Clinical Application of Autologous Epithelial Stem Cells in Disorders of Squamous Epithelia

  • Nicolas Grasset
  • Yann Barrandon
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Epidermis and epithelia lining the ocular surface, the oral cavity, the pharynx, the oesophagus, the larynx, and the vagina, called stratified squamous epithelia (SSE), contain stem/progenitor cells that support renewal and repair. Under appropriate conditions, these cells can be massively expanded in culture. Restoration of the integrity and the function of SSE is obtained by transplantation and engraftment of the autologous cultivated stem cells in case of several severe clinical conditions (e.g., extensive third-degree burns, limbal deficiency). Successful gene therapy for hereditary SSE disorders has also been achieved by means of correction of the genetic defect in cultivated autologous keratinocyte stem cells. However, the mechanisms controlling engraftment of the transplanted stem cells remain poorly understood, leading to unpredictable clinical results. Further fundamental investigations to explore the behaviour of the transplanted stem cells and their plasticity, anticipating the regulatory affairs main concerns, are needed for successful cell and gene therapy.


Skin Cornea Engraftment Cell therapy Gene therapy 



We are grateful to Ariane Rochat and François Gorostidi for helpful ­discussions. The work was supported by grants to Yann Barrandon from the EPFL, the CHUV and OptiStem, a consortium of the European Economic Community 7th Framework Program.


  1. 1.
    Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns 2000; 4:379–87.CrossRefGoogle Scholar
  2. 2.
    Gallico GG, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med 1984; 7:448–51.CrossRefGoogle Scholar
  3. 3.
    Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G et al. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 1999; 6:868–79.CrossRefGoogle Scholar
  4. 4.
    Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation 2000; 11:1588–98.CrossRefGoogle Scholar
  5. 5.
    Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 2006; 12:1397–402.PubMedCrossRefGoogle Scholar
  6. 6.
    De Luca M, Pellegrini G, Green H. Regeneration of squamous epithelia from stem cells of cultured grafts. Regen Med 2006; 1:45–57.PubMedCrossRefGoogle Scholar
  7. 7.
    Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 2004; 12:1187–96.CrossRefGoogle Scholar
  8. 8.
    Pellegrini G, Traverso C E, Franzi A T, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 1997; 9057:990–3.CrossRefGoogle Scholar
  9. 9.
    Gambardella L, Barrandon Y. The multifaceted adult epidermal stem cell. Curr Opin Cell Biol 2003; 6:771–7.CrossRefGoogle Scholar
  10. 10.
    Potten CS, Booth C. Keratinocyte stem cells: a commentary. J Invest Dermatol 2002; 4:888–99.CrossRefGoogle Scholar
  11. 11.
    Potten CS. Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation. Int Rev Cytol 1981; 69: 271–318.PubMedCrossRefGoogle Scholar
  12. 12.
    Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 3:207–17.CrossRefGoogle Scholar
  13. 13.
    Clayton E, Doupe DP, Klein AM, Winton DJ, Simons BD, Jones PH. A single type of progenitor cell maintains normal epidermis. Nature 2007; 7132:185–9.CrossRefGoogle Scholar
  14. 14.
    Doupe DP, Klein AM, Simons BD, Jones PH. The ordered architecture of murine ear ­epidermis is maintained by progenitor cells with random fate. Dev Cell 2010; 2:317–23.CrossRefGoogle Scholar
  15. 15.
    Jones PH, Simons BD, Watt FM. Sic transit gloria: farewell to the epidermal transit ­amplifying cell? Cell Stem Cell 2007; 4:371–81.CrossRefGoogle Scholar
  16. 16.
    Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004; 5:635–48.CrossRefGoogle Scholar
  17. 17.
    Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci USA 2005; 41:14677–82.CrossRefGoogle Scholar
  18. 18.
    Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 4:411–7.CrossRefGoogle Scholar
  19. 19.
    Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 2001; 2:233–45.CrossRefGoogle Scholar
  20. 20.
    Rochat A, Kobayashi K, Barrandon Y. Location of stem cells of human hair follicles by clonal analysis. Cell 1994; 6:1063–73.CrossRefGoogle Scholar
  21. 21.
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 7:1329–37.CrossRefGoogle Scholar
  22. 22.
    Taylor G, Lehrer MS, Jensen PJ, Sun TT, Lavker RM. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 4:451–61.CrossRefGoogle Scholar
  23. 23.
    Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005; 12:1351–4.CrossRefGoogle Scholar
  24. 24.
    Jaks V, Barker N, Kasper M, van Es JH, Snippert HJ, Clevers H et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 2008; 11:1291–9.CrossRefGoogle Scholar
  25. 25.
    Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 5:427–39.CrossRefGoogle Scholar
  26. 26.
    Legue E, Sequeira I, Nicolas JF. Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages. Development 2010; 4:569–77.CrossRefGoogle Scholar
  27. 27.
    Levy V, Lindon C, Harfe BD, Morgan BA. Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Dev Cell 2005; 6:855–61.CrossRefGoogle Scholar
  28. 28.
    Nijhof JG, Braun KM, Giangreco A, van Pelt C, Kawamoto H, Boyd RL et al. The cell-­surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 2006; 15:3027–37.CrossRefGoogle Scholar
  29. 29.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 5971:1385–9.CrossRefGoogle Scholar
  30. 30.
    Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 1989; 2:201–9.CrossRefGoogle Scholar
  31. 31.
    Lehrer MS, Sun TT, Lavker RM. Strategies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. J Cell Sci 1998; 111:2867–75.PubMedGoogle Scholar
  32. 32.
    Majo F, Rochat A, Nicolas M, Jaoude G A, Barrandon Y. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 2008; 7219:250–4.CrossRefGoogle Scholar
  33. 33.
    Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 1987; 8:2302–6.CrossRefGoogle Scholar
  34. 34.
    Pellegrini G, Golisano O, Paterna P, Lambiase A, Bonini S, Rama P et al. Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. J Cell Biol 1999; 4:769–82.CrossRefGoogle Scholar
  35. 35.
    Mathor M B, Ferrari G, Dellambra E, Cilli M, Mavilio F, Cancedda R et al. Clonal analysis of stably transduced human epidermal stem cells in culture. Proc Natl Acad Sci USA 1996; 19:10371–6.CrossRefGoogle Scholar
  36. 36.
    Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation 2001; 9:1478–85.CrossRefGoogle Scholar
  37. 37.
    Rochat A, Barrandon Y. Regeneration of epidermis from adult keratinocyte stem cells. In: Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomson J, West M, editors. Handbook of Stem Cells. Burlington: Academic; 2004. p. 763–72.CrossRefGoogle Scholar
  38. 38.
    Chua AW, Ma DR, Song IC, Phan TT, Lee ST, Song C. In vitro evaluation of fibrin mat and Tegaderm wound dressing for the delivery of keratinocytes – implications of their use to treat burns. Burns 2008; 2:175–80.CrossRefGoogle Scholar
  39. 39.
    Inoue H, Oshima H, Matsuzaki K, Kumagai N. Application for regenerative medicine of epithelial cell culture-vistas of cultured epithelium. Congenit Anom (Kyoto) 2006; 3:129–34.CrossRefGoogle Scholar
  40. 40.
    Morgan JR, Barrandon Y, Green H, Mulligan RC. Expression of an exogenous growth ­hormone gene by transplantable human epidermal cells. Science 1987; 4821:1476–9.CrossRefGoogle Scholar
  41. 41.
    Limat A, French LE, Blal L, Saurat JH, Hunziker T, Salomon D. Organotypic cultures of autologous hair follicle keratinocytes for the treatment of recurrent leg ulcers. J Am Acad Dermatol 2003; 2:207–14.CrossRefGoogle Scholar
  42. 42.
    Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound ­healing. Am J Clin Dermatol 2001; 5:305–13CrossRefGoogle Scholar
  43. 43.
    Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol 2005; 4:403–12.CrossRefGoogle Scholar
  44. 44.
    Allan D S, Keeney M, Howson-Jan K, Popma J, Weir K, Bhatia M et al. Number of viable CD34(+) cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant 2002; 12:967–72.CrossRefGoogle Scholar
  45. 45.
    Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 2005; 56:509–38.PubMedCrossRefGoogle Scholar
  46. 46.
    Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 5590:2256–9.CrossRefGoogle Scholar
  47. 47.
    Dunnett SB, Bjorklund A, Lindvall O. Cell therapy in Parkinson’s disease – stop or go? Nat Rev Neurosci 2001; 5:365–9.CrossRefGoogle Scholar
  48. 48.
    Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006; 7097:1094–6.CrossRefGoogle Scholar
  49. 49.
    Nakamura T, Inatomi T, Cooper LJ, Rigby H, Fullwood NJ, Kinoshita S. Phenotypic investigation of human eyes with transplanted autologous cultivated oral mucosal epithelial sheets for severe ocular surface diseases. Ophthalmology 2007; 6:1080–8.CrossRefGoogle Scholar
  50. 50.
    Slack JM. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 2007; 5:369–78.CrossRefGoogle Scholar
  51. 51.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 5391:1145–7.CrossRefGoogle Scholar
  52. 52.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 5:861–72.CrossRefGoogle Scholar
  53. 53.
    Aasen T, Raya A, Barrero M J, Garreta E, Consiglio A, Gonzalez F et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 11:1276–84.CrossRefGoogle Scholar
  54. 54.
    Coraux C, Hilmi C, Rouleau M, Spadafora A, Hinnrasky J, Ortonne J P et al. Reconstituted skin from murine embryonic stem cells. Curr Biol 2003; 10:849–53.CrossRefGoogle Scholar
  55. 55.
    Green H, Easley K, Iuchi S. Marker succession during the development of keratinocytes from cultured human embryonic stem cells. Proc Natl Acad Sci USA 2003; 26:15625–30.CrossRefGoogle Scholar
  56. 56.
    Guenou H, Nissan X, Larcher F, Feteira J, Lemaitre G, Saidani M et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 2009; 9703:1745–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nicolas Grasset
    • 1
    • 2
  • Yann Barrandon
    • 1
    • 2
  1. 1.Laboratory of Stem Cell Dynamics, School of Life SciencesEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Department of Experimental SurgeryCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland

Personalised recommendations