Skip to main content

Homology Modeling of 5-HT2C Receptors

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

  • 1110 Accesses

Abstract

Achieving 5-HT2C selectivity is still a challenge for medicinal chemists. Luckily, they do not have to synthesize more or less blindly huge numbers of compounds hoping to obtain pharmacologically meaningful results since computational tools have been efficiently used to cope with this problem. 5-HT2C belongs to one of the largest drug target class, the G-protein-coupled receptors (GPCR). This makes it amenable to homology modeling, a computational method for building a three-dimensional structural model in order to study at an atomic level the interactions with its ligands. It would have been impossible to propose any meaningful model without an initial dataset, the crystallographic structure of bovine rhodopsin. However, this template was only the primer for more involved in silico refinements of the putative basal state of 5-HT2C to extract from a list of spatial position of atoms the possible binding modes of neutral antagonists, agonists, and even inverse agonists. The history of 5-HT2C modeling and its application to the generation of hypothesis on the selectivity toward 5-HT2C will be discussed, from the alignment between the templates and human 5-HT2C sequences through the hypothesis of binding sites to the more recent insights gained into selectivity by relating spatial position of the critical residues with their conservation through homologous sequences. A GPCR modeling review would not be complete without some discussion of the complex dynamics of their activation and the peculiar difficulties it poses for computational chemists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelova K, Fanelli F, Puett D (2002) A model for constitutive lutropin receptor activation based on molecular simulation and engineered mutations in transmembrane helices 6 and 7. J Biol Chem 277:32202–32213.

    Article  PubMed  CAS  Google Scholar 

  • Attwood TK, Findlay JB (1993) Design of a discriminating fingerprint for G-protein-coupled receptors. Protein Eng 6:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros JA, Jensen AD, Liapakis G, et al (2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276:29171–29177.

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, et al (2000) The protein data bank. Nucleic Acids Res 28:235–242.

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L (1990) G proteins in signal transduction. Annu Rev Pharmacol Toxicol 30:675–705.

    Article  PubMed  CAS  Google Scholar 

  • Braden MR, Nichols DE (2007) Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT2A receptor. Mol Pharmacol 72:1200–1209.

    Article  PubMed  CAS  Google Scholar 

  • Bray JK, Goddard WA 3 rd (2008) The structure of human serotonin 2c G-protein-coupled receptor bound to agonists and antagonists. J Mol Graph Model 27:66–81.

    Article  PubMed  CAS  Google Scholar 

  • Bromidge SM, Duckworth M, Forbes IT, et al (1997) 6-Chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]- indoline (SB-242084): the first selective and brain penetrant 5-HT2C receptor antagonist. J Med Chem 40:3494–3496.

    Article  PubMed  CAS  Google Scholar 

  • Bromidge SM, Dabbs S, Davies DT, et al (1998) Novel and selective 5-HT2C/2B receptor antagonists as potential anxiolytic agents: synthesis, quantitative structure-activity relationships, and molecular modeling of substituted 1-(3-pyridylcarbamoyl)indolines. J Med Chem 41:1598–1612.

    Article  PubMed  CAS  Google Scholar 

  • Bromidge SM, Dabbs S, Davies DT, et al (1999) Model studies on a synthetically facile series of N-substituted phenyl-N’-pyridin-3-yl ureas leading to 1-(3-pyridylcarbamoyl) indolines that are potent and selective 5-HT(2C/2B) receptor antagonists. Bioorg Med Chem 7:2767–2773.

    Article  PubMed  CAS  Google Scholar 

  • Bromidge SM, Dabbs S, Davies DT, et al (2000) Biarylcarbamoylindolines are novel and selective 5-HT(2C) receptor inverse agonists: identification of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]- 5-pyridyl]carbamoyl]-6-trifluoromethylindoline (SB-243213) as a potential antidepressant/anxiolytic agent. J Med Chem 43:1123–1134.

    Article  PubMed  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, et al (1983) CHARMM: a program for macromolecular energy, minimization and dynamics calculations. J Comput Chem 4:187–217.

    Article  CAS  Google Scholar 

  • Bywater RP (2005) Location and nature of the residues important for ligand recognition in G-protein coupled receptors. J Mol Recognit 18:60–72.

    Article  PubMed  Google Scholar 

  • Casey PJ, Gilman AG (1988) G protein involvement in receptor-effector coupling. J Biol Chem 263:2577–2580.

    PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265.

    Article  PubMed  CAS  Google Scholar 

  • Choudhary MS, Craigo S, Roth BL (1993) A single point mutation (Phe340-- > Leu340) of a conserved phenylalanine abolishes 4-[125I]iodo-(2,5-dimethoxy)phenylisopropylamine and [3H]mesulergine but not [3H]ketanserin binding to 5-hydroxytryptamine2 receptors. Mol Pharmacol 43:755–761.

    PubMed  CAS  Google Scholar 

  • Cordomi A, Perez JJ (2007) Molecular dynamics simulations of rhodopsin in different one-component lipid bilayers. J Phys Chem B 111:7052–7063.

    Article  PubMed  CAS  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, et al (1995) A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197.

    Article  CAS  Google Scholar 

  • Cotecchia S, Ostrowski J, Kjelsberg MA, et al (1992) Discrete amino acid sequences of the alpha 1-adrenergic receptor determine the selectivity of coupling to phosphatidylinositol hydrolysis. J Biol Chem 267:1633–1639.

    PubMed  CAS  Google Scholar 

  • Crozier PS, Stevens MJ, Forrest LR, et al (2003) Molecular dynamics simulation of dark-adapted rhodopsin in an explicit membrane bilayer: coupling between local retinal and larger scale conformational change. J Mol Biol 333:493–514.

    Article  PubMed  CAS  Google Scholar 

  • Crozier PS, Stevens MJ, Woolf TB (2007) How a small change in retinal leads to G-protein ­activation: initial events suggested by molecular dynamics calculations. Proteins 66:559–574.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly D, Overington JP, Blundell TL (1994) The prediction and orientation of alpha-helices from sequence alignments: the combined use of environment-dependent substitution tables, Fourier transform methods and helix capping rules. Protein Eng 7:645–653.

    Article  PubMed  CAS  Google Scholar 

  • Ebersole BJ, Visiers I, Weinstein H, et al (2003) Molecular basis of partial agonism: orientation of indoleamine ligands in the binding pocket of the human serotonin 5-HT2A receptor ­determines relative efficacy. Mol Pharmacol 63:36–43.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1984) The hydrophobic moment detects periodicity in protein hydrophobicity. Proc Natl Acad Sci U S A 81:140–144.

    Article  PubMed  CAS  Google Scholar 

  • Elmore DE, Dougherty DA (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J 81:1345–1359.

    Article  PubMed  CAS  Google Scholar 

  • Ennis MD, Hoffman RL, Ghazal NB, et al (2003) 2,3,4,5-Tetrahydro- and 2,3,4,5,11,11a-hexahydro-1H-[1,4]diazepino[1,7-a]indoles: new templates for 5-HT(2C) agonists. Bioorg Med Chem Lett 13:2369–2372.

    Article  PubMed  CAS  Google Scholar 

  • Farce A, Dilly S, Yous S, et al (2006) Homology modelling of the serotoninergic 5-HT2c receptor. J Enzyme Inhib Med Chem 21:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit 9:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Greasley PJ, Fanelli F, Rossier O, et al (2002) Mutagenesis and modelling of the alpha(1b)-adrenergic receptor highlight the role of the helix 3/helix 6 interface in receptor activation. Mol Pharmacol 61:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  • Grossfield A, Feller SE, Pitman MC (2006) A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci U S A 103:4888–4893.

    Article  PubMed  CAS  Google Scholar 

  • Hartman JI, Northup JK (1996) Functional reconstitution in situ of 5-hydroxytryptamine2c (5HT2c) receptors with alphaq and inverse agonism of 5HT2c receptor antagonists. J Biol Chem 271:22591–22597.

    Article  PubMed  CAS  Google Scholar 

  • Huber T, Botelho AV, Beyer K, et al (2004) Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J 86:2078–2100.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov AA, Baskin, II, Palyulin VA, et al (2005) Molecular modeling and molecular dynamics simulation of the human A2B adenosine receptor. The study of the possible binding modes of the A2B receptor antagonists. J Med Chem 48:6813–6820.

    Article  PubMed  CAS  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217.

    Article  PubMed  CAS  Google Scholar 

  • Jensen AD, Guarnieri F, Rasmussen SG, et al (2001) Agonist-induced conformational changes at the cytoplasmic side of transmembrane segment 6 in the beta 2 adrenergic receptor mapped by site-selective fluorescent labeling. J Biol Chem 276:9279–9290.

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9:532–549.

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Livelli TJ, Jessell TM, et al (1989) Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Kjelsberg MA, Cotecchia S, Ostrowski J, et al (1992) Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation. J Biol Chem 267:1430–1433.

    PubMed  CAS  Google Scholar 

  • Klco JM, Wiegand CB, Narzinski K, et al (2005) Essential role for the second extracellular loop in C5a receptor activation. Nat Struct Mol Biol 12:320–326.

    Article  PubMed  CAS  Google Scholar 

  • Knight AR, Misra A, Quirk K, et al (2004) Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors. Naunyn Schmiedebergs Arch Pharmacol 370:114–123.

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Karplus M (2007) The signaling pathway of rhodopsin. Structure 15:611–623.

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen K, Dahl SG (1996) Molecular modeling of serotonin, ketanserin, ritanserin and their 5-HT2C receptor interactions. Eur J Pharmacol 306:195–210.

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen K, Kroeze WK, Willins DL, et al (2000) A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT(2A) serotonin receptor but does not participate in activation via a “salt-bridge disruption” mechanism. J Pharmacol Exp Ther 293:735–746.

    PubMed  CAS  Google Scholar 

  • Kroeze WK, Kristiansen K, Roth BL (2002) Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem 2:507–528.

    Article  PubMed  CAS  Google Scholar 

  • Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257:1078–1082.

    Article  PubMed  CAS  Google Scholar 

  • Lau PW, Grossfield A, Feller SE, et al (2007) Dynamic structure of retinylidene ligand of rhodopsin probed by molecular simulations. J Mol Biol 372:906–917.

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre V, Yeagle P, Watts A (2005) Molecular dynamics simulations of retinal in rhodopsin: from the dark-adapted state towards lumirhodopsin. Biochemistry 44:12667–12680.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Edwards PC, Burghammer M, et al (2004) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343:1409–1438.

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Mayorga K, Pitman MC, Grossfield A, et al (2006) Retinal counterion switch mechanism in vision evaluated by molecular simulations. J Am Chem Soc 128:16502–16503.

    Article  PubMed  CAS  Google Scholar 

  • Mathiowetz AM, Jain A, Karasawa N, et al (1994) Protein simulations using techniques suitable for very large systems: the cell multipole method for nonbond interactions and the Newton-Euler inverse mass operator method for internal coordinate dynamics. Proteins 20:227–247.

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, et al (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964.

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Sanders-Bush E, Emeson RB (1998) Identification and characterization of RNA editing events within the 5-HT2C receptor. Ann N Y Acad Sci 861:38–48.

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Fujiyoshi Y, Silow M, et al (2002) Functional role of internal water molecules in rhodopsin revealed by x-ray crystallography. Proc Natl Acad Sci U S A 99:5982–5987.

    Article  PubMed  CAS  Google Scholar 

  • Okada T, Sugihara M, Bondar AN, et al (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol 342:571–583.

    Article  PubMed  CAS  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745.

    Article  PubMed  CAS  Google Scholar 

  • Pardo L, Deupi X, Dolker N, et al (2007) The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. Chembiochem 8:19–24.

    Article  PubMed  CAS  Google Scholar 

  • Petrey D, Xiang Z, Tang CL, et al (2003) Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins 53 Suppl 6:430–435.

    Article  PubMed  CAS  Google Scholar 

  • Pitman MC, Grossfield A, Suits F, et al (2005) Role of cholesterol and polyunsaturated chains in lipid-protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J Am Chem Soc 127:4576–4577.

    Article  PubMed  CAS  Google Scholar 

  • Quirk K, Lawrence A, Jones J, et al (2001) Characterisation of agonist binding on human 5-HT2C receptor isoforms. Eur J Pharmacol 419:107–112.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN (1963) Protein structure and crystallography. Science 141:288–291.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Rashid M, Manivet P, Nishio H, et al (2003) Identification of the binding sites and selectivity of sarpogrelate, a novel 5-HT2 antagonist, to human 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes by molecular modeling. Life Sci 73:193–207.

    Article  PubMed  CAS  Google Scholar 

  • Ren Q, Kurose H, Lefkowitz RJ, et al (1993) Constitutively active mutants of the alpha 2-adrenergic receptor. J Biol Chem 268:16483–16487.

    PubMed  CAS  Google Scholar 

  • Renault N, Gohier A, Chavatte P, et al (2010) Novel structural insights for drug design of selective 5-HT(2C) inverse agonists from a ligand-biased receptor model. Eur J Med Chem 45: 5086–99.

    Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273.

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Shoham M, Choudhary MS, et al (1997) Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5-hydroxytryptamine2A receptors. Mol Pharmacol 52:259–266.

    PubMed  CAS  Google Scholar 

  • Roth BL, Willins DL, Kristiansen K, et al (1998) 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacol Ther 79:231–257.

    Article  PubMed  CAS  Google Scholar 

  • Saam J, Tajkhorshid E, Hayashi S, et al (2002) Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Biophys J 83:3097–3112.

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815.

    Article  PubMed  CAS  Google Scholar 

  • Salom D, Lodowski DT, Stenkamp RE, et al (2006) Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A 103:16123–16128.

    Article  PubMed  CAS  Google Scholar 

  • Saltzman AG, Morse B, Whitman MM, et al (1991) Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun 181:1469–1478.

    Article  PubMed  CAS  Google Scholar 

  • Samama P, Cotecchia S, Costa T, et al (1993) A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 268:4625–4636.

    PubMed  CAS  Google Scholar 

  • Schlegel B, Sippl W, Holtje HD (2005) Molecular dynamics simulations of bovine rhodopsin: influence of protonation states and different membrane-mimicking environments. J Mol Model 12:49–64.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DA, Kristiansen K, Kroeze WK, et al (2000) Differential modes of agonist binding to 5-hydroxytryptamine(2A) serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5. Mol Pharmacol 58:877–886.

    PubMed  CAS  Google Scholar 

  • Stam NJ, Vanderheyden P, van Alebeek C, et al (1994) Genomic organisation and functional expression of the gene encoding the human serotonin 5-HT2C receptor. Eur J Pharmacol 269:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Wang CD, Gallaher TK, Shih JC (1993) Site-directed mutagenesis of the serotonin 5-hydroxytrypamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol Pharmacol 43:931–940.

    PubMed  CAS  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, et al (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491.

    Article  PubMed  CAS  Google Scholar 

  • White SH, Ladokhin AS, Jayasinghe S, et al (2001) How membranes shape protein structure. J Biol Chem 276:32395–32398.

    Article  PubMed  CAS  Google Scholar 

  • Wurch T, Pauwels PJ (2000) Coupling of canine serotonin 5-HT(1B) and 5-HT(1D) receptor subtypes to the formation of inositol phosphates by dual interactions with endogenous G(i/o) and recombinant G(alpha15) proteins. J Neurochem 75:1180–1189.

    Article  PubMed  CAS  Google Scholar 

  • Xie E, Zhu L, Zhao L, et al (1996) The human serotonin 5-HT2C receptor: complete cDNA, genomic structure, and alternatively spliced variant. Genomics 35:551–561.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Shen J, Luo X, et al (2005) Conformational transition of amyloid beta-peptide. Proc Natl Acad Sci U S A 102:5403–5407.

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Barrantes FJ, Luo X, et al (2005) Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study. J Am Chem Soc 127:1291–1299.

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Mizrachi D, Fanelli F, et al (2005) The formation of a salt bridge between helices 3 and 6 is responsible for the constitutive activity and lack of hormone responsiveness of the naturally occurring L457R mutation of the human lutropin receptor. J Biol Chem 280:26169–26176.

    Article  PubMed  CAS  Google Scholar 

  • Zhao MM, Hwa J, Perez DM (1996) Identification of critical extracellular loop residues involved in alpha 1-adrenergic receptor subtype-selective antagonist binding. Mol Pharmacol 50:1118–1126.

    PubMed  CAS  Google Scholar 

  • Zuo Z, Chen G, Luo X, et al (2007) Pharmacophore-directed homology modeling and molecular dynamics simulation of G protein-coupled receptor: study of possible binding modes of 5-HT2C receptor agonists. Acta Biochim Biophys Sin (Shanghai) 39:413–422.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Chavatte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Renault, N., Farce, A., Chavatte, P. (2011). Homology Modeling of 5-HT2C Receptors. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_6

Download citation

Publish with us

Policies and ethics