Skip to main content

Physiology of the Splanchnic and Hepatic Circulations

  • Chapter
  • First Online:
Chronic Liver Failure

Part of the book series: Clinical Gastroenterology ((CG))

  • 1458 Accesses

Abstract

The splanchnic and hepatic circulations account for over a quarter of cardiac output and are highly specialized to meet the demands of these complex and complementary organs. The hepatic circulation is fundamental to liver function, and the splanchnic circulation participates in the control of systemic hemodynamics as well as perfusion of the intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohlen HG, Gore RW. Preparation of rat intestinal muscle and mucosa for quantitative microcirculatory studies. Microvasc Res Jan 1976;11(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  2. Chou CC, Alemayehu A. Peptidergic regulation of gastrointestinal blood flow. In: Brown DR, ed. Handbook of Experimental Pharmacology. Vol 106; Gastrointestinal Regulatory Peptides. Berlin: Springer, 1993:325–42.

    Google Scholar 

  3. Chou CC. Intstinal blood flow regulation. In: Dulbecco R, ed. Encyclopedia of Human Biology. San Diego, CA: Academic Press; 1992:547–56.

    Google Scholar 

  4. Deitch EA. Bacterial translocation or lymphatic drainage of toxic products from the gut: what is important in human beings? Surgery. Mar 2002;131(3):241–44.

    Article  PubMed  Google Scholar 

  5. Cooke AR, Harrison DD, Skyring AP. Use of indocyanine green as a test of liver function. Am J Dig Dis Mar 1963;8:244–50.

    Article  CAS  PubMed  Google Scholar 

  6. Jensen MD, Johnson CM, Cryer PE, Murray MJ. Thermogenesis after a mixed meal: role of leg and splanchnic tissues in men and women. Am J Physiol. Mar 1995;268(3 Pt 1):E433–38.

    CAS  PubMed  Google Scholar 

  7. Granger DN, Kvietys PR, Korthuis RJ, Premen AJ. Microcirculation of the intestinal mucosa. In: Schultz SG, ed. Handbook of Physiology. Section 6: The Gastrointestinal System. Bethesda, Am Physiol Soc 1989:1405–74.

    Google Scholar 

  8. Vatner SF, Franklin D, Van Citters RL. Coronary and visceral vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol Nov 1970;219(5):1380–85.

    CAS  PubMed  Google Scholar 

  9. Vatner SF, Franklin D, Van Citters RL. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol Jul 1970;219(1):170–74.

    CAS  PubMed  Google Scholar 

  10. Chou CC, Kvietys PR. Physiological and pharmacological alterations in gastrointestinal blood flow. In: Granger DN, Bulkey G, eds. Measurement of Splanchnic Blood Flow. Baltimore, MD: Williams Wilkins; 1981:475–509.

    Google Scholar 

  11. Chou CC, Coatney RW. Nutrient-induced changes in intestinal blood flow in the dog. Br Vet J Sep-Oct 1994;150(5):423–37.

    CAS  PubMed  Google Scholar 

  12. Chou CC, Kvietys P, Post J, Sit SP. Constituents of chyme responsible for postprandial intestinal hyperemia. Am J Physiol Dec 1978;235(6):H677–82.

    CAS  PubMed  Google Scholar 

  13. Chou CC, Nyhof RA, Kvietys PR, Sit SP, Gallavan RH, Jr. Regulation of jejunal blood flow and oxygenation during glucose and oleic acid absorption. Am J Physiol Dec 1985;249(6 Pt 1):G691–701.

    CAS  PubMed  Google Scholar 

  14. Kvietys PR, Gallavan RH, Chou CC. Contribution of bile to postprandial intestinal hyperemia. Am J Physiol Apr 1980;238(4):G284–88.

    CAS  PubMed  Google Scholar 

  15. Kvietys PR, McLendon JM, Granger DN. Postprandial intestinal hyperemia: role of bile salts in the ileum. Am J Physiol Dec 1981;241(6):G469–77.

    CAS  PubMed  Google Scholar 

  16. Gallavan RH, Jr., Chen MH, Joffe SN, Jacobson ED. Vasoactive intestinal polypeptide, cholecystokinin, glucagon, and bile-oleate-induced jejunal hyperemia. Am J Physiol Feb 1985;248(2 Pt 1):G208–15.

    CAS  PubMed  Google Scholar 

  17. Premen AJ, Kvietys PR, Granger DN. Postprandial regulation of intestinal blood flow: role of gastrointestinal hormones. Am J Physiol Aug 1985;249(2 Pt 1):G250–55.

    CAS  PubMed  Google Scholar 

  18. Meyer T, Brinck U. Differential distribution of serotonin and tryptophan hydroxylase in the human gastrointestinal tract. Digestion Jan–Feb 1999;60(1):63–68.

    Article  CAS  PubMed  Google Scholar 

  19. Fan L, Iseki S. Immunohistochemical localization of vascular endothelial growth factor in the globule leukocyte/mucosal mast cell of the rat respiratory and digestive tracts. Histochem Cell Biol Jan 1999;111(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  20. Rothschild AM, Gomes EL, Fortunato IC. Bradykinin release from high molecular weight kininogen and increase in plasma kallikrein-like activity following sensory stimulation by food in the rat. Naunyn Schmiedebergs Arch Pharmacol Oct 1998;358(4):483–88.

    Article  CAS  PubMed  Google Scholar 

  21. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res Dec 1980;47(6):807–13.

    CAS  PubMed  Google Scholar 

  22. Lundgren O, Svanvik J. Mucosal hemodynamics in the small intestine of the cat during reduced perfusion pressure. Acta Physiol Scand Aug 1973;88(4):551–63.

    Article  CAS  PubMed  Google Scholar 

  23. Granger DN, Richardson PD, Kvietys PR, Mortillaro NA. Intestinal blood flow. Gastroenterology Apr 1980;78(4):837–63.

    CAS  PubMed  Google Scholar 

  24. Kotecha N. Neural control of intestinal vessels. In: Brooke S, Costa M, eds. Innervation of the Gastrointestinal Tract. London: Taylor and Francis; 2002:341–62.

    Google Scholar 

  25. Nyhof RA, Chou CC. Evidence against local neural mechanism for intestinal postprandial hyperemia. Am J Physiol Sep 1983;245(3):H437–46.

    CAS  PubMed  Google Scholar 

  26. Burton-Opitz R. The vascularity of the liver: the influence of the portal blood flow upon the flow in the hepatic artery. Q J Exp Physiol 1911;4:93–102.

    Google Scholar 

  27. Lautt WW. Role and control of the hepatic artery. In: Lautt WW, ed. Hepatic Circulation in Health and Disease. New York: Raven, 1981:203–20.

    Google Scholar 

  28. Lautt WW. Control of hepatic and intestinal blood flow: effect of isovolaemic haemodilution on blood flow and oxygen uptake in the intact liver and intestines. J Physiol Feb 1977;265(2):313–26.

    CAS  PubMed  Google Scholar 

  29. Lautt WW, Legare DJ, d’Almeida MS. Adenosine as putative regulator of hepatic arterial flow (the buffer response). Am J Physiol Mar 1985;248(3 Pt 2):H331–38.

    CAS  PubMed  Google Scholar 

  30. Lautt WW, Legare DJ. The use of 8-phenyltheophylline as a competitive antagonist of adenosine and an inhibitor of the intrinsic regulatory mechanism of the hepatic artery. Can J Physiol Pharmacol Jun 1985;63(6):717–22.

    CAS  PubMed  Google Scholar 

  31. Lautt WW. Regulatory processes interacting to maintain hepatic blood flow constancy: Vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res Nov 2007;37(11):891–903.

    Article  PubMed  Google Scholar 

  32. Richter S, Vollmar B, Mucke I, Post S, Menger MD. Hepatic arteriolo-portal venular shunting guarantees maintenance of nutritional microvascular supply in hepatic arterial buffer response of rat livers. J Physiol Feb 15 2001;531(Pt 1): 193–201.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology Oct 1998;28(4):926–31.

    Article  CAS  PubMed  Google Scholar 

  34. Suematsu M, Goda N, Sano T, et al. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest Nov 1995;96(5):2431–37.

    Article  CAS  PubMed  Google Scholar 

  35. Fiorucci S, Antonelli E, Mencarelli A, et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology Sep 2005;42(3):539–48.

    Article  CAS  PubMed  Google Scholar 

  36. Rockey DC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin Liver Dis Aug 2001;21(3):337–49.

    Article  CAS  PubMed  Google Scholar 

  37. Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol Aug 23 2002;1(1):1.

    Article  PubMed  Google Scholar 

  38. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis Aug 2001;21(3):311–35.

    Article  CAS  PubMed  Google Scholar 

  39. Iwakiri Y, Grisham M, Shah V. Vascular biology and pathobiology of the liver: Report of a single-topic symposium. Hepatology May 2008;47(5):1754–63.

    Article  CAS  PubMed  Google Scholar 

  40. Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology Jul 1996;24(1):233–40.

    Article  CAS  PubMed  Google Scholar 

  41. Graupera M, Garcia-Pagan JC, Abraldes JG, et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology Jan 2003;37(1):172–81.

    Article  CAS  PubMed  Google Scholar 

  42. Pinzani M, Gentilini P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis 1999;19(4):397–410.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang JX, Pegoli W, Jr., Clemens MG. Endothelin-1 induces direct constriction of hepatic sinusoids. Am J Physiol Apr 1994;266(4 Pt 1):G624–32.

    CAS  PubMed  Google Scholar 

  44. Kaneda K, Ekataksin W, Sogawa M, Matsumura A, Cho A, Kawada N. Endothelin-1-induced vasoconstriction causes a significant increase in portal pressure of rat liver: localized constrictive effect on the distal segment of preterminal portal venules as revealed by light and electron microscopy and serial reconstruction. Hepatology Mar 1998;27(3):735–47.

    Article  CAS  PubMed  Google Scholar 

  45. Okumura S, Takei Y, Kawano S, et al. Vasoactive effect of endothelin-1 on rat liver in vivo. Hepatology Jan 1994;19(1):155–61.

    CAS  PubMed  Google Scholar 

  46. Mittal MK, Gupta TK, Lee FY, Sieber CC, Groszmann RJ. Nitric oxide modulates hepatic vascular tone in normal rat liver. Am J Physiol Sep 1994;267(3 Pt 1):G416–22.

    CAS  PubMed  Google Scholar 

  47. Shah V, Haddad FG, Garcia-Cardena G, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids J Clin Invest. Dec 1 1997;100(11):2923–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mehta, G., García-Pagán, JC., Bosch, J. (2011). Physiology of the Splanchnic and Hepatic Circulations. In: Ginès, P., Kamath, P., Arroyo, V. (eds) Chronic Liver Failure. Clinical Gastroenterology. Humana Press. https://doi.org/10.1007/978-1-60761-866-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-866-9_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-865-2

  • Online ISBN: 978-1-60761-866-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics