Skip to main content

The Making of the 5-HT2C Receptor

  • Chapter
  • First Online:
5-HT2C Receptors in the Pathophysiology of CNS Disease

Part of the book series: The Receptors ((REC,volume 22))

Abstract

This chapter is a personal account of how the 5-HT2C receptor was discovered and characterized more than 25 years ago. 5-HT2C receptors, initially called 5-HT1C, were found while studying the distribution in the brain of binding sites for the compound mesulergine, a ligand with serotonergic and dopaminergic properties. The strong labeling to choroid plexus revealed a site with pharmacological properties different from the known 5-HT receptors at that time. In the following 10 years, 5-HT1C (later 5-HT2C) was extensively characterized pharmacologically, anatomically, and functionally, leading finally to the cloning of its gene. Since then, intense research has been dedicated to the search a therapeutic use for modulators of these receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett MR (2000) The concept of transmitter receptors: 100 years on. Neuropharmacology 39:523–546.

    Article  PubMed  CAS  Google Scholar 

  • Berg KA, Cropper JD, King BD, et al (2003) Effector pathway-dependence of ligand-independent 5-HT2C receptor activity. FASEB J 17:A1021.

    Google Scholar 

  • Bonhaus DW, Weinhardt KK, Taylor M, et al (1997) RS-102221: a novel high affinity and selective, 5-HT2C receptor antagonist. Neuropharmacology 36:621–629.

    Article  PubMed  CAS  Google Scholar 

  • Bradley PB, Engel G, Feniuk W, et al (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25:563–576.

    Article  PubMed  CAS  Google Scholar 

  • Bubar MJ, Cunningham KA (2006) Serotonin 5-HT2A and 5-HT2C receptors as potential targets for modulation of psychostimulant use and dependence. Curr Top Med Chem 6:1971–1985.

    Article  PubMed  CAS  Google Scholar 

  • Bubar MJ, Cunningham KA (2007) Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146:286–297.

    Article  PubMed  CAS  Google Scholar 

  • Burns CM, Chu H, Rueter SM, et al (1997) Regulation of 5-HT2C receptor G-protein coupling by RNA editing [see comments]. Nature 387:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Canton H, Emeson RB, Barker EL, et al (1996) Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine2C receptor produced by alternative splicing. Mol Pharmacol 50:799–807.

    PubMed  CAS  Google Scholar 

  • Closse A (1983) [3H]Mesulergine, a selective ligand for serotonin-2 receptors. Life Sci 32:2485–2495.

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Sanders-Bush E, Hoffman BJ, et al (1986) A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci USA 83:4086–4088.

    Article  PubMed  CAS  Google Scholar 

  • Cremers TI, Rea K, Bosker FJ, et al (2007) Augmentation of SSRI effects on serotonin by 5-HT2C antagonists: mechanistic studies. Neuropsychopharmacology 32:1550–1557.

    Article  PubMed  CAS  Google Scholar 

  • Di Giovanni G, De Deurwaerdère P, Di Mascio M, et al (1999) Selective blockade of serotonin2C/2B receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597.

    Article  PubMed  Google Scholar 

  • Du Y, Stasko M, Costa AC, et al (2007) Editing of the serotonin 2C receptor pre-mRNA: effects of the Morris Water Maze. Gene 391:186–197.

    Article  PubMed  CAS  Google Scholar 

  • Engel G, Hoyer D, Berthold R, et al (1981) (+/−)[125Iodo] cyanopindolol, a new ligand for beta-adrenoceptors: identification and quantitation of subclasses of beta-adrenoceptors in guinea pig. Naunyn Schmiedebergs Arch Pharmacol 317:277–285.

    Article  PubMed  CAS  Google Scholar 

  • Engel G, Hoyer D, Kalkman HO, et al (1984) Identification of 5HT2-receptors on longitudinal muscle of the guinea pig ileum. J Recept Res 4:113–126.

    PubMed  CAS  Google Scholar 

  • Engel G, Göthert M, Hoyer D, et al (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol 332:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Enz A, Donatsch P, Nordmann R (1984) Dopaminergic properties of mesulergine (CU 32-085) and its metabolites. J Neural Transm 60:225–238.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Burn TC, Brown BS, et al (2000) Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57:75–81.

    PubMed  CAS  Google Scholar 

  • Foguet M, Hoyer D, Pardo LA, et al (1992) Cloning and functional characterization of the rat stomach fundus serotonin receptor. EMBO J 11:3481–3487.

    PubMed  CAS  Google Scholar 

  • Foguet M, Nguyen H, Le H, Lubbert H (1992) Structure of the mouse 5-HT1C, 5-HT2 and stomach fundus serotonin receptor genes. NeuroReport 3:345–348.

    Article  PubMed  CAS  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol 12:323–328.

    CAS  Google Scholar 

  • Gozlan H, el Mestikawy S, Pichat L, et al (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature 305:140–142

    Article  PubMed  CAS  Google Scholar 

  • Guth PS (1982) The structurally specific, stereospecific, saturable binding of pepperoni to pizza. Trends Pharmacol Sci 3:467.

    Article  Google Scholar 

  • Hackler EA, Airey DC, Shannon CC, et al (2006) 5-HT(2C) receptor RNA editing in the amygdala of C57BL/6 J, DBA/2 J, and BALB/cJ mice. Neurosci Res 55:96–104.

    Article  PubMed  CAS  Google Scholar 

  • Hackler EA, Turner GH, Gresch PJ, et al (2007) 5-Hydroxytryptamine2C receptor contribution to m-chlorophenylpiperazine and N-methyl-beta-carboline-3-carboxamide-induced anxiety-like behavior and limbic brain activation. J Pharmacol Exp Ther 320:1023–1029.

    Article  PubMed  CAS  Google Scholar 

  • Hartig PR, Hoyer D, Humphrey PP, et al (1996) Alignement of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17:103–105.

    Article  PubMed  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Niswender CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: implications for serotonergic signal transduction. J Neurochem 73:1711–1717.

    Article  PubMed  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295:226–232.

    PubMed  CAS  Google Scholar 

  • Hjorth S, Carlsson A, Lindberg P, et al (1982) 8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT, a potent and selective simplified ergot congener with central 5-HT-receptor stimulating activity. J Neural Transm 55:169–188.

    Article  CAS  Google Scholar 

  • Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol Sci 9:89–94.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol Sci 9:89–94.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Middlemiss DN (1989) Species differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10:130–132.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Engel G, Berthold R (1982) Binding characteristics of (+)-, (+/−)- and (−)-[125iodo] cyanopindolol to guinea-pig left ventricle membranes. Naunyn Schmiedebergs Arch Pharmacol 318:319–329.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (−)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur J Pharmacol 118:13–23.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Characterization of the 5-HT1B recognition site in rat brain: binding studies with 125I-iodocyanopindolol. Eur J Pharmacol 118:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, et al (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376:97–107.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Srivatsa S, Pazos A, et al (1986) [125I]LSD labels 5-HT1C recognition sites in pig choroid plexus membranes. Comparison with [3H]mesulergine and [3H]5-HT binding. Neurosci Lett 69:269–274.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, et al (1986) Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376:85–96.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Pazos A, Probst A, et al (1986) Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites. Brain Res 376:97–107.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Waeber C, Schoeffter P, et al (1989) 5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid plexus. A pharmacological characterization. Naunyn Schmiedebergs Arch Pharmacol 339:252–258.

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, et al (1994) International Union of Pharmacology classification of receptors for 5- hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203.

    PubMed  CAS  Google Scholar 

  • Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14:233–236.

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Nakatani N, Bundo M, et al (2005) Altered RNA editing of serotonin 2C receptor in a rat model of depression. Neurosci Res 53:69–76.

    Article  PubMed  CAS  Google Scholar 

  • Julius D, MacDermott AB, Axel R, et al (1988) Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241:558–564.

    Article  PubMed  CAS  Google Scholar 

  • Kalkman HO, Engel G, Hoyer D (1986) Inhibition of 5-carboxamidotryptamine-induced relaxation of guinea-pig ileum correlates with [125I]LSD binding. Eur J Pharmacol 129:139–145.

    Article  PubMed  CAS  Google Scholar 

  • Laduron PM (1984) Criteria for receptor sites in binding studies. Biochem Pharmacol 33:833–839.

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven- transmembrane receptors. Trends Pharmacol Sci 25:413–422.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall-Axelsson M, Mathew C, Nilsson C, et al (1988) Effect of 5-hydroxytryptamine on the rate of cerebrospinal fluid production in rabbit. Exp Neurol 99:362–368.

    Article  PubMed  CAS  Google Scholar 

  • Lubbert H, Hoffman BJ, Snutch TP, et al (1987) cDNA cloning of a serotonin 5-HT1C receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc Natl Acad Sci USA 84:4332–4336.

    Article  PubMed  CAS  Google Scholar 

  • Markstein R (1983) Mesulergine and its 1,20-N,N-bidemethylated metabolite interact directly with D1- and D2-receptors. Eur J Pharmacol 95:101–107.

    Article  PubMed  CAS  Google Scholar 

  • Markstein R, Hoyer D, Engel G (1986) 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 333:335–341.

    Article  PubMed  CAS  Google Scholar 

  • Mengod G, Nguyen H, Le H, et al (1990) The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience 35:577–591.

    Article  PubMed  CAS  Google Scholar 

  • Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90:151–153.

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ, Gobert A, Lejeune F, et al (2003) The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 306:954–964.

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Copeland SC, Herrick-Davis K, et al (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274:9472–9478.

    Article  PubMed  CAS  Google Scholar 

  • Niswender CM, Herrick-Davis K, Dilley GE, et al (2001) RNA editing of the human serotonin 5-HT2C receptor. Alterations in suicide and implications for serotonergic pharmacotherapy. Neuropsychopharmacology 24:478–491.

    Article  PubMed  CAS  Google Scholar 

  • Palacios JM, Markstein R, Pazos A (1986) Serotonin-1C sites in the choroid plexus are not linked in a stimulatory or inhibitory way to adenylate cyclase. Brain Res 380:151–154.

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230.

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharmacol 106:539–546.

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Hoyer D, Palacios JM (1984a) Mesulergine, a selective serotonin-2 ligand in the rat cortex, does not label these receptors in porcine and human cortex: evidence for species differences in brain serotonin-2 receptors. Eur J Pharmacol 106:531–538.

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249.

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21:97–122.

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21:123–139.

    Article  PubMed  CAS  Google Scholar 

  • Pedigo NW, Yamamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytriptamine-binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36:220–226.

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid die ethylamide and [3H]spiroperidol. Mol Pharmacol 16:687–699.

    PubMed  CAS  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23:163–178.

    Article  PubMed  CAS  Google Scholar 

  • Price RD, Sanders-Bush E (2000) RNA editing of the human serotonin 5-HT(2C) receptor delays agonist-stimulated calcium release. Mol Pharmacol 58:859–862.

    PubMed  CAS  Google Scholar 

  • Price RD, Weiner DM, Chang MS, et al (2001) RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G13 protein. J Biol Chem 276:44663–44668.

    Article  PubMed  CAS  Google Scholar 

  • Pritchett DB, Bach AW, Wozny M, et al (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 7:4135–4140.

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1989) 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 340:285–292.

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1989) 5-Hydroxytryptamine 5-HT1B and 5-HT1D receptors mediating inhibition of adenylate cyclase activity. Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn Schmiedebergs Arch Pharmacol 340:285–292.

    PubMed  CAS  Google Scholar 

  • Sodhi MS, Burnet PW, Makoff AJ, et al (2001) RNA editing of the 5-HT(2C) receptor is reduced in schizophrenia. Mol Psychiatry 6:373–379.

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Abdallah L (2003) Mouse genetic approaches to feeding regulation: serotonin 5-HT2C receptor mutant mice. CNS Spectr 8:584–588.

    PubMed  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, et al (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors [see comments]. Nature 374:542–546.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Palacios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Palacios, J.M., Pazos, A., Hoyer, D. (2011). The Making of the 5-HT2C Receptor. In: Di Giovanni, G., Esposito, E., Di Matteo, V. (eds) 5-HT2C Receptors in the Pathophysiology of CNS Disease. The Receptors, vol 22. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-941-3_1

Download citation

Publish with us

Policies and ethics