Advertisement

Industrial Applications of Stem Cells

  • Michael Roßbach
  • Manal Hadenfeld
  • Oliver Brüstle
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Human embryonic stem cells (hESC) can be differentiated into all somatic cell types, expanded to unlimited numbers and subjected to genetic modification. These properties provide novel perspectives for drug development and biomedical applications. The introduction of disease-specific mutations into these cells and their subsequent in vitro differentiation can be used to study the effect of candidate disease genes on cellular processes and responses to pharmaceutical compounds, thus representing an ideal tool to study human diseases. However, a large number of diseases is based on multiple and mostly unknown cellular alterations and can, therefore, not be adequately modelled using a candidate gene approach. The derivation of disease-specific cells from patients’ own tissues is an emerging new approach. One of the most promising routes in this regard is the generation of induced pluripotent stem cells (iPSC) by reprogramming cells derived, e.g., from patients’ skin biopsies. In analogy to hESC, these iPSC can be differentiated into any cell type. Thus, the availability of both hESC and iPSC provides unprecedented opportunities to generate virtually unlimited numbers of disease-relevant tissue-specific cells in vitro. Key prerequisites for a broad application of hESC- and iPSC-based cellular disease models are industrial methods to generate large quantities of highly purified cells in standardized formats. In this chapter we review the state of the art in stem cell industrialization and discuss innovative perspectives and future applications in this field.

Keywords

Pluripotent Stem Cells Reprogramming Disease Modelling Drug Screening Regenerative Medicine 

References

  1. 1.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385:810–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Jaenisch R. Human cloning - the science and ethics of nuclear transplantation. N Engl J Med 2004; 351:2787–91.PubMedCrossRefGoogle Scholar
  4. 4.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–76.PubMedCrossRefGoogle Scholar
  5. 5.
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292:154–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Nagy A, Gocza E, Diaz EM, Prideaux VR, Ivanyi E, Markkula M et al. Embryonic stem cells alone are able to support fetal development in the mouse. Development 1990; 110:815–21.PubMedGoogle Scholar
  7. 7.
    Cowan CA, Atienza J, Melton DA, Eggan K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 2005; 309:1369–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol 1962; 10:622–40.PubMedCrossRefGoogle Scholar
  9. 9.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448:313–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2:3081–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R et al. Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458:766–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggybac transposon. Nat Methods 2009; 6:363–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Bosnali M, Edenhofer F. Generation of transducible versions of transcription factors oct4 and sox2. Biol Chem 2008; 389:851–61.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009; 4:472–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4:381–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S et al. Induction of pluripotent stem cells from primary human fibroblasts with only oct4 and sox2. Nat Biotechnol 2008; 26:1269–75.PubMedCrossRefGoogle Scholar
  18. 18.
    Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L et al. Oct4-induced ­pluripotency in adult neural stem cells. Cell 2009; 136:411–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B et al. Chromatin-remodeling components of the baf complex facilitate reprogramming. Cell; 141:943–55.PubMedCrossRefGoogle Scholar
  20. 20.
    Nakatsuji N, Nakajima F, Tokunaga K. Hla-haplotype banking and ips cells. Nat Biotechnol 2008; 26:739–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP et al. Treatment of sickle cell anemia mouse model with ips cells generated from autologous skin. Science 2007; 318:1920–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC et al. Phenotypic correction of murine hemophilia a using an iPS cell-based therapy. Proc Natl Acad Sci U S A 2009; 106:808–13.PubMedCrossRefGoogle Scholar
  23. 23.
    Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ et al. Disease-corrected haematopoietic progenitors from fanconi anaemia induced pluripotent stem cells. Nature 2009; 460:53–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Deng J, Shoemaker R, Xie B, Gore A, LeProust EM, Antosiewicz-Bourget J et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat Biotechnol 2009; 27:353–60.PubMedCrossRefGoogle Scholar
  25. 25.
    Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S et al. Aberrant silencing of imprinted genes on chromosome 12qf1 in mouse induced pluripotent stem cells. Nature; 465:175–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321:1218–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Ebert AD, Yu J, Rose FF, Jr., Mattis VB, Lorson CL, Thomson JA et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009; 457:277–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136:964–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific ipscs. Nature 2009; 461:402–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile x syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell; 6:407–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Desbordes SC, Placantonakis DG, Ciro A, Socci ND, Lee G, Djaballah H et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2008; 2:602–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 2009; 106:3225–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Davila JC, Cezar GG, Thiede M, Strom S, Miki T, Trosko J. Use and application of stem cells in toxicology. Toxicol Sci 2004; 79:214–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M et al. Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control. Biotechnol Bioeng 2005; 92:920–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J. Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 2008; 17:1227–41.PubMedCrossRefGoogle Scholar
  36. 36.
    Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng 2003; 9:767–78.PubMedCrossRefGoogle Scholar
  37. 37.
    Bauwens C, Yin T, Dang S, Peerani R, Zandstra PW. Development of a perfusion fed ­bioreactor for embryonic stem cell-derived cardiomyocyte generation: Oxygen-mediated enhancement of cardiomyocyte output. Biotechnol Bioeng 2005; 90:452–61.Google Scholar
  38. 38.
    Fok EY, Zandstra PW. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 2005; 23:1333–42.PubMedCrossRefGoogle Scholar
  39. 39.
    Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM. Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 2008; 138:24–32.Google Scholar
  40. 40.
    Oh SK, Chen AK, Mok Y, Chen X, Lim UM, Chin A et al. Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res 2009; 2:219–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Terstegge S, Laufenberg I, Pochert J, Schenk S, Itskovitz-Eldor J, Endl E et al. Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 2007; 96:195–201.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael Roßbach
  • Manal Hadenfeld
  • Oliver Brüstle
    • 1
    • 2
  1. 1.Institute of Reconstructive NeurobiologyUniversity of BonnBonnGermany
  2. 2.LIFE & BRAIN GmbHBonnGermany

Personalised recommendations