Towards a Cell Therapy for Muscular Dystrophy: Technical and Ethical Issues

  • Giulio Cossu
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Cell therapy is moving into clinical experimentation for a number of genetic diseases, including muscular dystrophy. Cell transplantation offers new hopes for so far incurable diseases but the road to success is still long and difficult, since major obstacles remain to be overcome. These include technical hurdles such as isolation, expansion, genetic correction, and storage of cells, validation and diffusion of the protocols. In addition, serious ethical issues such as patient and donor selection, and, related to these, the increasing costs of these therapies need to be solved before cell therapy may move into a standard therapeutic intervention.


Cell therapy Muscular dystrophy Patient selection Rare diseases Trial costs 


  1. 1.
    Emery AEH. The muscular dystrophies. Lancet 2002; 359:687–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Blake DJ, Weir A, Newey SE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 2002; 82:291–330.PubMedGoogle Scholar
  3. 3.
    Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9:493–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Holterman CE, Rudnicki MA. Molecular regulation of satellite cell function. Semin Cell Dev Biol 2005; 16:575–84.PubMedCrossRefGoogle Scholar
  5. 5.
    Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx ­myofibres from dystrophin negative to positive by injection of normal myoblasts. Nature 1989; 337:176–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Mouly V, Aamiri A, Périé S, Mamchaoui K, Barani A, Bigot A et al. Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 2005; 24:128–33.PubMedGoogle Scholar
  7. 7.
    Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard JP, Roy R et al. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 2004; 9:475–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418:41–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G et al. Human ­circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 2004; 114:182–95.PubMedGoogle Scholar
  10. 10.
    Cao B, Zheng B, Jankowski RJ, Kimura S, Ikezawa M, Deasy B et al. Muscle stem cells differentiate into haematopoitic lineages but retain myogenic potential. Nat Cell Biol 2003; 7:640–6.CrossRefGoogle Scholar
  11. 11.
    Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A et al. The meso-angioblast: a multipotent, selfrenewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 2002; 129:2773–83.PubMedGoogle Scholar
  12. 12.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 1998; 279:1528–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390–4.PubMedGoogle Scholar
  14. 14.
    Ikezawa M, Cao B, Qu Z, Peng H, Xiao X, Pruchnic R et al. Dystrophin delivery in ­dystrophin-deficient DMD-mdx skeletal muscle by isogenic muscle-derived stem cell transplantation. Hum Gene Ther 2003; 14:1535–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM et al. Contribution of ­hematopoietic stem cells to skeletal muscle. Nat Med 2003; 9:1528–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 2003; 9:1520–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Bachrach E, Li S, Perez AL, Schienda J, Liadaki K, Volinski J et al. Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci USA 2004; 101:3581–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Dell’Agnola C, Wang Z, Storb R, Tapscott SJ, Kuhr CS, Hauschka SD et al. Hematopoietic stem cell transplantation does not restore dystrophin expression in Duchenne muscular ­dystrophy dogs. Blood 2004; 104:4311–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest 2004; 114:1577–85.PubMedGoogle Scholar
  20. 20.
    Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005; 8:314–7.CrossRefGoogle Scholar
  21. 21.
    Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16:563–77.PubMedGoogle Scholar
  22. 22.
    Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA et al. Cell therapy of alpha sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 2003; 301:487–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444:574–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Berry SE, Liu J, Chaney EJ, Kaufman SJ. Multipotential mesoangioblast stem cell therapy in the mdx/utrn-/- mouse model for Duchenne muscular dystrophy. Regen Med 2007; 2:275–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L et al. Pericytes of human skeletal muscle are myogenic precursors, distinct from satellite cells. Nat Cell Biol 2007; 9:255–67.PubMedCrossRefGoogle Scholar
  26. 26.
    Davies KE, Ground MD. Treating muscular dystrophy with stem cells? Cell 2007; 127:1304–6.CrossRefGoogle Scholar
  27. 27.
    Bretag A. Too much hype, not enough hope: Are balanced reporting and proper controls too much to expect from therapeutic studies in animal models of neuromuscular diseases that presage clinical trials in humans? Neuromuscul Disord 2007; 17:203–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Harper SQ. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med 2002; 8:253–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Benchaouir R. Restoration of human dystrophin following transplantation of exon-skipping engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 2007; 1:646–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoshiya H, Kazuki Y, Abe S, Takiguchi M, Kajitani N, Watanabe Y et al. A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human ­dystrophin gene. Mol Ther 2008; 17:309–17.PubMedCrossRefGoogle Scholar
  31. 31.
    Aronovich EL, Bell JB, Khan SA, Belur LR, Gunther R, Koniar B et al. Systemic correction of storage disease in MPS I NOD/SCID mice using the sleeping beauty transposon system. Mol Ther 2009; 17:1136–44.PubMedCrossRefGoogle Scholar
  32. 32.
    Arkin LM, Sondhi D, Worgall S, Suh LH, Hackett NR, Kaminsky SM et al. Confronting the issues of therapeutic misconception, enrollment decisions, and personal motives in genetic medicine-based clinical research studies for fatal disorders. Hum Gene Ther 2005; 16:1028–36.PubMedCrossRefGoogle Scholar
  33. 33.
    Cossu G. Challenges in translational research. EMBO Mol Med 2009; 1:79–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Downs S. Ethical issue in bone marrow transplantation. Semin Oncol Nurs 1994; 10:58–63.PubMedCrossRefGoogle Scholar
  35. 35.
    Stiller CR. High-tech medicine and the control of health care costs. CMAJ 1989; 140:905–8.PubMedGoogle Scholar
  36. 36.
    Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 2008; 4:607–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Giulio Cossu
    • 1
    • 2
  1. 1.Division of Regenerative MedicineSan Raffaele Scientific InstituteMilanItaly
  2. 2.Department of BiologyUniversity of MilanMilanItaly

Personalised recommendations