Skip to main content

Function of MicroRNA-145 in Human Embryonic Stem Cell Pluripotency

  • Chapter
  • First Online:
  • 1984 Accesses

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

MicroRNAs are posttranscriptional regulators of gene expression, but their roles in controlling self-renewal and pluripotency of human embryonic stem cells (hESCs) remain unclear. Our recent study indicates that the level of microRNA-145 (miR-145) is low in hESCs but highly upregulated during differentiation. Endogenous miR-145 is sufficient to repress the 3′ untranslated regions of OCT4, SOX2, and KLF4. By downregulating OCT4 and SOX2, increased miR-145 inhibits hESC self-renewal, represses pluripotency, and induces lineage-restricted differentiation. Furthermore, the miR-145 promoter is bound and repressed by OCT4 in hESCs. Thus, miR-145 plays key roles in repressing hESC pluripotency and promoting differentiation. This work reveals a direct link between the core reprogramming factors and miR-145 and uncovers a double-negative feedback loop involving OCT4, SOX2, KLF4, and miR-145.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jaenisch, R. and Young, R. (2008). Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567–582.

    Article  PubMed  CAS  Google Scholar 

  2. Pei, D. (2009). Regulation of pluripotency and reprogramming by transcription factors. J. Biol. Chem. 284, 3365–3369.

    Article  PubMed  CAS  Google Scholar 

  3. Scholer, H.R., Ruppert, S., Suzuki, N., et al., (1990). New type of POU domain in germ line-specific protein Oct-4. Nature 344, 435–439.

    Article  PubMed  CAS  Google Scholar 

  4. Scholer, H.R., Dressler, G.R., Balling, R., et al., (1990). Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J. 9, 2185–2195.

    PubMed  CAS  Google Scholar 

  5. Nichols, J., Zevnik, B., Anastassiadis, K., et al., (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, 379–391.

    Article  PubMed  CAS  Google Scholar 

  6. Hay, D.C., Sutherland, L., Clark, J., et al., (2004). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells 22, 225–235.

    Article  PubMed  CAS  Google Scholar 

  7. Zaehres, H., Lensch, M.W., Daheron, L., et al., (2005). High-efficiency RNA interference in human embryonic stem cells. Stem Cells 23, 299–305.

    Article  PubMed  CAS  Google Scholar 

  8. Avilion, A.A., Nicolis, S.K., Pevny, L.H., et al., (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 17, 126–140.

    Article  PubMed  CAS  Google Scholar 

  9. Fong, H., Hohenstein, K.A. and Donovan, P.J. (2008). Regulation of Self-renewal and Pluripotency by Sox2 in Human Embryonic Stem Cells. Stem Cells. 26,1931–1938.

    Article  PubMed  CAS  Google Scholar 

  10. Nakatake, Y., Fukui, N., Iwamatsu, Y., et al., (2006). Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol. Cell. Biol. 26, 7772–7782.

    Article  PubMed  CAS  Google Scholar 

  11. Ivey, K.N., Muth, A., Arnold, J., et al., (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219–229.

    Article  PubMed  CAS  Google Scholar 

  12. Boyer, L.A., Lee, T.I., Cole, M.F., et al., (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, J., Chu, J., Shen, X., et al., (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061.

    Article  PubMed  CAS  Google Scholar 

  14. Loh, Y.H., Wu, Q., Chew, J.L., et al., (2006). The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.

    Article  PubMed  CAS  Google Scholar 

  15. Nakagawa, M., Koyanagi, M., Tanabe, K., et al., (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106.

    Article  PubMed  CAS  Google Scholar 

  16. Wernig, M., Meissner, A., Foreman, R., et al., (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  18. Takahashi, K., Tanabe, K., Ohnuki, M., et al., (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.

    Article  PubMed  CAS  Google Scholar 

  19. Park, I.H., Zhao, R., West, J.A., et al., (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146.

    Article  PubMed  CAS  Google Scholar 

  20. Yu, J., Vodyanik, M.A., Smuga-Otto, K., et al., (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.

    Article  PubMed  CAS  Google Scholar 

  21. Marson, A., Levine, S.S., Cole, M.F., et al., (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533.

    Article  PubMed  CAS  Google Scholar 

  22. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  23. Stefani, G. and Slack, F.J. (2008). Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell. Biol. 9, 219–230.

    Article  PubMed  CAS  Google Scholar 

  24. Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, Y., Keys, D.N., Au-Young, J.K., et al., (2008). MicroRNAs in embryonic stem cells. J. Cell. Physiol. 218, 251–255.

    Article  Google Scholar 

  26. Houbaviy, H.B., Murray, M.F. and Sharp, P.A. (2003). Embryonic stem cell-specific MicroRNAs. Dev. Cell 5, 351–358.

    Article  PubMed  CAS  Google Scholar 

  27. Suh, M.R., Lee, Y., Kim, J.Y., et al., (2004). Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 270, 488–498.

    Article  PubMed  CAS  Google Scholar 

  28. Laurent, L.C., Chen, J., Ulitsky, I., et al., (2008). Comprehensive MicroRNA Profiling Reveals a Unique Human Embryonic Stem Cell Signature Dominated by a Single Seed Sequence. Stem Cells. 26, 1506–1516.

    Article  PubMed  CAS  Google Scholar 

  29. Mineno, J., Okamoto, S., Ando, T., et al., (2006). The expression profile of microRNAs in mouse embryos. Nucleic Acids Res. 34, 1765–1771.

    Article  PubMed  CAS  Google Scholar 

  30. Morin, R.D., O’Connor, M.D., Griffith, M., et al., (2008). Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18, 610–621.

    Article  PubMed  CAS  Google Scholar 

  31. Murchison, E.P., Partridge, J.F., Tam, O.H., et al., (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc. Natl. Acad. Sci. USA. 102, 12135–12140.

    Article  PubMed  CAS  Google Scholar 

  32. Kanellopoulou, C., Muljo, S.A., Kung, A.L., et al., (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, Y., Medvid, R., Melton C., et al., (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380–385.

    Article  PubMed  CAS  Google Scholar 

  34. Benetti, R., Gonzalo, S., Jaco, I., et al., (2008). A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat. Struct. Mol. Biol. 15, 998.

    Article  PubMed  CAS  Google Scholar 

  35. Sinkkonen, L., Hugenschmidt, T., Berninger, P., et al., (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15, 259–267.

    Article  PubMed  CAS  Google Scholar 

  36. Xu, N., Papagiannakopoulos, T., Pan, G., et al., (2009). MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658.

    Article  PubMed  CAS  Google Scholar 

  37. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., et al., (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  38. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., et al., (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–144.

    Article  PubMed  CAS  Google Scholar 

  39. Yi, R., Poy, M.N., Stoffel, M., et al., (2008). A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452, 225–229.

    Article  PubMed  CAS  Google Scholar 

  40. Tay, Y., Zhang J., Thomson, A.M., et al., (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 455, 1124–1128

    Article  PubMed  CAS  Google Scholar 

  41. Tay, Y.M., Tam, W.L., Ang, Y.S., et al., (2008). MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells 26, 17–29.

    Article  PubMed  CAS  Google Scholar 

  42. Niwa, H., Miyazaki, J. and Smith, A.G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    Article  PubMed  CAS  Google Scholar 

  43. Kopp, J.L., Ormsbee, B.D., Desler, M., et al., (2008). Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26, 903–911.

    Article  PubMed  CAS  Google Scholar 

  44. Pei, D. (2008). Regulation of pluripotency and reprogramming by transcription factors. J. Biol. Chem. 284, 3365–3369.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, N., Kosik, K.S. (2011). Function of MicroRNA-145 in Human Embryonic Stem Cell Pluripotency. In: Appasani, K., Appasani, R. (eds) Stem Cells & Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-860-7_9

Download citation

Publish with us

Policies and ethics