Skip to main content

The 5-HT2C Receptor Subtype Controls Central Dopaminergic Systems: Evidence from Electrophysiological and Neurochemical Studies

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

Several studies have focused on the role of serotonergic 5-HT2C receptors in the regulation of forebrain dopamine (DA) function and have highlighted their potential as a target for improved treatments of neuropsychiatric disorders related to central dopaminergic neuron dysfunction. This chapter was undertaken to summarize the authors’ and others’ works that have extensively explored the role of 5-HT2C receptors in the control of DA systems both in basal and drug-induced conditions, using in vivo electrophysiological and microdialytic techniques. It is well established that this receptor subtype exerts both tonic and phasic modulation of central dopaminergic function. This evidence has led to the suggestion that drugs acting on 5-HT2C receptors have potential as novel antipsychotic (APD) and antidepressant agents and may be used in the treatment of other neuropsychiatric disorders such as Parkinson disease and psychoactive substance abuse. First, the physiology, pharmacology, and anatomical distribution of the 5-HT2C receptors in the central nervous system (CNS) are reviewed. Next, experimental data regarding the effect of 5-HT2C selective agents on the neuronal activity of DA neurons of the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), as well as the changes of basal DA release in the striatum, nucleus accumbens, and cerebral cortex, are discussed. Finally, the potential use of 5-HT2C agents in the treatment of depression, schizophrenia, Parkinson disease, and drug abuse will be also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramowski D, Rigo M, Due D, et al (1995) Localization of 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 35:1635–1645.

    Google Scholar 

  • Aghajanian GK, Bunney BS (1974) DA-ergic and nonDA-ergic neurons of the substantia nigra: differential responses to putative transmitters. In: Boissier JR, Hippius H, Pichot P, eds. Proceedings of the IX congress of the college of international neuropsychopharmacology, Amstrerdam, Excerpta Medica. pp 444–452.

    Google Scholar 

  • Agid Y (1998) Levodopa: is toxicity a myth? Neurology 50:858–863.

    PubMed  CAS  Google Scholar 

  • Albin R, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375.

    PubMed  CAS  Google Scholar 

  • Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320.

    PubMed  CAS  Google Scholar 

  • Alex KD, Yavanian GJ, McFarlane HG, et al (2005) Modulation of dopamine release by striatal 5-HT2C receptors. Synapse 55:242–251.

    PubMed  CAS  Google Scholar 

  • Andersson JL, Nomikos GG, Marcus M, et al (1995) Ritanserin potentiates the stimulatory effects of raclopride on neuronal activity and dopamine release selectively in the mesolimbic DA-ergic system. Naunyn-Schmiedeberg’s Arch Pharmacol 352:374–385.

    CAS  Google Scholar 

  • Arnsten AF, Cai JX, Murphy BL, et al (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151.

    PubMed  CAS  Google Scholar 

  • Ashby CR, Wang RY (1996) Pharmacological actions of the atypical antipsychotic drug clozapine. A review. Synapse 24:349–394.

    PubMed  CAS  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphé nuclei in the rat. J Comp Neurol 179:641–668.

    PubMed  CAS  Google Scholar 

  • Bankson GM, Cunningham KA (2002) Pharmacological studies of the acute effects of (+)-3,4-Methylenedioxymethamphetamine on locomotor activity: role of 5-HT1B/1D and 5-HT2 receptors. Neuropsychopharmacology 26:40–52.

    PubMed  CAS  Google Scholar 

  • Bankson MG, Yamamoto BK (2004) Serotonin-GABA interactions modulate MDMA-induced mesolimbic dopamine release. J Neurochem 91:852–859.

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68.

    PubMed  CAS  Google Scholar 

  • Barker EL, Sanders-Bush E (1993) 5-Hydroxytryptamine1C receptor density and mRNA levels in choroid plexus epithelial cells after treatment with mianserin and (−)-1-(4-bromo-2,5-dimethoxyphenyl)-2-aminopropane. Mol Pharmacol 44:725–730.

    PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152.

    PubMed  CAS  Google Scholar 

  • Baxter GS, Kennett GA, Blaney F, et al (1995) 5-HT2 receptor subtypes: a family reunited? Trends Pharmacol Sci 16:105–110.

    PubMed  CAS  Google Scholar 

  • Berg KA, Navailles S, Sanchez TA, et al (2006) Differential effects of 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) on 5-Hydroxytryptamine2C receptor-mediated responses. J Pharmacol Exp Ther 319:260–268.

    PubMed  CAS  Google Scholar 

  • Bersani G, Grispini A, Marini S, et al (1990) 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol 13:500–506.

    PubMed  CAS  Google Scholar 

  • Blackburn TP, Minabe Y, Middlemiss DN, et al (2002) Effect of acute and chronic administration of the selective 5-HT2C receptor antagonist SB-243213 on midbrain dopamine neurons in the rat: an in vivo extracellular single cell study. Synapse 46:129–139.

    PubMed  CAS  Google Scholar 

  • Boess FG, Martin IL (1994) Molecular biology of 5-HT receptors. Neuropharmacology 33:275–317.

    PubMed  CAS  Google Scholar 

  • Bonaccorso S, Meltzer HY, Li Z, et al (2002) SR46349-B, a 5-HT2A/2C receptor antagonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Neuropsychopharmacology 27:430–441.

    PubMed  CAS  Google Scholar 

  • Bonasera SJ, Tecott LH (2000) Mouse models of serotonin receptor function: toward a genetic dissection of serotonin systems. Pharmacol Ther 88:133–142.

    PubMed  CAS  Google Scholar 

  • Brown AS, Gershon S (1993) Dopamine and depression. J Neural Transm 91:75–109.

    CAS  Google Scholar 

  • Bubar MJ, Cunningham KA (2007) Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146:286–297.

    PubMed  CAS  Google Scholar 

  • Cabib S, Puglisi-Allegra S (1996) Stress, depression and the mesolimbic dopamine system. Psychopharmacology 128:331–342.

    PubMed  CAS  Google Scholar 

  • Cervo L, Samanin R (1987) Evidence that dopamine mechanisms in the nucleus accumbens are selectively involved in the effect of desipramine in the forced swimming test. Neuropharmacology 26:1469–1472.

    PubMed  CAS  Google Scholar 

  • Cervo L, Samanin R (1988) Repeated treatment with imipramine and amitriptyline reduced the immobility of rats in the swimming test by enhancing dopamine mechanisms in the nucleus accumbens. J Pharm Pharmacol 40:155–156.

    PubMed  CAS  Google Scholar 

  • Cervo L, Grignaschi G, Samanin R (1990) The role of the mesolimbic dopaminergic system in the desipramine effect in the forced swimming test. Eur J Pharmacol 178:129–133.

    PubMed  CAS  Google Scholar 

  • Clemett DA, Punhani T, Duxon MS, et al (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39:123–132.

    PubMed  CAS  Google Scholar 

  • D’Aquila PS, Collu M, Gessa GL, et al (2000) The role of dopamine in the mechanism of action of antidepressant drugs. Eur J Pharmacol 405:365–373.

    PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62:1–55.

    Google Scholar 

  • Davis KL, Kahn RS, Ko G, et al (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486.

    PubMed  CAS  Google Scholar 

  • De Deurwaerdère P, Spampinato U (1999) Role of serotonin2A and serotonin2B/2C receptor subtypes in the control of accumbal and striatal dopamine release elicited in vivo by dorsal raphe nucleus electrical stimulation. J Neurochem 73:1033–1042.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Navailles S, Berg KA, et al (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J. Neurosci 24:3235–3241.

    PubMed  Google Scholar 

  • De Deurwaerdère P, Le Moine C, Chesselet MF (2010) Selective blockade of serotonin 2C receptor enhances Fos expression specifically in the striatum and the subthalamic nucleus within the basal ganglia. Neurosci Lett 469:251–255.

    PubMed  Google Scholar 

  • Dekeyne A, Mannoury la Cour C, Gobert A, et al (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology 19:549–568.

    Google Scholar 

  • Devaud LL, Hollingsworth EB, Cooper BR (1992) Alterations in extracellular and tissue levels of biogenic amines in rat brain induced by the serotonin2 receptor antagonist, ritanserin. J. Neurochem 59:1459–1466.

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278.

    PubMed  Google Scholar 

  • Di Giovanni G, De Deurwaerdère P, Di Mascio M, et al (1999) Selective blockade of serotonin2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597.

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Di Mascio M, et al (2000) Preferential modulation of mesolimbic versus nigrostriatal dopaminergic function by serotonin2C/2B receptor agonists: a combined in vivo electrophysiological and microdialysis study. Synapse 35:53–61.

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, La Grutta V, et al (2001) m-Chlorophenylpiperazine excites non-dopaminergic neurons in the rat substantia nigra and ventral tegmental area by activating serotonin-2C receptors. Neuroscience 103:111–116.

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Pierucci M, et al (2006) Serotonin involvement in the basal ganglia pathophysiology: could the 5-HT2C receptor be a new target for therapeutic strategies? Curr Med Chem 13:3069–3081.

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Esposito E, eds. (2008) Serotonin-dopamine interaction: experimental evidence and therapeutic relevance. Prog Brain Res 172.

    Google Scholar 

  • Di Mascio M, Di Giovanni G, Di Matteo V, et al (1998) Selective serotonin reuptake inhibitors reduce the spontaneous activity of dopaminergic neurons in the ventral tegmental area. Brain Res Bull 46:547–554.

    PubMed  Google Scholar 

  • Di Mascio M, Di Giovanni G, Di Matteo V, et al (1999) Decreased chaos of midbrain DA-ergic neurons after serotonin denervation. Neuroscience 91:587–597.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (1998) Selective blockade of serotonin 2C/2B receptors enhances dopamine release in the rat nucleus accumbens. Neuropharmacology 37:265–272.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (1999) SB 242084, a selective serotonin2C receptor antagonist, increases dopaminergic transmission in the mesolimbic system. Neuropharmacology 38:1195–1205.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Di Mascio M, et al (2000a) Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin2C receptors. Brain Res 865:85–90.

    PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Esposito E (2000) SB 242084: a selective 5-HT2C receptor antagonist. CNS Drug Reviews 6:195–205.

    Google Scholar 

  • Di Matteo V, Di Mascio M, Di Giovanni G, et al (2000) Acute administration of amitriptyline and mian[39]serin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin2C receptors. Psychopharmacology 150:45–51.

    PubMed  Google Scholar 

  • Di Matteo V, De Blasi A, Di Giulio C, et al (2001) Role of 5-HT2C receptors in the control of central dopamine function. Trends Pharmacol Sci 22:229–232.

    PubMed  Google Scholar 

  • Di Matteo V, Cacchio M, Di Giulio C, et al (2002) Biochemical evidence that the atypical antipsychotic drugs clozapine and risperidone block 5-HT2C receptors in vivo. Pharmacol Biochem Behav 71:607–613.

    PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E (2004) Selective stimulation of serotonin2C receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. J Neurochem 89:418–429.

    PubMed  Google Scholar 

  • Doherty MD, Pickel V (2000) Ultrastructural localization of serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864:176–185.

    PubMed  CAS  Google Scholar 

  • Dray A, Gonye N, Oakley NR, et al (1976) Evidence for the existence of a raphe projection to the substantia nigra in the rat. Brain Res 113:45–57.

    PubMed  CAS  Google Scholar 

  • Dray A, Davies J, Oakley NR, et al (1978) The dorsal and medial raphe projections to the substantia nigra in the rat: electrophysiological, biochemical and behavioural observations. Brain Res 151:431–442.

    PubMed  CAS  Google Scholar 

  • Dremencov E, Newman ME, Kinor N, et al (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48:34–42.

    PubMed  CAS  Google Scholar 

  • Eberle-Wang K, Mikeladze Z, Uryu K, et al (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol 384:233–247.

    PubMed  CAS  Google Scholar 

  • Farde L, Nyberg S, Oxenstierna G, et al (1995) Positron emission tomography studies on D2 and 5-HT2 receptor binding in risperidone-treated schizophrenic patients. J Clin Psychopharmacol 15:19S–23S.

    PubMed  CAS  Google Scholar 

  • Fibiger HC (1995) Neurobiology of depression: focus on dopamine. In: Gessa G, Fratta W, Pani L, Serra G, eds. Depression and mania: from neurobiology to treatment. New York, Raven Press. pp 1–17.

    Google Scholar 

  • Fibiger HC, Miller JJ (1977) An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat. Neuroscience 2:975–987.

    Google Scholar 

  • Fletcher PJ, Phil D, Grottick AJ, et al (2002) Differential effects of the 5-HT2A receptor antagonist M100,907 and the 5-HT2C receptor antagonist SB242,084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27:576–586.

    PubMed  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Robinson SR, et al (2002) Multiple 5-HT receptors are involved in the effects of acute MDMA treatment: studies on locomotor activity and responding for conditioned reinforcement. Psychopharmacology 162:282–291.

    PubMed  CAS  Google Scholar 

  • Fox SH, Brotchie JM (1999) A role for 5-HT2C receptor antagonists in the treatment of Parkinson’s disease? Drug News Perspect 12:477–483.

    CAS  Google Scholar 

  • Fox SH, Brotchie JM (2000) 5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson’s disease. Mov Disord 15:1064–1069.

    PubMed  CAS  Google Scholar 

  • Fox SH, Brotchie JM (2000) 5-HT2C receptor antagonists enhance the behavioural response to dopamine D1 receptor agonists in the 6-hydroxydopamine-lesioned rat. Eur J Pharmacol 398:59–64.

    PubMed  CAS  Google Scholar 

  • Fox SH, Moser B, Brotchie JM (1998) Behavioural effects of 5-HT2C receptor antagonism in the substantia nigra zona reticulata of the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neurol 151:35–49.

    PubMed  CAS  Google Scholar 

  • Gervais J, Rouillard C (2000) Dorsal raphe stimulation differentially modulates DA-ergic neurons in the ventral tegmental area and substantia nigra. Synapse 35:281–291.

    PubMed  CAS  Google Scholar 

  • Giorgetti M, Tecott L (2004) Contribution of 5-HT2C receptors to multiple action of central serotonin systems. Eur J Pharmacol 488:1–9.

    PubMed  CAS  Google Scholar 

  • Gobert A, Millan MJ (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38:315–317.

    PubMed  CAS  Google Scholar 

  • Gobert A, Rivet J-M, Lejeune F, et al (2000) Serotonin2C receptors tonically suppress the activity of mesocortical dopaminergic and adrenergic, but not serotonergic, pathways: a combined dialysis and electrophysiological analysis in the rat. Synapse 36:205–221.

    PubMed  CAS  Google Scholar 

  • Grace A, Bunney B (1985) Dopamine. In: Rogawski MA, Barker JL Eds., Neurotransmitter action in the vertebrate nervous system. New York, Plenum Press. pp 285–319.

    Google Scholar 

  • Grauer SM, Graf R, Navarra R, et al (2009) WAY-163909, a 5-HT2C agonist, enhances the preclinical potency of current antipsychotics. Psychopharmacology 204:37–48.

    PubMed  CAS  Google Scholar 

  • Grottick AJ, Fletcher PJ, Higgins GA (2000) Studies to investigate the role of 5-HT2C receptors on cocaine- and food-maintained behavior. J Pharmacol Exp Ther 295:1183–1191.

    PubMed  CAS  Google Scholar 

  • Guiard BP, El Mansari M, Merali Z, et al (2008) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11:625–639.

    PubMed  CAS  Google Scholar 

  • Hagan JJ, Middlemiss DN, Sharp PC, et al (1997) Parkinson’s disease: prospects for improved drug therapy. Trends Pharmacol Sci 18:156–63.

    PubMed  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295:226–232.

    PubMed  CAS  Google Scholar 

  • Hervé D, Pickel VM, Joh TH, et al (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 435:71–83.

    PubMed  Google Scholar 

  • Higgins GA, Fletcher PJ (2003) Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol 480:151–162.

    PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, et al (1994) VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203.

    PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554.

    PubMed  CAS  Google Scholar 

  • Hutson PH, Barton CL, Jay M, et al (2000) Activation of mesolimbic dopamine function by phencyclidine is enhanced by 5-HT2C/2B receptor antagonists: neurochemical and behavioural studies. Neuropharmacology 39:2318–2328.

    PubMed  CAS  Google Scholar 

  • Ichikawa J, Meltzer HY (1995) Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur J Pharmacol 281:255–261.

    PubMed  CAS  Google Scholar 

  • Invernizzi RW, Pierucci M, Calcagno E, et al (2007) Selective activation of 5-HT2C receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: a combined in vivo electrophysiological and neurochemical study. Neuroscience 144:1523–1535.

    PubMed  CAS  Google Scholar 

  • Jenck F, Moreau J-L, Mutel V, et al (1993) Evidence for a role of 5-HT1C receptors in the antiserotonergic properties of some antidepressant drugs. Eur J Pharmacol 231:223–229.

    PubMed  CAS  Google Scholar 

  • Jenck F, Moreau J-L, Mutel V, et al (1994) Brain 5-HT1C receptors and antidepressants. Prog neuropsychopharmacol & Biol Psychiatry 18:563–574.

    PubMed  CAS  Google Scholar 

  • Jenck F, Bös J, Wichmann J, Stadler H, Martin JR, Moreau JL (1998) The role of 5-HT2C receptors in affective disorders. Expert Opin Investig Drugs 7:1587–1599.

    PubMed  CAS  Google Scholar 

  • Ji S-P, Zhang Y, Van Cleemput J, et al (2006) Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med 12:324–329.

    PubMed  CAS  Google Scholar 

  • Jones BJ, Blackburn TP (2002) The medical benefit of 5-HT research. Pharmacol Biochem Behav 71:555–568.

    PubMed  CAS  Google Scholar 

  • Kalivas PW (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev 18:75–113.

    PubMed  CAS  Google Scholar 

  • Kehne JH, Ketteler HJ, McCloskey TC, et al (1996) Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology 15:116–124.

    PubMed  CAS  Google Scholar 

  • Kelland MD, Freeman AS, Chiodo LA (1990) Serotonergic afferent regulation of the basic physiology and pharmacological responsiveness of nigrostriatal dopamine neurons. J Pharmacol Exp Ther 253:803–811.

    PubMed  CAS  Google Scholar 

  • Kelland MD, Freeman AS, Rubin J, et al (1993) Ascending afferent regulation of rat midbrain dopamine neurons. Brain Res Bull 31:539–546.

    PubMed  CAS  Google Scholar 

  • Kennett GA (1993) 5-HT1C receptors and their therapeutic relevance. Curr Opin Investig Drugs 2:317–362.

    Google Scholar 

  • Kennett GA, Wood MD, Bright F, et al (1996) In vitro and in vivo profile of SB 206553, a potent 5-HT2C /5HT2B receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434.

    PubMed  CAS  Google Scholar 

  • Kennett GA, Wood MD, Bright F, et al (1997) SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology 36:609–620.

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA (1995) Functional significance of mesolimbic dopamine. Neurosci Biobehav Rev 19:573–598.

    PubMed  CAS  Google Scholar 

  • Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184.

    PubMed  CAS  Google Scholar 

  • Kuroki T, Meltzer HY, Ichikawa J (1999) Effects of antipsychotic drugs on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens. J Pharmacol Exp Ther 288:774–781.

    PubMed  CAS  Google Scholar 

  • Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol Rev 71:155–234.

    PubMed  Google Scholar 

  • Leysen JE, Gommeren W, Van Gompel P, et al (1985) Receptor-binding properties in vitro and in vivo of ritanserin: a very potent and long acting serotonin-S2 antagonist. Mol Pharmacol 27:600–611.

    PubMed  CAS  Google Scholar 

  • Li Z, Ichikawa J, Huang M, et al (2005) ACP-103, a 5-HT2A/2C inverse agonist, potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Psychopharmacology 183:144–153.

    PubMed  CAS  Google Scholar 

  • Liu S, Bubar MJ, Lanfranco MF, et al (2007) Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: implications for understanding the neurobiology of addiction. Neuroscience 146:1677–1688.

    PubMed  CAS  Google Scholar 

  • Lôo H, Hale A, D’Haenen H (2002) Determination of the dose of agomelatine, a melatonergic agonist and selective 5-HT2C antagonist, in the treatment of major depressive disorder: a placebo-controlled dose range study. Int Clin Psychopharmacol 17:239–247.

    PubMed  Google Scholar 

  • Maillet JC, Zhang Y, Li X, et al (2008) PTEN-5-HT2C coupling: a new target for treating drug addiction. Prog Brain Res 172:407–420.

    PubMed  CAS  Google Scholar 

  • Maj J, Moryl E (1992) Effects of sertraline and citalopram given repeatedly on the responsiveness of 5-HT receptor subpopulations. J Neural Transm Gen Sect 88:143–156.

    PubMed  CAS  Google Scholar 

  • Marquis KL, Sabb AL, Logue SF, et al (2007) WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-Octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther 320:486–496.

    PubMed  CAS  Google Scholar 

  • Martin JR, Bös M, Jenck F, et al (1998) 5-HT2C agonists: pharmacological characteristics and therapeutical potential, J Pharmacol Exp Ther 286:913–924.

    PubMed  CAS  Google Scholar 

  • Maurel-Remy S, Bervoets K, Millan MJ (1995) Blockade of phencyclidine-induced hyperlocomotion by clozapine and MDL 100,907 in rats reflects antagonism of 5-HT2A receptors. Eur J Pharmacol 280:R9–R11.

    PubMed  CAS  Google Scholar 

  • McCreary AC, Cunningham KA (1999) Effects of the 5-HT2C/2B antagonist SB 206553 on hyperactivity induced by cocaine. Neuropsychopharmacology 20:556–564.

    PubMed  CAS  Google Scholar 

  • McMahon LR, Cunningham KA (2001) Antagonism of 5-Hydroxytryptamine2A receptors attenuates the behavioral effects of cocaine in rats. J Pharmacol Exp Ther 297:357–363.

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21:106S–115S.

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Nash JF (1991) VII. Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 43:587–604.

    PubMed  CAS  Google Scholar 

  • Meltzer HY, Matsubara S, Lee JC (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D1, D2 and serotonin2 pKi values. J Pharmacol Exp Ther 251:238–246.

    PubMed  CAS  Google Scholar 

  • Millan MJ, Dekene A, Gobert A (1998) Serotonin (5-HT)2C receptors tonically inhibit dopamine (DA) and noradrenaline (NA), but not 5-HT release in the frontal cortex in vivo. Neuropharmacology 37:953–955.

    PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Rivet J-M, et al (2000) Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of a2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci 12:1079–1095.

    PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, et al (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964.

    PubMed  CAS  Google Scholar 

  • Miller CH, Fleischhacker WW, Ehrmann H, et al (1990) Treatment of neuroleptic induced akathisia with the 5-HT2 antagonist ritanserin. Psychopharmacol Bull 26:373–376.

    PubMed  CAS  Google Scholar 

  • Minabe Y, Emori K, Ashby CR Jr (1996) The depletion of brain serotonin levels by para- chlorophenylalanine administration significantly alters the activity of midbrain dopamine cells in rats: an extracellular single cell recording study. Synapse 22:46–53.

    PubMed  CAS  Google Scholar 

  • Minabe Y, Hashimoto K, Watanabe KI, et al (2001) Acute and repeated administration of the selective 5-HT(2A) receptor antagonist M100907 significantly alters the activity of midbrain dopamine neurons: an in vivo electrophysiological study. Synapse 40:102–112.

    PubMed  CAS  Google Scholar 

  • Molineaux SM, Jessell TM, Axel R, et al (1989) 5-HT1C receptor is a prominent serotonin receptor subtype in the central nervous system. Proc Natl Acad Sci USA 86:6793–6797.

    PubMed  CAS  Google Scholar 

  • Moreau J-L, Jenck F, Martin JR, et al (1993) Effect of repeated mild stress and two antidepressant treatments on the behavioral response to 5-HT1C receptor activation in rats. Psychopharmacology 110:140–144.

    PubMed  CAS  Google Scholar 

  • Moreau J-L, Bourson A, Jenck F, et al (1994) Curative effects of the atypical antidepressant mianserin in the chronic mild stress-induced anhedonia model of depression. J Psychiatry Neurosci 19:51–56.

    PubMed  CAS  Google Scholar 

  • Moreau J-L, Bös M, Jenck F, et al (1996) 5-HT2C receptor agonists exhibit antidepressant - like properties in the anhedonia model of depression in rats. Eur Neuropsychopharmacol 6:169–175.

    PubMed  CAS  Google Scholar 

  • Morrow BA, Elsworth JD, Zito C, et al (1999) Biochemical and Behavioral anxiolytic-like effects of R(+) HA-966 at the level of the ventral tegmental area in rats. Psychopharmacology 143:227–234.

    PubMed  CAS  Google Scholar 

  • Moukhles H, Bosler O, Bolam JP, et al (1997) Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 76:1159–1171.

    PubMed  CAS  Google Scholar 

  • Müller CP, Carey RJ (2006) Intracellular 5-HT2C-receptor dephosphorylation: a new target for treating drug addiction. Trends Pharmacol Sci 27:455–458.

    PubMed  Google Scholar 

  • Navailles S, De Deurwaerdère PD, Porras G, et al (2004) In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 29:319–326.

    PubMed  CAS  Google Scholar 

  • Navailles S, Moison D, Ryczko D, et al (2006) Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 99:1311–1319.

    PubMed  CAS  Google Scholar 

  • Navailles S, De Deurwaerdère PD, Spampinato U (2006) Clozapine and Haloperidol differentially alter the constitutive activity of central serotonin2C receptors in vivo. Biol Psychiatry 59:568–575.

    PubMed  CAS  Google Scholar 

  • Navailles S, Moison D, Cunningham KA, et al (2008) Differential regulation of the mesoaccumbens dopamine circuit by serotonin2C receptors in the ventral tegmental area and the nucleus accumbens: an in vivo microdialysis study with cocaine. Neuropsychopharmacology 33:237–246.

    PubMed  CAS  Google Scholar 

  • Newton RA, Elliott JM (1997) Mianserin-induced down-regulation of human 5-hydroxytryptamine2A and 5-Hydroxytryptamine2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. J Neurochem 69:1031–1038.

    PubMed  CAS  Google Scholar 

  • Nicholson SL, Brotchie JM (2002) 5-hydroxytryptamine (5-HT, serotonin) and Parkinson’s disease-opportunities for novel therapeutics to reduce the problems of levodopa therapy. Eur J Neurol 9:1–6.

    PubMed  Google Scholar 

  • Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT2A receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111:163–176.

    PubMed  CAS  Google Scholar 

  • O’Neill MF, Heron-Maxwell CL, Shaw G (1999) 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB. Pharmacol, Biochem Behav 63:237–243.

    PubMed  Google Scholar 

  • Pandi-Perumal SR, Srinivasan V, Cardinali DP, et al (2006) Could agomelatine be the ideal antidepressant? Expert Rev Neurother 6:1595–1608.

    PubMed  CAS  Google Scholar 

  • Pasqualetti M, Ori M, Castagna M, et al (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92:601–611.

    PubMed  CAS  Google Scholar 

  • Pehek EA (1996) Local infusion of the serotonin antagonists ritanserin or ICS 205,930 increases in vivo dopamine release in the rat medial prefrontal cortex. Synapse 24:12–18.

    PubMed  CAS  Google Scholar 

  • Pehek EA, Bi Y (1997) Ritanserin administration potentiates amphetamine-stimulated dopamine release in the rat prefrontal cortex. Prog Neuropsychopharmacol & Biol Psychiatry 21:671–682.

    PubMed  CAS  Google Scholar 

  • Pierucci M, Di Matteo V, Esposito E (2004) Stimulation of serotonin2C receptors blocks the hyperactivation of midbrain dopamine neurons induced by nicotine administration. J Pharmacol Exp Ther 309:109–118.

    PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23:163–178.

    PubMed  CAS  Google Scholar 

  • Porras G, Di Matteo V, Fracasso C, et al (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324.

    PubMed  CAS  Google Scholar 

  • Pozzi L, Acconcia S, Ceglia I, et al (2002) Stimulation of 5-hydroxytryptamine (5-HT2C) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem 82:93–100.

    PubMed  CAS  Google Scholar 

  • Pranzatelli MR, Murthy JN, Tailor PT (1993) Novel regulation of 5-HT1C receptors: down-regulation induced both by 5-HT1C/2 receptor agonists and antagonists. Eur J Pharmacol 244:1–5.

    PubMed  CAS  Google Scholar 

  • Prinssen EPM, Koek W, Kleven MS (2000) The effects of antipsychotics with 5-HT2C receptor affinity in behavioral assays selective for 5-HT2C receptor antagonist properties of compounds. Eur J Pharmacol 388:57–67.

    PubMed  CAS  Google Scholar 

  • Prisco S, Esposito E (1995) Differential effects of acute and chronic fluoxetine administration on the spontaneous activity of dopaminergic neurones in the ventral tegmental area. Br J Pharmacol 116:1923–1931.

    PubMed  CAS  Google Scholar 

  • Prisco S, Pagannone S, Esposito E (1994) Serotonin–dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther 271:83–90.

    PubMed  CAS  Google Scholar 

  • Puglisi-Allegra S, Imperato A, Angelucci L, et al (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554:217–222.

    PubMed  CAS  Google Scholar 

  • Radja F, Descarrier L, Dewar KM, et al (1993) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res 606:273–285.

    PubMed  CAS  Google Scholar 

  • Rauser L, Savage JE, Meltzer HY, et al (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine2C receptor. J Pharmacol Exp Ther 299:83–89.

    PubMed  CAS  Google Scholar 

  • Reavill C, Kettle A, Holland V, et al (1999) Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist. Br J Pharmacol 126:572–574.

    PubMed  CAS  Google Scholar 

  • Rocha BA, Goulding EH, O’Dell LE, et al (2002) Enhanced locomotor, reinforcing, and neurochemical effects of cocaine in serotonin 5-hydroxytryptamine 2C receptor mutant mice. J Neurosci 22:10039–10045.

    PubMed  CAS  Google Scholar 

  • Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44(Suppl):S175–S188.

    PubMed  CAS  Google Scholar 

  • Roth RH, Elsworth JD (1995) Biochemical pharmacology of midbrain dopamine neurons. In: Bloom FE, Kupfer DJ Eds Psychopharmacology: the fourth generation of progress. New York, Raven Press. pp 227–243.

    Google Scholar 

  • Roth RH, Wolf ME, Deutch AY (1987) Neurochemistry of midbrain dopamine systems. In: Meltzer, HY Ed Psychopharmacology: the third generation of progress. New York, Raven Press. pp 81–94.

    Google Scholar 

  • Roth BL, Roland D, Ciaranello D, et al (1992) Binding of typical and atypical antipsychotic agents to transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260:1361–1365.

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar A, et al (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191:461–482.

    PubMed  CAS  Google Scholar 

  • Sampson D, Muscat R, Willner P (1991) Reversal of antidepressant action by dopamine antagonists in an animal model of depression. Psychopharmacology 104:491–495.

    PubMed  CAS  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1994) The role of D1 dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 71:515–528.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Fadayel GM, Sullivan CK, et al (1992) 5-HT2 receptors exert a state-dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223:65–74.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Sorensen SM, Kehne JH, et al (1995) The role of 5-HT2A receptors in antipsychotic activity. Life Sci 25:2209–2222.

    Google Scholar 

  • Schotte A, de Bruyckere K, Janssen PF, et al (1989) Receptor occupancy by ritanserin and risperidone measured using ex vivo autoradiography. Brain Res 500:295–301.

    PubMed  CAS  Google Scholar 

  • Schotte A, Janssen PFM, Gommeren W, et al (1996) Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology 124:57–73.

    PubMed  CAS  Google Scholar 

  • Serretti A, Artioli P, De Ronchi D (2004) The 5-HT2C receptor as a target for mood disorders. Expert Opin Ther Targets 8:1–9.

    Google Scholar 

  • Sharma A, Punhani T, Fone KCF (1997) Distribution of the 5-hydroxytryptamine2C receptor protein in adult rat brain and spinal cord determined using a receptor-directed antibody: effect of 5,7,-dihydroxytryptamine. Synapse 27:45–56.

    PubMed  CAS  Google Scholar 

  • Shi W-X, Nathaniel P, Bunney BS (1995) Ritanserin, a 5-HT2A/2C antagonist, reverses direct dopamine agonist-induced inhibition of midbrain dopamine neurons. J Pharmacol Exp Ther 274:735–740.

    PubMed  CAS  Google Scholar 

  • Shilliam CS, Dawson LA (2005) The effect of clozapine on extracellular dopamine levels in the shell subregion of the rat nucleus accumbens is reversed following chronic administration: comparison with a selective 5-HT2C receptor antagonist. Neuropsychopharmacology 30:372–380.

    PubMed  CAS  Google Scholar 

  • Sorensen SM, Kehne JH, Fayadel GM, et al (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioural, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266:684–691.

    PubMed  CAS  Google Scholar 

  • Spanagel R, Weiss F (1999) The dopamine hypothesis of reward: past and current status. Trends Neurosci 22:521–527.

    PubMed  CAS  Google Scholar 

  • Stanford IM, Kantaria MA, Chahal HS, et al (2005) 5 Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT2C, 5-HT4 and 5-HT1A receptors. Neuropharmacology 49:1228–1234.

    PubMed  CAS  Google Scholar 

  • Steffensen SC, Svingos AL, Pickel VM, et al (1998) Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. J Neurosci 18:8003–8015.

    PubMed  CAS  Google Scholar 

  • Steinbush HWM (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: Björklund A, Hökfelt T Kuhar MJ, eds. Handbook of chemical neuroanatomy: classical transmitter receptors in the CNS, Part II. Amsterdam, Elsevier. pp 68–125.

    Google Scholar 

  • Svensson TH, Nomikos GG, Andersson JL (1993) Modulation of dopaminergic neurotransmission by 5-HT2 antagonism. In: Vanhouette PM, Saxena PR, Paoletti R, Brunello N, Jackson AS Eds Serotonin: from cell biology to pharmacology and therapeutics. Dordrecht, Kluwer Academic Publishers. pp 263–270.

    Google Scholar 

  • Svensson TH, Mathe JM, Andersson JL, et al (1995) Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT2 receptor and alpha 1-adrenoceptor antagonism. J Clin Psychopharmacol 15:11S–18S.

    PubMed  CAS  Google Scholar 

  • Tanda G, Carboni E, Frau R, et al (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential? Psychopharmacology 155:285–288.

    Google Scholar 

  • Tanda G, Bassareo V, Di Chiara G (1996) Mianserin markedly and selectively increases extracellular dopamine in the prefrontal cortex as compared to the nucleus accumbens of the rat. Psychopharmacology 123:127–130.

    PubMed  CAS  Google Scholar 

  • Tomkins DM, Joharchi N, Tampakeras M, et al (2002) An investigation of the role of 5-HT2C receptors in modifying ethanol self-administration behaviour. Pharmacol Biochem Behav 71:735–744.

    PubMed  CAS  Google Scholar 

  • Trent F, Tepper JM (1991) Dorsal raphé stimulation modifies striata-evoked antidromic invasion of nigral dopaminergic neurons in vivo. Exp Brain Res 84:620–630.

    PubMed  CAS  Google Scholar 

  • Ugedo L, Grenhoff J, Svensson TH (1989) Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonin inhibition. Psychopharmacology 98:45–50.

    PubMed  CAS  Google Scholar 

  • Utter AA, Basso MA (2008) The basal ganglia: an overview of circuits and function. Neurosci Biobehav Rev 32:333–342.

    PubMed  Google Scholar 

  • Van Bockstaele EJ, Pickel VM (1995) GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain. Brain Res 682:215–221.

    PubMed  Google Scholar 

  • Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphé nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624:188–198.

    PubMed  Google Scholar 

  • Van Bockstaele EJ, Cestari DM, Pickel VM (1994) Synaptic structure and connectivity of serotonin terminals in the ventral tegmental area: potential sites for modulation of mesolimbic dopamine neurons. Brain Res 647:307–322.

    PubMed  Google Scholar 

  • Van der Kooy D, Attori T(1980) Dorsal raphé cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res 186:1–7.

    PubMed  Google Scholar 

  • Van Oekelen D, Luyten WH, Leysen J E (2003) 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 72:2429–49.

    PubMed  Google Scholar 

  • Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370:405–414.

    PubMed  CAS  Google Scholar 

  • White FJ (1996) Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 19:405–436.

    PubMed  CAS  Google Scholar 

  • Willins DL, Meltzer HY (1998) Serotonin 5-HT2C agonists selectively inhibit morphine-induced dopamine efflux in the nucleus accumbens. Brain Res 781:291–299.

    PubMed  CAS  Google Scholar 

  • Willner P (1995) Animal models of depression: validity and applications. In: Gessa G, Fratta W, Pani L, Serra G, eds. Depression and mania: from neurobiology to treatment. New York, Raven Press. pp 19–41.

    Google Scholar 

  • Wood MD, Reavill C, Trail B, et al (2001) SB-243213; a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety. Neuropharmacology 41:186–199.

    PubMed  CAS  Google Scholar 

  • Wright DE, Seroogy KB, Lundgren KH, et al (1995) Comparative localization of serotonin1A,1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351:357–373.

    PubMed  CAS  Google Scholar 

  • Xiang Z, Wang L, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93:1145–1157.

    PubMed  CAS  Google Scholar 

  • Zhang QJ, Liu X, Liu J, et al (2009) Subthalamic neurons show increased firing to 5-HT2C receptor activation in 6-hydroxydopamine-lesioned rats. Brain Res 1256:180–189.

    PubMed  CAS  Google Scholar 

  • Zupancic M, Guilleminault C (2006) Agomelatine: a preliminary review of a new antidepressant. CNS Drugs 20:981–992.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Clare Austen for the English revision and Ms Barbara Mariani for her help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Di Giovanni or Vincenzo Di Matteo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Di Giovanni, G., Esposito, E., Di Matteo, V. (2011). The 5-HT2C Receptor Subtype Controls Central Dopaminergic Systems: Evidence from Electrophysiological and Neurochemical Studies. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_11

Download citation

Publish with us

Policies and ethics