast cancer. Nat Clin Pract Oncol. 2007;4(2):64–5.

    Article  PubMed  Google Scholar 

  13. Zanardi S, Serrano D, Argusti A, Barile M, Puntoni M, Decensi A. Clinical trials with retinoids for breast cancer chemoprevention. Endocr Relat Cancer. 2006;13(1):51–68.

    Article  PubMed  CAS  Google Scholar 

  14. Anzano MA, Peer CW, Smith JM et al. Chemoprevention of mammary carcinogenesis in the rat: combined use of raloxifene and 9-cis-retinoic acid. J Natl Cancer Inst. 1996;88(2):123–5.

    Article  PubMed  CAS  Google Scholar 

  15. Moon RC, Thompson HJ, Becci PJ et al. N-(4-Hydroxyphenyl)retinamide, a new retinoid for prevention of breast cancer in the rat. Cancer Res. 1979;39(4):1339–46.

    PubMed  CAS  Google Scholar 

  16. Huggins H, Grand LC, Brillantes FP. Mammary cancer induced by a single feeding of polymucular hydrocarbons, and its suppression. Nature. 1961;189:204–7.

    Article  PubMed  CAS  Google Scholar 

  17. McCormick GM, Moon RC. Effect of pregnancy and lactation on growth of mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA). Br J Cancer. 1965;19:160–6.

    Article  PubMed  CAS  Google Scholar 

  18. Gullino PM, Pettigrew HM, Grantham FH. N-Nitrosomethylurea as mammary gland carcinogen in rats. J Natl Cancer Inst. 1975;54(2):401–14.

    PubMed  CAS  Google Scholar 

  19. Moon RC, Grubbs CJ, Sporn MB, Goodman DG. Retinyl acetate inhibits mammary carcinogenesis induced by N-methyl-N-nitrosourea. Nature. 1977;267(5612):620–1.

    Article  PubMed  CAS  Google Scholar 

  20. McCormick DL, Adamowski CB, Fiks A, Moon RC. Lifetime dose–response relationships for mammary tumor induction by a single administration of N-methyl-N-nitrosourea. Cancer Res. 1981;41(5):1690–4.

    PubMed  CAS  Google Scholar 

  21. Thompson HJ, Adlakha H. Dose-responsive induction of mammary gland carcinomas by the intraperitoneal injection of 1-methyl-1-nitrosourea. Cancer Res. 1991;51(13):3411–5.

    PubMed  CAS  Google Scholar 

  22. Adamovic T, McAllister D, Rowe JJ, Wang T, Jacob HJ, Sugg SL. Genetic mapping of mammary tumor traits to rat chromosome 10 using a novel panel of consomic rats. Cancer Genet Cytogenet. 2008;186(1):41–8.

    Article  PubMed  CAS  Google Scholar 

  23. Lan H, Kendziorski CM, Haag JD, Shepel LA, Newton MA, Gould MN. Genetic loci controlling breast cancer susceptibility in the Wistar-Kyoto rat. Genetics. 2001;157(1):331–9.

    PubMed  CAS  Google Scholar 

  24. Thompson HJ, Adlakha H, Singh M. Effect of carcinogen dose and age at administration on induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis. 1992;13(9):1535–9.

    Article  PubMed  CAS  Google Scholar 

  25. Shepel LA, Gould MN. The genetic components of susceptibility to breast cancer in the rat. Prog Exp Tumor Res. 1999;35:158–69.

    Article  PubMed  CAS  Google Scholar 

  26. Shull JD. The rat oncogenome: comparative genetics and genomics of rat models of mammary carcinogenesis. Breast Dis. 2007;28:69–86.

    PubMed  CAS  Google Scholar 

  27. Thompson HJ. The induction of mammary carcinogenesis in the rat using either 7,12 dimethylbenz[α]anthracene or 1-methyl-1-nitrosourea. In: Ip M, Asch B, editors. Methods in mammary gland biology and breast cancer research. New York: Kluwer/Plenum; 2000. p. 19–30.

    Chapter  Google Scholar 

  28. Thompson HJ, McGinley JN, Rothhammer K, Singh M. Rapid induction of mammary intraductal proliferations, ductal carcinoma in situ and carcinomas by the injection of sexually immature female rats with 1-methyl-1-nitrosourea. Carcinogenesis. 1995;16(10):2407–11.

    Article  PubMed  CAS  Google Scholar 

  29. Thompson HJ, McGinley JN, Wolfe P, Singh M, Steele VE, Kelloff GJ. Temporal sequence of mammary intraductal proliferations, ductal carcinomas in situ and adenocarcinomas induced by 1-methyl-1-nitrosourea in rats. Carcinogenesis. 1998;19(12):2181–5.

    Article  PubMed  CAS  Google Scholar 

  30. Thompson HJ, Singh M, McGinley J. Classification of premalignant and malignant lesions developing in the rat mammary gland after injection of sexually immature rats with 1-methyl-1-nitrosourea. J Mammary Gland Biol Neoplasia. 2000;5(2):201–10.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson MD, Thompson HJ, Brick MA et al. Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris, L.). J Nutr. 2008;138(11):2091–7.

    Article  PubMed  CAS  Google Scholar 

  32. Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res. 1985;45(8):3415–43.

    PubMed  CAS  Google Scholar 

  33. Russo J, Russo IH. Experimentally induced mammary tumors in rats. Breast Cancer Res Treat. 1996;39(1):7–20.

    Article  PubMed  CAS  Google Scholar 

  34. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Invest. 1990;62(3):244–78.

    PubMed  CAS  Google Scholar 

  35. Singh M, McGinley JN, Thompson HJ. A comparison of the histopathology of premalignant and malignant mammary gland lesions induced in sexually immature rats with those occurring in the human. Lab Invest. 2000;80(2):221–31.

    Article  PubMed  CAS  Google Scholar 

  36. Medina D, Thompson HJ. A comparison of the salient features of mouse, rat and human mammary tumorigenesis. In: Ip M, Asch B, editors. Methods in mammary gland biology and breast cancer research. New York: Kluwer/Plenum; 2000. p. 31–6.

    Chapter  Google Scholar 

  37. Goepfert TM, Moreno-Smith M, Edwards DG, Pathak S, Medina D, Brinkley WR. Loss of chromosomal integrity drives rat mammary tumorigenesis. Int J Cancer. 2007;120(5):985–94.

    Article  PubMed  CAS  Google Scholar 

  38. Zhang R, Haag JD, Gould MN. Reduction in the frequency of activated ras oncogenes in rat mammary carcinomas with increasing N-methyl-N-nitrosourea doses or increasing prolactin levels. Cancer Res. 1990;50(14):4286–90.

    PubMed  CAS  Google Scholar 

  39. Jiang W, Zhu Z, Thompson HJ. Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose. Mol Carcinog. 2008;47(8):616–28.

    Article  PubMed  CAS  Google Scholar 

  40. Velculescu VE. Defining the blueprint of the cancer genome. Carcinogenesis. 2008;29(6):1087–91.

    Article  PubMed  CAS  Google Scholar 

  41. Gustin JP, Cosgrove DP, Park BH. The PIK3CA gene as a mutated target for cancer therapy. Curr Cancer Drug Targets. 2008;8(8):733–40.

    Article  PubMed  CAS  Google Scholar 

  42. Shepel LA, Lan H, Haag JD et al. Genetic identification of multiple loci that control breast cancer susceptibility in the rat. Genetics. 1998;149(1):289–99.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The contribution of Michael B. Sporn to the writing of the original version of this chapter is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Thompson, H.J. (2011). Mammary Cancer in Rats. In: Teicher, B. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-968-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-968-0_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-967-3

  • Online ISBN: 978-1-60761-968-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics