Skip to main content

The Role of Progenitor Cells in Lung Disease Prognosis

  • Chapter
  • First Online:
Book cover Stem Cells in the Respiratory System

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 623 Accesses

Abstract

The number of investigations related to the role of stem and progenitor cells in lung repair has grown exponentially in recent years. Bone-marrow-derived cells, including stem cells and progenitors, have emerged as candidate markers to prognosticate outcomes during pulmonary disease. The relationship of these cells to prognosis has provided clues regarding the pathophysiologic characteristics of pulmonary disease, and direction for investigations related to lung repair. The ability of a progenitor population to participate in structural and paracrine processes in the lung paves the way for additional investigations of these cells as biomarkers in a variety of lung diseases, as well as to validate previous observations related to prognosis in these lung diseases. Many questions remain regarding the hierarchy and abilities of circulating hematopoietic stem cells, mesenchymal stem cells, and endogenous progenitor cells; however, correlations between the numbers and functions of these cells and pulmonary disease prognosis have been reported. Here we provide a detailed analysis of the relationship between these progenitors and the course of specific pulmonary diseases, including asthma, pulmonary arterial hypertension, pulmonary fibrosis, chronic obstructive pulmonary disease, acute lung injury, and lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Francois S, Bensidhoum M, Mouiseddine M et al. Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 2006; 24(4):1020–1029.

    Article  PubMed  Google Scholar 

  2. Ortiz LA, Gambelli F, McBride C et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100(14):8407–8411.

    Article  PubMed  CAS  Google Scholar 

  3. Rojas M, Xu J, Woods CR et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33(2):145–152.

    Article  PubMed  CAS  Google Scholar 

  4. Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006; 355(12):1222–1232.

    Article  PubMed  CAS  Google Scholar 

  5. Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348(7):593–600.

    Article  PubMed  Google Scholar 

  6. Avouac J, Uzan G, Kahan A, Boileau C, and Allanore Y. Endothelial progenitor cells and rheumatic disorders. Joint Bone Spine 2008; 75(2):131–137.

    Article  PubMed  Google Scholar 

  7. Chu K, Jung KH, Lee ST et al. Circulating endothelial progenitor cells as a new marker of endothelial dysfunction or repair in acute stroke. Stroke 2008; 39(5):1441–1447.

    Article  PubMed  CAS  Google Scholar 

  8. Asosingh K, Swaidani S, Aronica M, and Erzurum SC. Th1- and Th2-dependent endothelial progenitor cell recruitment and angiogenic switch in asthma. J Immunol 2007; 178(10):6482–6494.

    PubMed  CAS  Google Scholar 

  9. Real C, Caiado F, and Dias S. Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets 2008; 8(3):185–193.

    Article  PubMed  CAS  Google Scholar 

  10. Voelkel NF, Douglas IS, and Nicolls M. Angiogenesis in chronic lung disease. Chest 2007; 131(3):874–879.

    Article  PubMed  Google Scholar 

  11. Denburg JA, and van Eeden SF. Bone marrow progenitors in inflammation and repair: new vistas in respiratory biology and pathophysiology. Eur Respir J 2006; 27(3):441–445.

    Article  PubMed  CAS  Google Scholar 

  12. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275(5302):964–967.

    Article  PubMed  CAS  Google Scholar 

  13. Ingram DA, Caplice NM, and Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005; 106(5):1525–1531.

    Article  PubMed  CAS  Google Scholar 

  14. Yoder MC, Mead LE, Prater D et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109(5):1801–1809.

    Article  PubMed  CAS  Google Scholar 

  15. Alvarez DF, Huang L, King JA, ElZarrad MK, Yoder MC, and Stevens T. Lung microvascular endothelium is enriched with progenitor cells that exhibit vasculogenic capacity. Am J Physiol Lung Cell Mol Physiol 2008; 294(3):L419–L430.

    Article  PubMed  CAS  Google Scholar 

  16. Irwin D, Helm K, Campbell N et al. Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. Am J Physiol Lung Cell Mol Physiol 2007; 293(4):L941–L951.

    Article  PubMed  CAS  Google Scholar 

  17. Zengin E, Chalajour F, Gehling UM et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 2006; 133(8):1543–1551.

    Article  PubMed  CAS  Google Scholar 

  18. Phinney DG, and Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in the nervous system. Curr Pharm Des 2005; 11(10):1255–1265.

    Article  PubMed  CAS  Google Scholar 

  19. Siniscalco D, Sullo N, Maione S, Rossi F, and D’Agostino B. Stem cell therapy: the great promise in lung disease. Ther Adv Respir Dis 2008; 2(3):173–177.

    Article  PubMed  Google Scholar 

  20. Loebinger MR, Sage EK, and Janes SM. Mesenchymal stem cells as vectors for lung disease. Proc Am Thorac Soc 2008; 5(6):711–716.

    Article  PubMed  Google Scholar 

  21. Yen CC, Yang SH, Lin CY, and Chen CM. Stem cells in the lung parenchyma and prospects for lung injury therapy. Eur J Clin Invest 2006; 36(5):310–319.

    Article  PubMed  CAS  Google Scholar 

  22. Bucala R, Spiegel LA, Chesney J, Hogan M, and Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1(1):71–81.

    PubMed  CAS  Google Scholar 

  23. Quan TE, Cowper SE, and Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 2006; 8(2):145–150.

    Article  PubMed  CAS  Google Scholar 

  24. Chesney J, Bacher M, Bender A, and Bucala R. The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive T cells in situ. Proc Natl Acad Sci USA 1997; 94(12):6307–6312.

    Article  PubMed  CAS  Google Scholar 

  25. Hartlapp I, Abe R, Saeed RW et al. Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 2001; 15(12):2215–2224.

    Article  PubMed  CAS  Google Scholar 

  26. Martin J, Helm K, Ruegg P, Varella-Garcia M, Burnham E, and Majka S. Adult lung side population cells have mesenchymal stem cell potential. Cytotherapy 2008; 10(2):140–151.

    Article  PubMed  CAS  Google Scholar 

  27. Summer R, Kotton DN, Sun X, Fitzsimmons K, and Fine A. Translational physiology: origin and phenotype of lung side population cells. Am J Physiol Lung Cell Mol Physiol 2004; 287(3):L477–L483.

    Article  PubMed  CAS  Google Scholar 

  28. Reynolds SD, Shen H, Reynolds PR et al. Molecular and functional properties of lung SP cells. Am J Physiol Lung Cell Mol Physiol 2007; 292(4):L972–L983.

    Article  PubMed  CAS  Google Scholar 

  29. Hackett TL, Shaheen F, Johnson A et al. Characterization of side population cells from human airway epithelium. Stem Cells 2008; 26(10):2576–2585.

    Article  PubMed  Google Scholar 

  30. Izuhara K, and Saito H. Microarray-based identification of novel biomarkers in asthma. Allergol Int 2006; 55(4):361–367.

    Article  PubMed  CAS  Google Scholar 

  31. Southam DS, Widmer N, Ellis R, Hirota JA, Inman MD, and Sehmi R. Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol 2005; 115(1):95–102.

    Article  PubMed  CAS  Google Scholar 

  32. Robinson DS, North J, Zeibecoglou K et al. Eosinophil development and bone marrow and tissue eosinophils in atopic asthma. Int Arch Allergy Immunol 1999; 118(2–4):98–100.

    Article  PubMed  CAS  Google Scholar 

  33. Lamkhioued B, Abdelilah SG, Hamid Q, Mansour N, Delespesse G, and Renzi PM. The CCR3 receptor is involved in eosinophil differentiation and is up-regulated by Th2 cytokines in CD34+ progenitor cells. J Immunol 2003; 170(1):537–547.

    PubMed  CAS  Google Scholar 

  34. Schmidt M, Sun G, Stacey MA, Mori L, and Mattoli S. Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 2003; 171(1):380–389.

    PubMed  CAS  Google Scholar 

  35. Stenmark KR, Fagan KA, and Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 2006; 99(7):675–691.

    Article  PubMed  CAS  Google Scholar 

  36. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA et al. Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 2006; 98(2):209–217.

    Article  PubMed  CAS  Google Scholar 

  37. Masri FA, Xu W, Comhair SA et al. Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293(3):L548–L554.

    Article  PubMed  CAS  Google Scholar 

  38. Asosingh K, Aldred MA, Vasanji A et al. Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 2008; 172(3):615–627.

    Article  PubMed  CAS  Google Scholar 

  39. Majka SM, Skokan M, Wheeler L et al. Evidence for cell fusion is absent in vascular lesions associated with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2008; 295(6):L1028–L1039.

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H, and Shimizu Y. Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng 2004; 10(5–6):771–779.

    Article  PubMed  Google Scholar 

  41. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, and Stewart DJ. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 2005; 96(4):442–450.

    Article  PubMed  CAS  Google Scholar 

  42. Frid MG, Brunetti JA, Burke DL et al. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 2006; 168(2):659–669.

    Article  PubMed  CAS  Google Scholar 

  43. Moeller A, Gilpin SE, Ask K et al. Circulating fibrocytes are an indicator of poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2009; 179(7):588–594.

    Article  PubMed  Google Scholar 

  44. Hashimoto N, Jin H, Liu T, Chensue SW, and Phan SH. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004; 113(2):243–252.

    PubMed  CAS  Google Scholar 

  45. Phillips RJ, Burdick MD, Hong K et al. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 2004; 114(3):438–446.

    PubMed  CAS  Google Scholar 

  46. Moore BB, Kolodsick JE, Thannickal VJ et al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol 2005; 166(3):675–684.

    Article  PubMed  CAS  Google Scholar 

  47. Moore BB, Murray L, Das A, Wilke CA, Herrygers AB, and Toews GB. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol 2006; 35(2):175–181.

    Article  PubMed  CAS  Google Scholar 

  48. Gomperts BN, and Strieter RM. Fibrocytes in lung disease. J Leukoc Biol 2007; 82(3):449–456.

    Article  PubMed  CAS  Google Scholar 

  49. Fadini GP, Schiavon M, Cantini M et al. Circulating progenitor cells are reduced in patients with severe lung disease. Stem Cells 2006; 24(7):1806–1813.

    Article  PubMed  Google Scholar 

  50. Ishizawa K, Kubo H, Yamada M et al. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett 2004; 556(1–3):249–252.

    Article  PubMed  CAS  Google Scholar 

  51. Abe S, Boyer C, Liu X et al. Cells derived from the circulation contribute to the repair of lung injury. Am J Respir Crit Care Med 2004; 170(11):1158–1163.

    Article  PubMed  Google Scholar 

  52. Ishizawa K, Kubo H, Yamada M et al. Hepatocyte growth factor induces angiogenesis in injured lungs through mobilizing endothelial progenitor cells. Biochem Biophys Res Commun 2004; 324(1):276–280.

    Article  PubMed  CAS  Google Scholar 

  53. Yamada M, Kubo H, Kobayashi S et al. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 2004; 172(2):1266–1272.

    PubMed  CAS  Google Scholar 

  54. Xu J, Mora A, Shim H, Stecenko A, Brigham KL, and Rojas M. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis. Am J Respir Cell Mol Biol 2007; 37(3):291–299.

    Article  PubMed  CAS  Google Scholar 

  55. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342(18):1301–1308.

    Article  Google Scholar 

  56. Wiedemann HP, Wheeler AP, Bernard GR et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 2006; 354(24):2564–2575.

    Article  PubMed  CAS  Google Scholar 

  57. Gupta N, Su X, Popov B, Lee JW, Serikov V, and Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 2007; 179(3):1855–1863.

    PubMed  CAS  Google Scholar 

  58. Horowitz JC, Cui Z, Moore TA et al. Constitutive activation of prosurvival signaling in alveolar mesenchymal cells isolated from patients with nonresolving acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2006; 290(3):L415–L425.

    Article  PubMed  CAS  Google Scholar 

  59. Yamada M, Kubo H, Ishizawa K, Kobayashi S, Shinkawa M, and Sasaki H. Increased circulating endothelial progenitor cells in patients with bacterial pneumonia: evidence that bone marrow derived cells contribute to lung repair. Thorax 2005; 60(5):410–413.

    Article  PubMed  CAS  Google Scholar 

  60. Ware LB, and Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342(18):1334–1349.

    Article  PubMed  CAS  Google Scholar 

  61. Burnham EL, Taylor WR, Quyyumi AA, Rojas M, Brigham KL, and Moss M. Increased circulating endothelial progenitor cells are associated with survival in acute lung injury. Am J Respir Crit Care Med 2005; 172(7):854–860.

    Article  PubMed  Google Scholar 

  62. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 2003; 101(10):3765–3777.

    Article  PubMed  CAS  Google Scholar 

  63. Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med 2006; 27(4):337–349.

    Article  PubMed  Google Scholar 

  64. Zimmerman GA, Albertine KH, Carveth HJ et al. Endothelial activation in ARDS. Chest 1999; 116(1 Suppl):18S–24S.

    Article  PubMed  CAS  Google Scholar 

  65. Schouten M, Wiersinga WJ, Levi M, and van der PT. Inflammation, endothelium, and coagulation in sepsis. J Leukoc Biol 2008; 83(3):536–545.

    Article  PubMed  CAS  Google Scholar 

  66. Tomashefski JF Jr, Davies P, Boggis C, Greene R, Zapol WM, and Reid LM. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 1983; 112(1):112–126.

    PubMed  Google Scholar 

  67. Mutunga M, Fulton B, Bullock R et al. Circulating endothelial cells in patients with septic shock. Am J Respir Crit Care Med 2001; 163(1):195–200.

    PubMed  CAS  Google Scholar 

  68. Mayr FB, Spiel AO, Leitner JM, Firbas C, Sieghart W, and Jilma B. Effects of low dose endotoxemia on endothelial progenitor cells in humans. Atherosclerosis 2007; 195(1):e202–e206.

    Article  PubMed  CAS  Google Scholar 

  69. Rafat N, Hanusch C, Brinkkoetter PT et al. Increased circulating endothelial progenitor cells in septic patients: correlation with survival. Crit Care Med 2007; 35(7):1677–1684.

    Article  PubMed  Google Scholar 

  70. Becchi C, Pillozzi S, Fabbri LP et al. The increase of endothelial progenitor cells in the peripheral blood: a new parameter for detecting onset and severity of sepsis. Int J Immunopathol Pharmacol 2008; 21(3):697–705.

    PubMed  CAS  Google Scholar 

  71. Neuzil J, Stantic M, Zobalova R et al. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun 2007; 355(4):855–859.

    Article  PubMed  CAS  Google Scholar 

  72. Eramo A, Lotti F, Sette G et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 2008; 15(3):504–514.

    Article  PubMed  CAS  Google Scholar 

  73. Chen YC, Hsu HS, Chen YW et al. Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS One 2008; 3(7):e2637.

    Article  PubMed  Google Scholar 

  74. Dome B, Timar J, Dobos J et al. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 2006; 66(14):7341–7347.

    Article  PubMed  CAS  Google Scholar 

  75. Pircher A, Kahler CM, Skvortsov S et al. Increased numbers of endothelial progenitor cells in peripheral blood and tumor specimens in non-small cell lung cancer: a methodological challenge and an ongoing debate on the clinical relevance. Oncol Rep 2008; 19(2):345–352.

    PubMed  Google Scholar 

  76. Ishii G, Ito TK, Aoyagi K et al. Presence of human circulating progenitor cells for cancer stromal fibroblasts in the blood of lung cancer patients. Stem Cells 2007; 25(6):1469–1477.

    Article  PubMed  CAS  Google Scholar 

  77. Chiba H, Ishii G, Ito TK et al. CD105-positive cells in pulmonary arterial blood of adult human lung cancer patients include mesenchymal progenitors. Stem Cells 2008; 26(10):2523–2530.

    Article  PubMed  CAS  Google Scholar 

  78. Kondo T, Hayashi M, Takeshita K et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004; 24(8):1442–1447.

    Article  PubMed  CAS  Google Scholar 

  79. Sambuceti G, Morbelli S, Vanella L et al. Diabetes impairs the vascular recruitment of normal stem cells by oxidant damage; reversed by increases in pAMPK, heme oxygenase-1 and adiponectin. Stem Cells 2009 Feb; 27(2):399–407.

    Article  PubMed  CAS  Google Scholar 

  80. Scheubel RJ, Zorn H, Silber RE et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 2003; 42(12):2073–2080.

    Article  PubMed  Google Scholar 

  81. Strehlow K, Werner N, Berweiler J et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation 2003; 107(24):3059–3065.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Serpil Erzerum and Kewal Asosingh, who aided in the provision of figures for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen L. Burnham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burnham, E.L., Majka, S., Moss, M. (2010). The Role of Progenitor Cells in Lung Disease Prognosis. In: Rojas, M. (eds) Stem Cells in the Respiratory System. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-775-4_3

Download citation

Publish with us

Policies and ethics