Anti-NMDA Receptor Encephalitis and Other Autoimmune and Paraneoplastic Movement Disorders

  • Jessica Panzer
  • Josep DalmauEmail author
Part of the Current Clinical Neurology book series (CCNEU)


A substantial number of movement disorders are mediated by immunological mechanisms. In some instances the immune response is triggered by the presence of a tumor that ectopically expresses a neuronal protein, leading to a brain autoimmune response or paraneoplastic syndrome. Other immune-mediated movement disorders may be post-infectious, likely triggered by molecular mimicry or other, as yet unknown, mechanisms. There is a new and expanding group of syndromes that are associated with antibodies against cell surface or synaptic proteins and may cause early and prominent movement disorders. Anti-NMDA receptor encephalitis is the most frequent of these disorders that may occur with or without tumor association, affect children and adults, and can be severe but responsive to treatment. Recognition of this and other immune responses to synaptic proteins is important because, different from classical paraneoplastic syndromes, they often respond to immunotherapy. Because the presentation and clinical course of immune-mediated syndromes often develop very quickly, and because failure to recognize and treat these disorders may lead to morbidity or even mortality, we believe that this qualifies these syndromes as movement disorder emergencies. This chapter focuses on anti-NMDAR encephalitis and other autoimmune or paraneoplastic movement disorders, with emphasis on their clinical presentations, differential diagnoses, immunological associations and antigens, and treatment strategies.


Cerebellar Ataxia Limbic Encephalitis Collapsin Response Mediator Protein5 Intracellular Antigen Paraneoplastic Cerebellar Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material (27,801 KB)


  1. 1.
    Grant R, Graus F. Paraneoplastic movement disorders. Mov Disord. 2009;24:1715–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Panzer J, Dalmau J. Movement disorders in paraneoplastic and autoimmune disease. Curr Opin Neurol. 2011;24(4):346–53. doi: 10.1097/WCO.0b013e328347b307.PubMedCrossRefGoogle Scholar
  3. 3.
    Lancaster E, Martinez-Hernandez E, Dalmau J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology. 2011;77:179–89.PubMedCrossRefGoogle Scholar
  4. 4.
    Psimaras D, Carpentier AF, Rossi C. Cerebrospinal fluid study in paraneoplastic syndromes. J Neurol Neurosurg Psychiatry. 2010;81:42–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Tuzun E, Dalmau J. Limbic encephalitis and variants: classification, diagnosis and treatment. Neurologist. 2007;13:261–71.PubMedCrossRefGoogle Scholar
  6. 6.
    Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74.PubMedCrossRefGoogle Scholar
  7. 7.
    Florance-Ryan N, Dalmau J. Update on anti-N-methyl-d-aspartate receptor encephalitis in children and adolescents. Curr Opin Pediatr. 2010;22:739–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Dalmau J, Gleichman AJ, Hughes EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7:1091–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Kleinig TJ, Thompson PD, Matar W, et al. The distinctive movement disorder of ovarian teratoma-associated encephalitis. Mov Disord. 2008;23:1256–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Irani SR, Bera K, Waters P, et al. N-methyl-d-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain. 2010;133:1655–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Iizuka T, Sakai F, Ide T, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70:504–11.PubMedCrossRefGoogle Scholar
  12. 12.
    Tonomura Y, Kataoka H, Hara Y, et al. Clinical analysis of paraneoplastic encephalitis associated with ovarian teratoma. J Neurooncol. 2007;84:287–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Koide R, Shimizu T, Koike K, Dalmau J. EFA6A-like antibodies in paraneoplastic encephalitis associated with immature ovarian teratoma: a case report. J Neurooncol. 2007;81:71–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Rubio-Agusti I, Dalmau J, Sevilla T, Burgal M, Beltran E, Bataller L. Isolated hemidystonia associated with NMDA receptor antibodies. Mov Disord. 2011;26:351–2.PubMedCrossRefGoogle Scholar
  15. 15.
    Sansing LH, Tuzun E, Ko MW, Baccon J, Lynch DR, Dalmau J. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol. 2007;3:291–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Bayreuther C, Bourg V, Dellamonica J, Borg M, Bernardin G, Thomas P. Complex partial status epilepticus revealing anti-NMDA receptor encephalitis. Epileptic Disord. 2009;11:261–5.PubMedGoogle Scholar
  17. 17.
    Florance NR, Davis RL, Lam C, et al. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol. 2009;66:11–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Gable MS, Gavali S, Radner A, et al. Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis. 2009;28:1421–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Dale RC, Irani SR, Brilot F, et al. N-methyl-d-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann Neurol. 2009;66:704–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Ozelius LJ, Lubarr N, Bressman SB. Milestones in dystonia. Mov Disord. 2011;26:1106–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Ridel KR, Lipps TD, Gilbert DL. The prevalence of neuropsychiatric disorders in Sydenham’s chorea. Pediatr Neurol. 2010;42:243–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Cardoso F, Eduardo C, Silva AP, Mota CC. Chorea in fifty consecutive patients with rheumatic fever. Mov Disord. 1997;12:701–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Ishiura H, Matsuda S, Higashihara M, et al. Response of anti-NMDA receptor encephalitis without tumor to immunotherapy including rituximab. Neurology. 2008;71:1921–3.PubMedCrossRefGoogle Scholar
  24. 24.
    Wong-Kisiel LC, Ji T, Renaud DL, et al. Response to immunotherapy in a 20-month-old boy with anti-NMDA receptor encephalitis. Neurology. 2010;74:1550–1.PubMedCrossRefGoogle Scholar
  25. 25.
    Gabilondo I, Saiz A, Galan L, et al. Analysis of relapses in anti-NMDA receptor encephalitis. Neurology. 2011;77:996–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Vernino S, Tuite P, Adler CH, et al. Paraneoplastic chorea associated with CRMP-5 neuronal antibody and lung carcinoma. Ann Neurol. 2002;51:625–30.PubMedCrossRefGoogle Scholar
  27. 27.
    Samii A, Dahlen DD, Spence AM, Maronian NC, Kraus EE, Lennon VA. Paraneoplastic movement disorder in a patient with non-Hodgkin’s lymphoma and CRMP-5 autoantibody. Mov Disord. 2003;18:1556–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Yu Z, Kryzer TJ, Griesmann GE, Kim K, Benarroch EE, Lennon VA. CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Ann Neurol. 2001;49:146–54.PubMedCrossRefGoogle Scholar
  29. 29.
    Moss HE, Liu GT, Dalmau J. Glazed (vision) and confused. Surv Ophthalmol. 2010;55:169–73.PubMedCrossRefGoogle Scholar
  30. 30.
    Muehlschlegel S, Okun MS, Foote KD, Coco D, Yachnis AT, Fernandez HH. Paraneoplastic chorea with leukoencephalopathy presenting with obsessive-compulsive and behavioral disorder. Mov Disord. 2005;20:1523–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamashita N, Mosinger B, Roy A, et al. CRMP5 (collapsin response mediator protein 5) regulates dendritic development and synaptic plasticity in the cerebellar Purkinje cells. J Neurosci. 2011;31:1773–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Brot S, Rogemond V, Perrot V, et al. CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci. 2010;30:10639–54.PubMedCrossRefGoogle Scholar
  33. 33.
    Meyronet D, Massoma P, Thivolet F, et al. Extensive expression of collapsin response mediator protein 5 (CRMP5) is a specific marker of high-grade lung neuroendocrine carcinoma. Am J Surg Pathol. 2008;32:1699–708.PubMedCrossRefGoogle Scholar
  34. 34.
    Honnorat J, Cartalat-Carel S, Ricard D, et al. Onco-neural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. J Neurol Neurosurg Psychiatry. 2009;80:412–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Dalmau J, Graus F, Rosenblum MK, Posner JB. Anti-Hu-associated paraneoplastic encephalomyelitis/sensory neuronopathy. A clinical study of 71 patients. Medicine. 1992;71:59–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Molinuevo JL, Graus F, Serrano C, Rene R, Guerrero A, Illa I. Utility of anti-Hu antibodies in the diagnosis of paraneoplastic sensory neuropathy. Ann Neurol. 1998;44:976–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Nokura K, Nagamatsu M, Inagaki T, et al. Acute motor and sensory neuronopathy associated with small-cell lung cancer: a clinicopathological study. Neuropathology. 2006;26:329–37.PubMedCrossRefGoogle Scholar
  38. 38.
    Graus F, Keime-Guibert F, Rene R, et al. Anti-Hu-associated paraneoplastic encephalomyelitis: analysis of 200 patients. Brain. 2001;124:1138–48.PubMedCrossRefGoogle Scholar
  39. 39.
    Coret F, Bosca I, Fratalia L, Perez-Griera J, Pascual A, Casanova B. Long-lasting remission after rituximab treatment in a case of anti-Hu-associated sensory neuronopathy and gastric pseudoobstruction. J Neurooncol. 2009;93:421–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Tate ED, Allison TJ, Pranzatelli MR, Verhulst SJ. Neuroepidemiologic trends in 105 US cases of pediatric opsoclonus-myoclonus syndrome. J Pediatr Oncol Nurs. 2005;22:8–19.PubMedCrossRefGoogle Scholar
  41. 41.
    Bataller L, Graus F, Saiz A, Vilchez JJ. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain. 2001;124:437–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Luque FA, Furneaux HM, Ferziger R, et al. Anti-Ri: an antibody associated with paraneoplastic opsoclonus and breast cancer. Ann Neurol. 1991;29:241–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Wong A. An update on opsoclonus. Curr Opin Neurol. 2007;20:25–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Gorman MP. Update on diagnosis, treatment, and prognosis in opsoclonus-myoclonus-ataxia syndrome. Curr Opin Pediatr. 2010;22:745–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Pranzatelli MR, Tate ED, Swan JA, et al. B cell depletion therapy for new-onset opsoclonus-myoclonus. Mov Disord. 2010;25:238–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Rostasy K, Wilken B, Baumann M, et al. High dose pulsatile dexamethasone therapy in children with opsoclonus-myoclonus syndrome. Neuropediatrics. 2006;37:291–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Wilken B, Baumann M, Bien CG, Hero B, Rostasy K, Hanefeld F. Chronic relapsing opsoclonus-myoclonus syndrome: combination of cyclophosphamide and dexamethasone pulses. Eur J Paediatr Neurol. 2008;12:51–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Mitchell WG, Brumm VL, Azen CG, Patterson KE, Aller SK, Rodriguez J. Longitudinal neurodevelopmental evaluation of children with opsoclonus-ataxia. Pediatrics. 2005;116:901–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Erlich R, Morrison C, Kim B, Gilbert MR, Alrajab S. ANNA-2: an antibody associated with paraneoplastic opsoclonus in a patient with large-cell carcinoma of the lung with neuroendocrine features–correlation of clinical improvement with tumor response. Cancer Invest. 2004;22:257–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Lai M, Huijbers MG, Lancaster E, et al. Investigation of LGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: a case series. Lancet Neurol. 2010;9:776–85.PubMedCrossRefGoogle Scholar
  51. 51.
    Andrade DM, Tai P, Dalmau J, Wennberg R. Tonic seizures: a diagnostic clue of anti-LGI1 encephalitis? Neurology. 2011;76:1355–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Irani SR, Michell AW, Lang B, et al. Faciobrachial dystonic seizures precede Lgi1 antibody limbic encephalitis. Ann Neurol. 2011;69:892–900.PubMedCrossRefGoogle Scholar
  53. 53.
    Barajas RF, Collins DE, Cha S, Geschwind MD. Adult-onset drug-refractory seizure disorder associated with anti-voltage-gated potassium-channel antibody. Epilepsia. 2010;51:473–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Irani SR, Buckley C, Vincent A, et al. Immunotherapy-responsive seizure-like episodes with potassium channel antibodies. Neurology. 2008;71:1647–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Dalmau J, Gonzalez RG, Lerwill MF. Case records of the Massachusetts General Hospital. Case 4–2007. A 56-year-old woman with rapidly progressive vertigo and ataxia. N Engl J Med. 2007;356:612–20.PubMedCrossRefGoogle Scholar
  56. 56.
    Rojas I, Graus F, Keime-Guibert F, et al. Long-term clinical outcome of paraneoplastic cerebellar degeneration and anti-Yo antibodies. Neurology. 2000;55:713–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Bernal F, Shams’ili S, Rojas I, et al. Anti-Tr antibodies as markers of paraneoplastic cerebellar degeneration and Hodgkin’s disease. Neurology. 2003;60:230–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Graus F, Lang B, Pozo-Rosich P, Saiz A, Casamitjana R, Vincent A. P/Q type calcium-channel antibodies in paraneoplastic cerebellar degeneration with lung cancer. Neurology. 2002;59:764–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Sillevis SP, Kinoshita A, De LB, et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N Engl J Med. 2000;342:21–7.CrossRefGoogle Scholar
  60. 60.
    Graus F, Dalmau J, Valldeoriola F, et al. Immunological characterization of a neuronal antibody (anti-Tr) associated with paraneoplastic cerebellar degeneration and Hodgkin’s disease. J Neuroimmunol. 1997;74:55–61.PubMedCrossRefGoogle Scholar
  61. 61.
    Voltz R, Gultekin SH, Rosenfeld MR, et al. A serologic marker of paraneoplastic limbic and brain-stem encephalitis in patients with testicular cancer [see comments]. N Engl J Med. 1999;340:1788–95.PubMedCrossRefGoogle Scholar
  62. 62.
    Rosenfeld MR, Eichen JG, Wade DF, Posner JB, Dalmau J. Molecular and clinical diversity in paraneoplastic immunity to Ma proteins. Ann Neurol. 2001;50:339–48.PubMedCrossRefGoogle Scholar
  63. 63.
    Dalmau J, Graus F, Villarejo A, et al. Clinical analysis of anti-Ma2-associated encephalitis. Brain. 2004;127:1831–44.PubMedCrossRefGoogle Scholar
  64. 64.
    Bennett JL, Galetta SL, Frohman LP, et al. Neuro-ophthalmologic manifestations of a paraneoplastic syndrome and testicular carcinoma. Neurology. 1999;52:864–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Hoffmann LA, Jarius S, Pellkofer HL, et al. Anti-Ma and anti-Ta associated paraneoplastic neurological syndromes: twenty-two newly diagnosed patients and review of previous cases. J Neurol Neurosurg Psychiatry. 2008;79:767–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Castle J, Sakonju A, Dalmau J, Newman-Toker DE. Anti-Ma2-associated encephalitis with normal FDG-PET: a case of pseudo-Whipple’s disease. Nat Clin Pract Neurol. 2006;2:566–72.PubMedCrossRefGoogle Scholar
  67. 67.
    Kraker J. Treatment of anti-Ma2/Ta paraneoplastic syndrome. Curr Treat Options Neurol. 2009;11:46–51.PubMedCrossRefGoogle Scholar
  68. 68.
    de Beukelaar JW, Sillevis Smitt PA. Managing paraneoplastic neurological disorders. Oncologist. 2006;11:292–305.PubMedCrossRefGoogle Scholar
  69. 69.
    Alexopoulos H, Dalakas MC. A critical update on the immunopathogenesis of Stiff Person Syndrome. Eur J Clin Invest. 2010;40:1018–25.PubMedCrossRefGoogle Scholar
  70. 70.
    Saiz A, Blanco Y, Sabater L, et al. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain. 2008;131:2553–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Raju R, Rakocevic G, Chen Z, et al. Autoimmunity to GABAA-receptor-associated protein in stiff-person syndrome. Brain. 2006;129:3270–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Pittock SJ, Lucchinetti CF, Parisi JE, et al. Amphiphysin autoimmunity: paraneoplastic accompaniments. Ann Neurol. 2005;58:96–107.PubMedCrossRefGoogle Scholar
  73. 73.
    Murinson BB, Guarnaccia JB. Stiff-person syndrome with amphiphysin antibodies: distinctive features of a rare disease. Neurology. 2008;71:1955–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Butler MH, Hayashi A, Ohkoshi N, et al. Autoimmunity to gephyrin in Stiff-Man syndrome. Neuron. 2000;26:307–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Mas N, Saiz A, Leite MI, et al. Antiglycine-receptor encephalomyelitis with rigidity. J Neurol Neurosurg Psychiatry. 2011;82:1399–401.PubMedCrossRefGoogle Scholar
  76. 76.
    Hutchinson M, Waters P, McHugh J, et al. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology. 2008;71:1291–2.PubMedCrossRefGoogle Scholar
  77. 77.
    Dalakas MC, Fujii M, Li M, Lutfi B, Kyhos J, McElroy B. High-dose intravenous immune globulin for stiff-person syndrome. N Engl J Med. 2001;345:1870–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Schmierer K, Valdueza JM, Bender A, et al. Atypical stiff-person syndrome with spinal MRI findings, amphiphysin autoantibodies, and immunosuppression. Neurology. 1998;51:250–2.PubMedCrossRefGoogle Scholar
  79. 79.
    Vasconcelos OM, Dalakas MC. Stiff-person syndrome. Curr Treat Options Neurol. 2003;5:79–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Isaacs H. A syndrome of continuous muscle-fibre activity. J Neurol Neurosurg Psychiatry. 1961;24:319–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Liguori R, Vincent A, Clover L, et al. Morvan’s syndrome: peripheral and central nervous system and cardiac involvement with antibodies to voltage-gated potassium channels. Brain. 2001;124:2417–26.PubMedCrossRefGoogle Scholar
  82. 82.
    Maddison P. Neuromyotonia. Clin Neurophysiol. 2006;117:2118–27.PubMedCrossRefGoogle Scholar
  83. 83.
    Hart IK, Maddison P, Newsom-Davis J, Vincent A, Mills KR. Phenotypic variants of autoimmune peripheral nerve hyperexcitability. Brain. 2002;125:1887–95.PubMedCrossRefGoogle Scholar
  84. 84.
    Lahrmann H, Albrecht G, Drlicek M, et al. Acquired neuromyotonia and peripheral neuropathy in a patient with Hodgkin’s disease. Muscle Nerve. 2001;24:834–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Rubio-Agustí I, Perez-Miralles F, Sevilla T, et al. Peripheral nerve hyperexcitability. A clinical and immunologic study of 38 patients. Neurology. 2011;76:172–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Lancaster E, Huijbers MG, Bar V, et al. Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol. 2011;69:303–11.PubMedCrossRefGoogle Scholar
  87. 87.
    Irani SR, Alexander S, Waters P, et al. Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan’s syndrome and acquired neuromyotonia. Brain. 2010;133:2734–48.PubMedCrossRefGoogle Scholar
  88. 88.
    Diaz-Manera J, Rojas-Garcia R, Gallardo E, et al. Antibodies to AChR, MuSK and VGKC in a patient with myasthenia gravis and Morvan’s syndrome. Nat Clin Pract Neurol. 2007;3:405–10.PubMedCrossRefGoogle Scholar
  89. 89.
    Alessi G, De RJ, De BJ, Vancayzeele S. Successful immunoglobulin treatment in a patient with neuromyotonia. Clin Neurol Neurosurg. 2000;102:173–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Nakatsuji Y, Kaido M, Sugai F, et al. Isaacs’ syndrome successfully treated by immunoadsorption plasmapheresis. Acta Neurol Scand. 2000;102:271–3.PubMedCrossRefGoogle Scholar
  91. 91.
    Newsom-Davis J, Buckley C, Clover L, et al. Autoimmune disorders of neuronal potassium channels. Ann N Y Acad Sci. 2003;998:202–10.PubMedCrossRefGoogle Scholar
  92. 92.
    Dalmau J, Rosenfeld MR. Paraneoplastic syndromes of the CNS. Lancet Neurol. 2008;7:327–40.PubMedCrossRefGoogle Scholar
  93. 93.
    Geis C, Weishaupt A, Hallermann S, et al. Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain. 2010;133:3166–80.PubMedCrossRefGoogle Scholar
  94. 94.
    Gallego J, Dalmau J. Classic paraneoplastic syndromes: diagnostic and treatment approach. Neurologia. 2008;23:441–8.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Institució Catalana de Recerca i Estudis Avançats (ICREA) at Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Hospital ClinicUniversity of BarcelonaBarcelonaSpain

Personalised recommendations