Treating Diabetes

  • Mattias Hansson
  • Ole Dragsbæk Madsen
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Diabetes mellitus is a group of metabolic disorders characterized by chronic hyperglycaemia and perturbed carbohydrate, fat and protein metabolism due to inadequate production of the peptide hormone insulin. More than 200 million people worldwide suffer from diabetes. Diabetes mellitus and the micro- and macrovascular complications associated with the disease cause immense distress for the patients and impose an enormous economical burden on society. The development of complications in patients is tightly associated with poor glucose regulation, as hyperglycaemia has direct and indirect detrimental effects on the vascular system. Although intensive diabetes treatment can reduce the risk for developing vascular complications in some instances, it is also associated with an increased risk of hyperglycaemia. Hence, there is an unmet need for improved glucose regulation in diabetes patients. Although the reconstitution of a functional beta cell mass by transplantation of isolated islets can restore tight blood glucose control and thereby minimizes the risk of developing severe complications, a shortage of donor material is one of the factors preventing the general use of cell replacement therapy for the treatment of type 1 diabetes mellitus. Advances in the directed differentiation of pluripotent stem cells toward beta cells via the stepwise recapitulation of embryonic development have generated proof of concept demonstrating that stem cells may be an appropriate source of cells for the generation of therapeutic beta cells. However, progress toward a clinical application of this technology is slow and challenging.


Diabetes mellitus Stem cell Cell replacement therapy Beta cell Islet 


  1. 1.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diab Care 2004; 27:1047–53CrossRefGoogle Scholar
  2. 2.
    American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diab Care 2008; 31:596–615CrossRefGoogle Scholar
  3. 3.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352:837–53.Google Scholar
  4. 4.
    Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med 2000; 342:381–9.Google Scholar
  5. 5.
    Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353:2643–53.CrossRefPubMedGoogle Scholar
  6. 6.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52:102–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 2008; 10(Suppl 4):32–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Wiliams PW. Notes on diabetes treated with extract and by grafts of sheep’s pancreas. Br Med J 1894; 2:1303–4.Google Scholar
  9. 9.
    Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery 1972; 72:175–86.PubMedGoogle Scholar
  10. 10.
    Largiader F, Kolb E, Binswanger U. A long-term functioning human pancreatic islet allotransplant. Transplantation 1980; 29:76–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Najarian JS, Sutherland DE, Baumgartner D, Burke B, Rynasiewicz JJ, Matas AJ et al. Total or near-total pancreatectomy and islet autotransplantation for treatment of chronic pancreatitis. Ann Surg 1980; 192:526–42.CrossRefPubMedGoogle Scholar
  12. 12.
    Sutherland DE, Matas AJ, Goetz FC, Najarian JS. Transplantation of dispersed pancreatic islet tissue in humans: autografts and allografts. Diabetes 1980; 29(Suppl 1):31–44.PubMedGoogle Scholar
  13. 13.
    Brendel MD, Hering BJ, Schultz AO, Bretzel RG. International islet transplant registry ­newsletter #9. 2001, Third Medical Department, Center of Internal Medicine, University Hospital Giessen, Marburg.Google Scholar
  14. 14.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343:230–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med 2006; 355:1318–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54:2060–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Berney T, Ferrari-Lacraz S, Buhler L, Oberholzer J, Marangon N, Philippe J et al. Long-term insulin-independence after allogeneic islet transplantation for type 1 diabetes: over the 10-year mark. Am J Transplant 2009; 9:419–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Dufrane D, Gianello P. Pig islets for clinical islet xenotransplantation. Curr Opin Nephrol Hypertens 2009; 18:495–500.CrossRefPubMedGoogle Scholar
  19. 19.
    Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17:435–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 2001; 17:387–403.CrossRefPubMedGoogle Scholar
  21. 21.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–76.CrossRefPubMedGoogle Scholar
  22. 22.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009; 5:135–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 2000; 6:568–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Cao LZ, Tang DQ, Horb ME, Li SW, Yang LJ. High glucose is necessary for complete maturation of Pdx1-VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes 2004; 53:3168–78.CrossRefPubMedGoogle Scholar
  26. 26.
    Kim S, Shin JS, Kim HJ, Fisher RC, Lee MJ, Kim CW. Streptozotocin-induced diabetes can be reversed by hepatic oval cell activation through hepatic transdifferentiation and pancreatic islet regeneration. Lab Invest 2007; 87:702–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med 2003; 9:596–603.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang L, Li S, Hatch H, Ahrens K, Cornelius JG, Petersen BE et al. In vitro trans-­differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc Natl Acad Sci USA 2002; 99:8078–83.CrossRefPubMedGoogle Scholar
  29. 29.
    Suzuki A, Nakauchi H, Taniguchi H. Glucagon-like peptide 1 (1-37) converts intestinal epithelial cells into insulin-producing cells. Proc Natl Acad Sci USA 2003; 100:5034–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Yoshida S, Kajimoto Y, Yasuda T, Watada H, Fujitani Y, Kosaka H et al. PDX-1 induces differentiation of intestinal epithelioid IEC-6 into insulin-producing cells. Diabetes 2002; 51: 2505–13.CrossRefPubMedGoogle Scholar
  31. 31.
    Kojima H, Nakamura T, Fujita Y, Kishi A, Fujimiya M, Yamada S. Combined expression of pancreatic duodenal homeobox 1 and islet factor 1 induces immature enterocytes to produce insulin. Diabetes 2002; 51:1398–408.CrossRefPubMedGoogle Scholar
  32. 32.
    Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K. Salivary gland progenitor cells induced by duct ligation differentiate into hepatic and pancreatic lineages. Hepatology 2003; 38:104–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U et al. Human ­adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 2006; 341:1135–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 2003; 111:843–50.PubMedGoogle Scholar
  35. 35.
    Choi JB, Uchino H, Azuma K, Iwashita N, Tanaka Y, Mochizuki H et al. Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells. Diabetologia 2003; 46:1366–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 2003; 21:763–70.CrossRefPubMedGoogle Scholar
  37. 37.
    Mathews V, Hanson PT, Ford E, Fujita J, Polonsky KS, Graubert TA. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 2004; 53:91–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Couri CE, Oliveira MC, Stracieri AB, Moraes DA, Pieroni F, Barros GM et al. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2009; 301:1573–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Haller MJ, Viener HL, Wasserfall C, Brusko T, Atkinson MA, Schatz DA. Autologous umbilical cord blood infusion for type 1 diabetes. Exp Hematol 2008; 36:710–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Estrada EJ, Valacchi F, Nicora E, Brieva S, Esteve C, Echevarria L et al. Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transplant 2008; 17:1295–304.CrossRefPubMedGoogle Scholar
  41. 41.
    Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-­producing cells. Proc Natl Acad Sci USA 2003; 100:998–1003.CrossRefPubMedGoogle Scholar
  42. 42.
    Hori Y, Rulifson IC, Tsai BC, Heit JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002; 99:16105–10.CrossRefPubMedGoogle Scholar
  43. 43.
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001; 292:1389–94.CrossRefPubMedGoogle Scholar
  44. 44.
    Hansson M, Tonning A, Frandsen U, Petri A, Rajagopal J, Englund MC et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 2004; 53:2603–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Rajagopal J, Anderson WJ, Kume S, Martinez OI, Melton DA. Insulin staining of ES cell progeny from insulin uptake. Science 2003; 299:363.PubMedGoogle Scholar
  46. 46.
    Sipione S, Eshpeter A, Lyon JG, Korbutt GS, Bleackley RC. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 2004; 47:499–508.CrossRefPubMedGoogle Scholar
  47. 47.
    Paek HJ, Moise LJ, Morgan JR, Lysaght MJ. Origin of insulin secreted from islet-like cell clusters derived from murine embryonic stem cells. Cloning Stem Cells 2005; 7:226–31.CrossRefPubMedGoogle Scholar
  48. 48.
    Paek HJ, Morgan JR, Lysaght MJ. Sequestration and synthesis: the source of insulin in cell clusters differentiated from murine embryonic stem cells. Stem Cells 2005; 23:862–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Tam PP, Loebel DA. Gene function in mouse embryogenesis: get set for gastrulation. Nat Rev Genet 2007; 8:368–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 2009; 4:348–58.CrossRefPubMedGoogle Scholar
  51. 51.
    D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 2005; 23:1534–41.CrossRefPubMedGoogle Scholar
  52. 52.
    Hansson M, Olesen DR, Peterslund JM, Engberg N, Kahn M, Winzi M et al. A late requirement for Wnt and FGF signaling during activin-induced formation of foregut endoderm from mouse embryonic stem cells. Dev Biol 2009; 330:286–304.CrossRefPubMedGoogle Scholar
  53. 53.
    Kubo A, Shinozaki K, Shannon JM, Kouskoff V, Kennedy M, Woo S et al. Development of definitive endoderm from embryonic stem cells in culture. Development 2004; 131:1651–62.CrossRefPubMedGoogle Scholar
  54. 54.
    Morrison GM, Oikonomopoulou I, Migueles RP, Soneji S, Livigni A, Enver T et al. Anterior definitive endoderm from ESCs reveals a role for FGF signaling. Cell Stem Cell 2008; 3:402–15.CrossRefPubMedGoogle Scholar
  55. 55.
    Tada S, Era T, Furusawa C, Sakurai H, Nishikawa S, Kinoshita M et al. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 2005; 132:4363–74.CrossRefPubMedGoogle Scholar
  56. 56.
    Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 2005; 23:1542–50.CrossRefPubMedGoogle Scholar
  57. 57.
    Ameri J, Ståhlberg A, Pedersen J, Johansson JK, Johannesson MM, Artner I et al. FGF2 Specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 2010; 28:45–56.PubMedGoogle Scholar
  58. 58.
    Cai J, Yu C, Liu Y, Chen S, Guo Y, Yong J et al. Generation of homogeneous PDX1(+) pancreatic progenitors from human ES cell-derived endoderm cells. J Mol Cell Biol 2010; 2:50–60.CrossRefPubMedGoogle Scholar
  59. 59.
    Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol 2009; 5:258–65.CrossRefPubMedGoogle Scholar
  60. 60.
    Cho YM, Lim JM, Yoo DH, Kim JH, Chung SS, Park SG et al. Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochem Biophys Res Commun 2008; 366:129–34.CrossRefPubMedGoogle Scholar
  61. 61.
    D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 2006; 24:1392–401.CrossRefPubMedGoogle Scholar
  62. 62.
    Eshpeter A, Jiang J, Au M, Rajotte RV, Lu K, Lebkowski JS et al. In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Prolif 2008; 41:843–58.CrossRefPubMedGoogle Scholar
  63. 63.
    Jiang J, Au M, Lu K, Eshpeter A, Korbutt G, Fisk G et al. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 2007; 25:1940–53.CrossRefPubMedGoogle Scholar
  64. 64.
    Jiang W, Shi Y, Zhao D, Chen S, Yong J, Zhang J et al. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res 2007; 17:333–44.CrossRefPubMedGoogle Scholar
  65. 65.
    Johannesson M, Stahlberg A, Ameri J, Sand FW, Norrman K, Semb H. FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS One 2009; 4:e4794.CrossRefPubMedGoogle Scholar
  66. 66.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26:443–52.CrossRefPubMedGoogle Scholar
  67. 67.
    Mao GH, Chen GA, Bai HY, Song TR, Wang YX. The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 2009; 30:1706–14.CrossRefPubMedGoogle Scholar
  68. 68.
    Phillips BW, Hentze H, Rust WL, Chen QP, Chipperfield H, Tan EK et al. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 2007; 16:561–78.CrossRefPubMedGoogle Scholar
  69. 69.
    Shim JH, Kim SE, Woo DH, Kim SK, Oh CH, McKay R et al. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 2007; 50:1228–38.CrossRefPubMedGoogle Scholar
  70. 70.
    Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 2009; 19:429–38.CrossRefPubMedGoogle Scholar
  71. 71.
    Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 2009; 106:15768–73.CrossRefPubMedGoogle Scholar
  72. 72.
    Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 2008; 283:31601–7.CrossRefPubMedGoogle Scholar
  73. 73.
    Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng 2007; 13:589–99.CrossRefPubMedGoogle Scholar
  74. 74.
    Lum LG. The kinetics of immune reconstitution after human marrow transplantation. Blood 1987; 69:369–80.PubMedGoogle Scholar
  75. 75.
    Cosimi AB, Sachs DH. Mixed chimerism and transplantation tolerance. Transplantation 2004; 77:943–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Elster EA, Hale DA, Mannon RB, Cendales LC, Swanson SJ, Kirk AD. The road to tolerance: renal transplant tolerance induction in nonhuman primate studies and clinical trials. Transpl Immunol 2004; 13:87–99.CrossRefPubMedGoogle Scholar
  77. 77.
    Strachan DP. Hay fever, hygiene, and household size. BMJ 1989; 299:1259–60.CrossRefPubMedGoogle Scholar
  78. 78.
    Cooke A. Review series on helminths, immune modulation and the hygiene hypothesis: how might infection modulate the onset of type 1 diabetes? Immunology 2009; 126:12–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Voltarelli JC, Couri CE, Stracieri AB, Oliveira MC, Moraes DA, Pieroni F et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA 2007; 297:1568–76.CrossRefPubMedGoogle Scholar
  80. 80.
    Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 2007; 117:2553–61.CrossRefPubMedGoogle Scholar
  81. 81.
    Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010; 464:1149–54.CrossRefPubMedGoogle Scholar
  82. 82.
    Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48:2221–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Meier JJ, Lin JC, Butler AE, Galasso R, Martinez DS, Butler PC. Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 2006; 49:1838–44.CrossRefPubMedGoogle Scholar
  84. 84.
    Bonde S, Chan KM, Zavazava N. ES-cell derived hematopoietic cells induce transplantation tolerance. PLoS One 2008; 3:e3212.CrossRefPubMedGoogle Scholar
  85. 85.
    Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318:1920–3.CrossRefPubMedGoogle Scholar
  86. 86.
    Colman A, Dreesen O. Pluripotent stem cells and disease modeling. Cell Stem Cell 2009; 5:244–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mattias Hansson
    • 1
  • Ole Dragsbæk Madsen
    • 2
  1. 1.Department of Stem Cell BiologyHagedorn Research InstituteGentofteDenmark
  2. 2.Beta Cell ResearchHagedorn Research InstituteGentofteDenmark

Personalised recommendations