Skip to main content

Traumatic Brain Injury Pathophysiology/Models

  • Chapter
  • First Online:
  • 547 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Traumatic brain injury (TBI) represents a major burden on health care worldwide. In the US, TBI accounts for 435,000 emergency department visits, 37,000 hospital admissions, and approximately 2,500 deaths each year. Of the patients affected, 48% are impaired by chronic physical, cognitive, and psychosocial deficits. While aggressive early rehabilitation improves function (Cowen et al. Arch Phys Med Rehabil 76:797–803, 1995; Gray and Burnham Arch Phys Med Rehabil 81:1447–1456, 2000), the acute care of TBI with focus on controlling intracranial pressure (ICP) while maintaining adequate cerebral perfusion has not shown the ability to reverse neuronal injury on either a cellular or subcellular level. The National Institutes of Health (NIH) recently convened a meeting to discuss the complex pathophysiology of neuronal injury and the failure of all trials based on current monotherapies (controlled hypothermia, hyperosmotic infusion) to date. Recommendations included the development of in vitro models to research multimodality treatments that could target several mechanisms of TBI’s complex pathophysiology (http://www.nih.gov; Walker et al. J Trauma. 2009).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ASC:

Adipose-derived stem cell

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophic factor

CBF:

Cerebral blood flow

CCI:

Controlled cortical impact

CNS:

Central nervous system

CSF:

Cerebral spinal fluid

CT:

Computed tomography

DAI:

Diffuse axonal injury

EGF:

Epidermal growth factor

FDG-PET:

Flurodeoxyglucose-positron emission tomography

FGF:

Fibroblast growth factor

FPI:

Fluid percussion injury

GCS:

Glasgow coma scale

GOS:

Glasgow outcome score

HGF:

Hepatocyte growth factor

HTS:

Hypertonic saline

hUCB:

Human umbilical cord blood

ICP:

Intracranial pressure

IGF-1:

Insulin-like, growth factor 1

MAP:

Mean arterial pressure

MBP:

Myelin basic protein

MSC:

Mesenchymal stromal cell

NAC:

N-Acetylcysteine

NGF:

Nerve growth factor

NIH:

National Institutes of Health

NSC:

Neuronal stem cell

NSE:

Neuron-specific enolase

TAI:

Traumatic axonal injury

TBI:

Traumatic brain injury

TNF-α:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

References

  • Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR (1989) Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology 15:49–59

    Article  PubMed  CAS  Google Scholar 

  • Adelson PD, Whalen MJ, Kochanek PM, Robichaud P, Carlos TM (1998) Blood brain barrier permeability and acute inflammation in two models of traumatic brain injury in the immature rat: a preliminary report. Acta Neurochir Suppl 71:104–106

    PubMed  CAS  Google Scholar 

  • Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822

    Article  PubMed  CAS  Google Scholar 

  • Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B, Fisk N, Stamp G, Bonnet D, Janes SM (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25:1586–1594

    Article  PubMed  Google Scholar 

  • Baker KS, DeFor TE, Burns LJ, Ramsay NK, Neglia JP, Robison LL (2003) New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors. J Clin Oncol 21:1352–1358

    Article  PubMed  Google Scholar 

  • Bell MJ, Kochanek PM, Doughty LA, Carcillo JA, Adelson PD, Clark RS, Wisniewski SR, Whalen MJ, DeKosky ST (1997) Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma 14:451–457

    Article  PubMed  CAS  Google Scholar 

  • Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM (2005) Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg 103:61–68

    PubMed  Google Scholar 

  • Berger RP, Beers SR, Richichi R, Wiesman D, Adelson PD (2007) Serum biomarker concentrations and outcome after pediatric traumatic brain injury. J Neurotrauma 24:1793–1801

    Article  PubMed  Google Scholar 

  • Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, Phelps ME, McArthur DL, Caron MJ, Kraus JF, Becker DP (1997) Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg 86:241–251

    Article  PubMed  CAS  Google Scholar 

  • Bouma GJ, Muizelaar JP, Stringer WA, Choi SC, Fatouros P, Young HF (1992) Ultra-early evaluation of regional cerebral blood flow in severely head-injured patients using xenon-enhanced computerized tomography. J Neurosurg 77:360–368

    Article  PubMed  CAS  Google Scholar 

  • Buki A, Siman R, Trojanowski JQ, Povlishock JT (1999) The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 58:365–375

    Article  PubMed  CAS  Google Scholar 

  • Bullock R, Zauner A, Myseros JS, Marmarou A, Woodward JJ, Young HF (1995) Evidence for prolonged release of excitatory amino acids in severe human head trauma. Relationship to clinical events. Ann N Y Acad Sci 765:290–297; discussion 298

    Article  PubMed  CAS  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Casey PA, McKenna MC, Fiskum G, Saraswati M, Robertson CL (2008) Early and sustained alterations in cerebral metabolism after traumatic brain injury in immature rats. J Neurotrauma 25:603–614

    Article  PubMed  Google Scholar 

  • Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA, Whishaw IQ, Schallert T (2002) Animal models of neurological deficits: how relevant is the rat? Nat Rev Neurosci 3:574–579

    Article  PubMed  CAS  Google Scholar 

  • Cernak I (2005) Animal models of head trauma. NeuroRx 2:410–422

    Article  PubMed  Google Scholar 

  • Cernak I, Wang Z, Jiang J, Bian X, Savic J (2001) Ultrastructural and functional characteristics of blast injury-induced neurotrauma. J Trauma 50:695–706

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Katakowski M, Li Y, Lu D, Wang L, Zhang L, Chen J, Xu Y, Gautam S, Mahmood A, Chopp M (2002) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69:687–691

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Pickard JD, Harris NG (2003) Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 182:87–102

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Shi J, Hu Z, Hang C (2008) Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008:716458

    Article  PubMed  CAS  Google Scholar 

  • Cherian L, Robertson CS, Contant CF, Jr., Bryan RM, Jr. (1994) Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity. J Neurotrauma 11:573–585

    Article  PubMed  CAS  Google Scholar 

  • Cooper DJ, Myles PS, McDermott FT, Murray LJ, Laidlaw J, Cooper G, Tremayne AB, Bernard SS, Ponsford J (2004) Prehospital hypertonic saline resuscitation of patients with hypotension and severe traumatic brain injury: a randomized controlled trial. JAMA 291:1350–1357

    Article  PubMed  CAS  Google Scholar 

  • Cowen TD, Meythaler JM, DeVivo MJ, Ivie CS, III, Lebow J, Novack TA (1995) Influence of early variables in traumatic brain injury on functional independence measure scores and rehabilitation length of stay and charges. Arch Phys Med Rehabil 76:797–803

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11:289–301

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WD, Alonso O, Busto R, Prado R, Zhao W, Dewanjee MK, Ginsberg MD (1998) Posttraumatic cerebral ischemia after fluid percussion brain injury: an autoradiographic and histopathological study in rats. Neurosurgery 43:585–593; discussion 593–584

    Article  PubMed  CAS  Google Scholar 

  • Ding MC, Lo EH, Stanley GB (2008) Sustained focal cortical compression reduces electrically-induced seizure threshold. Neuroscience 154:551–555

    Article  PubMed  CAS  Google Scholar 

  • Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  PubMed  CAS  Google Scholar 

  • Dixon CE, Lighthall JW, Anderson TE (1988) Physiologic, histopathologic, and cineradiographic characterization of a new fluid-percussion model of experimental brain injury in the rat. J Neurotrauma 5:91–104

    Article  PubMed  CAS  Google Scholar 

  • Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, Marion DW, DeKosky ST (1999) One-year study of spatial memory performance, brain morphology, and cholinergic markers after moderate controlled cortical impact in rats. J Neurotrauma 16:109–122

    Article  PubMed  CAS  Google Scholar 

  • Ducrocq SC, Meyer PG, Orliaguet GA, Blanot S, Laurent-Vannier A, Renier D, Carli PA (2006) Epidemiology and early predictive factors of mortality and outcome in children with traumatic severe brain injury: experience of a French pediatric trauma center. Pediatr Crit Care Med 7:461–467

    Article  PubMed  Google Scholar 

  • Eberspacher E, Blobner M, Werner C, Ruf S, Eckel B, Engelhard K, Schmahl W, Gelb AW (2010) The long-term effect of four hours of hyperventilation on neurocognitive performance and lesion size after controlled cortical impact in rats. Anesth Analg 110:181–187

    Article  PubMed  Google Scholar 

  • Elder GA, Cristian A (2009) Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt Sinai J Med 76:111–118

    Article  PubMed  Google Scholar 

  • Fei Z, Zhang X, Bai HM, Jiang XF, Wang XL (2006) Metabotropic glutamate receptor antagonists and agonists: potential neuroprotectors in diffuse brain injury. J Clin Neurosci 13:1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Fijalkowski RJ, Stemper BD, Pintar FA, Yoganandan N, Crowe MJ, Gennarelli TA (2007) New rat model for diffuse brain injury using coronal plane angular acceleration. J Neurotrauma 24:1387–1398

    Article  PubMed  Google Scholar 

  • Frontczak-Baniewicz M, Olszewska H, Gadamski R, Barskow I, Gajkowska B (2000) Alterations in rat’s brain capillaries in a model of focal cerebral necrosis. Exp Toxicol Pathol 52:77–85

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Prough DS, McAdoo DJ, Grady JJ, Parsley MO, Ma L, Tarensenko YI, Wu P (2006) Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 201:281–292

    Article  PubMed  CAS  Google Scholar 

  • Gray DS, Burnham RS (2000) Preliminary outcome analysis of a long-term rehabilitation program for severe acquired brain injury. Arch Phys Med Rehabil 81:1447–1456

    Article  PubMed  CAS  Google Scholar 

  • Harting MT, Jimenez F, Adams SD, Mercer DW, Cox CS Jr (2008) Acute, regional inflammatory response after traumatic brain injury: Implications for cellular therapy. Surgery 144:803–813

    Article  PubMed  Google Scholar 

  • Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg

    Google Scholar 

  • Health NIo (2008) Combination therapties for traumatic brain injury workshop. Rockville, Maryland

    Google Scholar 

  • Hicks R, Soares H, Smith D, McIntosh T (1996) Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol 91:236–246

    Article  PubMed  CAS  Google Scholar 

  • Holmberg P, Liljequist S, Wagner A (2009) Secondary brain injuries in thalamus and hippocampus after focal ischemia caused by mild, transient extradural compression of the somatosensori cortex in the rat. Curr Neurovasc Res 6:1–11

    Article  PubMed  Google Scholar 

  • Huh JW, Franklin MA, Widing AG, Raghupathi R (2006) Regionally distinct patterns of calpain activation and traumatic axonal injury following contusive brain injury in immature rats. Dev Neurosci 28:466–476

    Article  PubMed  CAS  Google Scholar 

  • Ilves P, Lintrop M, Talvik I, Sisko A, Talvik T (2010) Predictive value of clinical and radiological findings in inflicted traumatic brain injury. Acta Paediatr 2010 April 1. Epub ahead of print

    Google Scholar 

  • Kaur C, Singh J, Lim MK, Ng BL, Yap EP, Ling EA (1995) The response of neurons and microglia to blast injury in the rat brain. Neuropathol Appl Neurobiol 21:369–377

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Im YB, Shunmugavel A, Gilg AG, Dhindsa RK, Singh AK, Singh I (2009) Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 6:32

    Article  PubMed  CAS  Google Scholar 

  • Khanna S, Davis D, Peterson B, Fisher B, Tung H, O’Quigley J, Deutsch R (2000) Use of hypertonic saline in the treatment of severe refractory posttraumatic intracranial hypertension in pediatric traumatic brain injury. Crit Care Med 28:1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Lee ST, Chu K, Jung KH, Song EC, Kim SJ, Sinn DI, Kim JH, Park DK, Kang KM, Hyung Hong N, Park HK, Won CH, Kim KH, Kim M, Kun Lee S, Roh JK (2007) Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res 1183:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kochanek PM, Hendrich KS, Dixon CE, Schiding JK, Williams DS, Ho C (2002) Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J Neurotrauma 19:1029–1037

    Article  PubMed  Google Scholar 

  • Laptook AR, Corbett RJ, Sterett R, Garcia D, Tollefsbol G (1995) Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr Res 38:919–925

    Article  PubMed  CAS  Google Scholar 

  • Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63

    Article  PubMed  CAS  Google Scholar 

  • Leung LY, VandeVord PJ, Dal Cengio AL, Bir C, Yang KH, King AI (2008) Blast related neurotrauma: a review of cellular injury. Mol Cell Biomech 5:155–168

    PubMed  Google Scholar 

  • Lighthall JW (1988) Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5:1–15

    Article  PubMed  CAS  Google Scholar 

  • Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6:207–213

    Article  PubMed  Google Scholar 

  • Lloyd E, Somera-Molina K, Van Eldik LJ, Watterson DM, Wainwright MS (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28

    Article  PubMed  CAS  Google Scholar 

  • Lu D, Sanberg PR, Mahmood A, Li Y, Wang L, Sanchez-Ramos J, Chopp M (2002) Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant 11:275–281

    PubMed  Google Scholar 

  • Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203; discussion 1203–1194

    PubMed  CAS  Google Scholar 

  • Mahmood A, Lu D, Qu C, Goussev A, Chopp M (2006) Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J Neurosurg 104:272–277

    Article  PubMed  Google Scholar 

  • Markgraf CG, Clifton GL, Aguirre M, Chaney SF, Knox-Du Bois C, Kennon K, Verma N (2001) Injury severity and sensitivity to treatment after controlled cortical impact in rats. J Neurotrauma 18:175–186

    Article  PubMed  CAS  Google Scholar 

  • Marmarou A, Fatouros PP, Barzo P, Portella G, Yoshihara M, Tsuji O, Yamamoto T, Laine F, Signoretti S, Ward JD, Bullock MR, Young HF (2000) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93:183–193

    Article  PubMed  CAS  Google Scholar 

  • McCullough JN, Zhang N, Reich DL, Juvonen TS, Klein JJ, Spielvogel D, Ergin MA, Griepp RB (1999) Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 67:1895–1899; discussion 1919–1821

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Faden AI, Bendall MR, Vink R (1987a) Traumatic brain injury in the rat: alterations in brain lactate and pH as characterized by 1H and 31P nuclear magnetic resonance. J Neurochem 49:1530–1540

    Article  PubMed  CAS  Google Scholar 

  • McIntosh TK, Noble L, Andrews B, Faden AI (1987b) Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Cent Nerv Syst Trauma 4:119–134

    PubMed  CAS  Google Scholar 

  • McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soares H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233–244

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Miura Y, Padilla-Nash HM, Molinolo AA, Fu B, Patel V, Seo BM, Sonoyama W, Zheng JJ, Baker CC, Chen W, Ried T, Shi S (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095–1103

    Article  PubMed  Google Scholar 

  • Moppett IK (2007) Traumatic brain injury: assessment, resuscitation and early management. Br J Anaesth 99:18–31

    Article  PubMed  CAS  Google Scholar 

  • Moss GS, Gould SA (1988) Plasma expanders. An update. Am J Surg 155:425–434

    Article  PubMed  CAS  Google Scholar 

  • Murakami N, Yamaki T, Iwamoto Y, Sakakibara T, Kobori N, Fushiki S, Ueda S (1998) Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J Neurotrauma 15:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Newcomb JK, Zhao X, Pike BR, Hayes RL (1999) Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp Neurol 158:76–88

    Article  PubMed  CAS  Google Scholar 

  • NIH.gov Combination Therapies for Traumatic Brain Injury Workshop

    Google Scholar 

  • Oertel M, Boscardin WJ, Obrist WD, Glenn TC, McArthur DL, Gravori T, Lee JH, Martin NA (2005) Posttraumatic vasospasm: the epidemiology, severity, and time course of an underestimated phenomenon: a prospective study performed in 299 patients. J Neurosurg 103:812–824

    Article  PubMed  Google Scholar 

  • Park HJ, Kim HN, Kim KM (1995) Redistribution of facial nerve motor neurons after recovery from nerve crushing injury in the gerbil. Acta Otolaryngol 115:273–275

    Article  PubMed  CAS  Google Scholar 

  • Peterson K, Carson S, Carney N (2008) Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma 25:62–71

    Article  PubMed  Google Scholar 

  • Petraglia AL, Marky AH, Walker C, Thiyagarajan M, Zlokovic BV (2010) Activated protein C is neuroprotective and mediates new blood vessel formation and neurogenesis after controlled cortical impact. Neurosurgery 66:165–171; discussion 171–162

    Article  PubMed  Google Scholar 

  • Pinto FC, Capone-Neto A, Prist R, MR ES, Poli-de-Figueiredo LF (2006) Volume replacement with lactated Ringer’s or 3% hypertonic saline solution during combined experimental hemorrhagic shock and traumatic brain injury. J Trauma 60:758–763; discussion 763–754

    Article  PubMed  CAS  Google Scholar 

  • Povlishock JT, Hayes RL, Michel ME, McIntosh TK (1994) Workshop on animal models of traumatic brain injury. J Neurotrauma 11:723–732

    Article  PubMed  CAS  Google Scholar 

  • Prins ML, Lee SM, Cheng CL, Becker DP, Hovda DA (1996) Fluid percussion brain injury in the developing and adult rat: a comparative study of mortality, morphology, intracranial pressure and mean arterial blood pressure. Brain Res Dev Brain Res 95:272–282

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27:355–363

    Article  PubMed  Google Scholar 

  • Saatman KE, Duhaime AC, Bullock R, Maas AI, Valadka A, Manley GT (2008) Classification of traumatic brain injury for targeted therapies. J Neurotrauma 25:719–738

    Article  PubMed  Google Scholar 

  • Samant UBt, Mack CD, Koepsell T, Rivara FP, Vavilala MS (2008) Time of hypotension and discharge outcome in children with severe traumatic brain injury. J Neurotrauma 25:495–502

    Article  PubMed  Google Scholar 

  • Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Shore PM, Berger RP, Varma S, Janesko KL, Wisniewski SR, Clark RS, Adelson PD, Thomas NJ, Lai YC, Bayir H, Kochanek PM (2007) Cerebrospinal fluid biomarkers versus glasgow coma scale and glasgow outcome scale in pediatric traumatic brain injury: the role of young age and inflicted injury. J Neurotrauma 24:75–86

    Article  PubMed  Google Scholar 

  • Simma B, Burger R, Falk M, Sacher P, Fanconi S (1998) A prospective, randomized, and controlled study of fluid management in children with severe head injury: lactated Ringer’s solution versus hypertonic saline. Crit Care Med 26:1265–1270

    Article  PubMed  CAS  Google Scholar 

  • Singh IN, Sullivan PG, Deng Y, Mbye LH, Hall ED (2006) Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy. J Cereb Blood Flow Metab 26:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Singh IN, Sullivan PG, Hall ED (2007) Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. J Neurosci Res 85:2216–2223

    Article  PubMed  CAS  Google Scholar 

  • Singhal A, Baker AJ, Hare GM, Reinders FX, Schlichter LC, Moulton RJ (2002) Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J Neurotrauma 19:929–937

    Article  PubMed  CAS  Google Scholar 

  • Spees JL, Olson SD, Ylostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ (2003) Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 100:2397–2402

    Article  PubMed  CAS  Google Scholar 

  • Tanno H, Nockels RP, Pitts LH, Noble LJ (1992) Breakdown of the blood–brain barrier after fluid percussive brain injury in the rat. Part 1: Distribution and time course of protein extravasation. J Neurotrauma 9:21–32

    Article  PubMed  CAS  Google Scholar 

  • Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22:42–75

    Article  PubMed  Google Scholar 

  • Topal NB, Hakyemez B, Erdogan C, Bulut M, Koksal O, Akkose S, Dogan S, Parlak M, Ozguc H, Korfali E (2008) MR imaging in the detection of diffuse axonal injury with mild traumatic brain injury. Neurol Res. 30(9):974–8. Epub 2008 Aug 7

    Google Scholar 

  • Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199:191–200

    Article  PubMed  CAS  Google Scholar 

  • Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574

    Article  PubMed  CAS  Google Scholar 

  • Walker PA, Harting MT, Jimenez F, Shah SK, Pati S, Dash PK, Cox CS (2009a) Direct intrathecal implantation of mesenchymal stromal cells leads to enhanced neuroprotection via an NFkappaB mediated increase in Interleukin 6 (IL-6) production. Stem Cells Dev. 19(6):867–76

    Google Scholar 

  • Walker PA, Shah SK, Harting MT, Cox CS Jr (2009b) Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation. Dis Model Mech 2:23–38

    Article  PubMed  CAS  Google Scholar 

  • Walker PA, Shah SK, Harting MT, Cox CS Jr (2010) Current trends in cell therapy for pediatric acquired brain injury. Minerva Pediatr. 62(1):91–106

    Article  PubMed  CAS  Google Scholar 

  • Walker P, Harting MT, Baumgartner JE, Fletcher S, Strobel N, Cox CS Jr (2009c) Modern approaches to pediatric brain injury therapy. J Trauma. 67(2 Suppl): S120–7. Review

    Google Scholar 

  • Wallace GQ, Lapidos KA, Kenik JS, McNally EM (2008) Long-term survival of transplanted stem cells in immunocompetent mice with muscular dystrophy. Am J Pathol 173:792–802

    Article  PubMed  Google Scholar 

  • Walsh JC, Zhuang J, Shackford SR (1991) A comparison of hypertonic to isotonic fluid in the resuscitation of brain injury and hemorrhagic shock. J Surg Res 50:284–292

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Hoffman JR, Craik RL, Hand PJ, Croul SE, Reivich M, Greenberg JH (2001) A new model of localized ischemia in rat somatosensory cortex produced by cortical compression. Stroke 32:2615–2623

    Article  PubMed  CAS  Google Scholar 

  • Weiner LP (2008) Definitions and criteria for stem cells. Methods Mol Biol 438:3–8

    Article  PubMed  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    Article  PubMed  CAS  Google Scholar 

  • Whalen MJ, Carlos TM, Kochanek PM, Wisniewski SR, Bell MJ, Clark RS, DeKosky ST, Marion DW, Adelson PD (2000) Interleukin-8 is increased in cerebrospinal fluid of children with severe head injury. Crit Care Med 28:929–934

    Article  PubMed  CAS  Google Scholar 

  • Xiao-Sheng H, Sheng-Yu Y, Xiang Z, Zhou F, Jian-ning Z (2000) Diffuse axonal injury due to lateral head rotation in a rat model. J Neurosurg 93:626–633

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Peterson PL, Lee CP (1999) Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma 16:1067–1082

    Article  PubMed  CAS  Google Scholar 

  • Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48:394–403

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Kaneko Y, Bae E, Stahl CE, Wang Y, van Loveren H, Sanberg PR, Borlongan CV (2009) Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res 1287:157–163

    Article  PubMed  CAS  Google Scholar 

  • Yuan XQ, Prough DS, Smith TL, Dewitt DS (1988) The effects of traumatic brain injury on regional cerebral blood flow in rats. J Neurotrauma 5:289–301

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walker, P.A., Allison, N.D. (2011). Traumatic Brain Injury Pathophysiology/Models. In: Charles, S. (eds) Progenitor Cell Therapy for Neurological Injury. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-965-9_5

Download citation

Publish with us

Policies and ethics