Skip to main content

Apnea of Prematurity

  • Chapter
  • First Online:

Part of the book series: Respiratory Medicine ((RM))

Abstract

Almost every extremely low gestational age neonate (ELGAN) is affected by apnea of prematurity (AOP). Yet its precise pathophysiology is incompletely understood. In this chapter, data from observational studies will be reviewed in an attempt better to understand the mechanisms involved in the pathophysiology of AOP, focusing on bradycardia and hypoxemia because they, and not apnea duration, are relevant to the well-being of an infant. Based on these data, this chapter will review the current knowledge on the prevention and treatment—including prone positioning, continuous positive airway pressure (CPAP), nasal intermittent positive pressure ventilation (N-IPPV), and caffeine—of AOP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Milner AD, Boon AW, Saunders RA, Hopkin IE. Upper airway obstruction and apnoea in preterm babies. Arch Dis Child. 1980;55:22–5.

    PubMed  CAS  Google Scholar 

  2. Lemke RP, Idiong N, Al-Saedi S, Kwiatkowski K, Cates DB, Rigatto H. Evidence of a critical period of airway instability during central apneas in preterm infants. Am J Respir Crit Care Med. 1998;157:470–4.

    PubMed  CAS  Google Scholar 

  3. Renolleau S, Letourneau P, Niyonsenga T, Praud J-P. Thyroarytenoid muscle electrical activity during spontanous apneas in preterm lambs. Am J Respir Crit Care Med. 1999;159:1396–404.

    PubMed  CAS  Google Scholar 

  4. Kianicka I, Diaz V, Dorion D, Praud JP. Coordination between glottic adductor muscle and diaphragm EMG activity in fetal lambs in utero. J Appl Physiol. 1998;84(5):1560–5.

    PubMed  CAS  Google Scholar 

  5. Upton CJ, Milner AD, Stokes GM. Response to external obstruction in preterm infants with apnea. Pediatr Pulmonol. 1992;14:233–8.

    PubMed  CAS  Google Scholar 

  6. Abu-Osba YK, Mathew OP, Thach BT. An animal model for airway sensory deprivation producing obstructive apnea with postmortem findings of sudden infant death syndrome. Pediatrics. 1981;68:796–801.

    PubMed  CAS  Google Scholar 

  7. Waggener TB, Frantz III, Cohlan BA, Stark AR. Mixed and obstructive apneas are related to ventilatory oscillations in premature infants. J Appl Physiol. 1989;66:2818–26.

    PubMed  CAS  Google Scholar 

  8. Mathew OP. Maintenance of upper airway patency. J Pediatr. 1985;106:863–9.

    PubMed  CAS  Google Scholar 

  9. Mitchell RA, Herbert DA, Baker DG. Inspiratory rhythm in airway smooth muscle tone. J Appl Physiol. 1985;58(3):911–20.

    PubMed  CAS  Google Scholar 

  10. Poets CF, Southall DP. Patterns of oxygenation during periodic breathing in preterm infants. Early Hum Dev. 1991;26:1–12.

    PubMed  CAS  Google Scholar 

  11. Girling DJ. Changes in heart rate, blood pressure, and pulse pressure during apnoeic attacks in newborn babies. Arch Dis Child. 1972;47:405–10.

    PubMed  CAS  Google Scholar 

  12. Storrs CN. Cardiovascular effects of apnoea in preterm infants. Arch Dis Child. 1977;52:534–40.

    PubMed  CAS  Google Scholar 

  13. Gabriel M, Albani M. Cardiac slowing and respiratory arrest in preterm infants. Eur J Pediatr. 1976;122:257–61.

    PubMed  CAS  Google Scholar 

  14. Vyas H, Milner AD, Hopkin IE. Relationship between apnoea and bradycardia in preterm infants. Acta Paediatr Scand. 1981;70:785–90.

    PubMed  CAS  Google Scholar 

  15. Poets CF, Stebbens VA, Samuels MP, Southall DP. The relationship between bradycardia, apnea, and hypoxemia in preterm infants. Pediatr Res. 1993;34(2):144–7.

    PubMed  CAS  Google Scholar 

  16. Daly M. Interactions between respiration and circulation. Bethesda, MD: American Physiological Society; 1986. p. 529–94.

    Google Scholar 

  17. Angell-James JE, Daly M. Cardiovascular responses in apnoeic asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation relfex. J Physiol. 1969;201: 87–104.

    Google Scholar 

  18. Poets CF, Stebbens VA, Alexander JR, Arrowsmith WA, Salfield SAW, Southall DP. Arterial oxygen saturation in preterm infants at discharge from the hospital and six weeks later. J Pediatr. 1992;120:447–54.

    PubMed  CAS  Google Scholar 

  19. Finer NN, Barrington KJ, Hayes BJ, Hugh A. Obstructive, mixed, and central apnea in the neonate: physiologic correlates. J Pediatr. 1992;121:943–50.

    PubMed  CAS  Google Scholar 

  20. Adams JA, Zabaleta IA, Sackner MA. Hypoxemic events in spontaneously breathig premature infants: etiologic basis. Pediatr Res. 1997;42:463–71.

    PubMed  CAS  Google Scholar 

  21. Olinsky A, Bryan MH, Bryan AC. Influence of lung inflation on respiratory control in neonates. J Appl Physiol. 1974;36:426–9.

    PubMed  CAS  Google Scholar 

  22. Agostoni E, Mead J. Statics of the respiratory system. In: Soc AP, editor. Handbook of physiology. Respiration. Vol Sect 3, vol 1. Washington; 1965. p. 387–409.

    Google Scholar 

  23. Kosch PC, Stark AR. Dynamic maintenance of ­end-expiratory lung volume in full-term infants. J Appl Physiol: Respirat Environ Exercise Physiol. 1984;57:1126–33.

    CAS  Google Scholar 

  24. Numa AH, Newth CJL. Anatomic dead space in infants and children. J Appl Physiol. 1996;80: 1485–9.

    PubMed  CAS  Google Scholar 

  25. Stark AR, Cohlan BA, Waggener TB, Frantz III, Kosch PC. Regulation of end-expiratory lung volume during sleep in premature infants. J Appl Physiol. 1987;62:1117–23.

    PubMed  CAS  Google Scholar 

  26. Poets CF, Rau GA, Neuber K, Gappa M, Seidenberg J. Determinants of lung volume in spontaneously breathing preterm infants. Am J Respir Crit Care Med. 1997;155(2):649–53.

    PubMed  CAS  Google Scholar 

  27. Davis GM, Moscato J. Changes in lung mechanics following sighs in premature newborns without lung disease. Pediatr Pulmonol. 1994;17:26–30.

    PubMed  CAS  Google Scholar 

  28. Thach BT, Taeusch HW. Sighing in newborn human infants: role of inflation-augmenting reflex. J Appl Physiol. 1976;41:502–7.

    PubMed  CAS  Google Scholar 

  29. Tourneux P, Leke A, Kongolo G, et al. Relationship between functional residual capacity and oxygen desaturation during short central apneic events during sleep in “late preterm” infants. Pediatr Res. 2008;64(2):171–6.

    PubMed  Google Scholar 

  30. Henderson-Smart DJ. Vulnerability to hypoxaemia in the newborn. Sleep. 1980;3:331–42.

    PubMed  CAS  Google Scholar 

  31. Findley LJ, Ries AL, Tisi GM, Wagner PD. Hypoxemia during apnea in normal subjects: mechanisms and impact of lung volume. J Appl Physiol: Respirat Environ Exercise Physiol. 1983;55: 1777–83.

    CAS  Google Scholar 

  32. Wilkinson MH, Berger PJ, Blanch N, Brodecky V. Effect of venous oxygenation on arterial desaturation rate during repetitive apneas in lambs. Respir Physiol. 1995;101:321–31.

    PubMed  CAS  Google Scholar 

  33. Sands SA, Edwards BA, Kelly VJ, Davidson MR, Wilkinson MH, Berger PJ. A model investigation of the impact of ventilation-perfusion mismatch on oxygenation during apnea in preterm infants. J Theor Biol. 2010;264(3):657–62.

    PubMed  Google Scholar 

  34. Esquer C, Claure N, D’Ugard C, Wada Y, Bancalari E. Mechanisms of hypoxemia episodes in spontaneously breathing preterm infants after mechanical ventilation. Neonatology. 2008;94(2):100–4.

    PubMed  Google Scholar 

  35. Hannam S, Ingram DM, Milner AD. A possible role for the Hering-Breuer deflation reflex in apnea of prematurity. J Pediatr. 1998;132:35–9.

    PubMed  CAS  Google Scholar 

  36. Edwards BA, Sands SA, Feeney C, et al. Continuous positive airway pressure reduces loop gain and resolves periodic central apneas in the lamb. Respir Physiol Neurobiol. 2009;168(3):239–49.

    PubMed  Google Scholar 

  37. Speidel BD, Dunn PM. Use of nasal continuous positive airway pressure to treat severe recurrent apnoea in very preterm infants. Lancet. 1976;2(7987):658–60.

    PubMed  CAS  Google Scholar 

  38. Thibeault DW, Wong MM, Auld PAM. Thoracic gas volume changes in premature infants. Pediatrics. 1967;40:403–11.

    PubMed  CAS  Google Scholar 

  39. Kattwinkel J, Nearman HS, Fanaroff AA, Katona PT, Klaus MH. Apnea of prematurity. Comparative effects of cutaneous stimulation and nasal continuous positive pressure ventilation. J Pediatr. 1975;86:588–92.

    PubMed  CAS  Google Scholar 

  40. Blondheim O, Abbasi S, Fox WW, Bhutani VK. Effect of enteral gavage feeding rate on pulmonary functions of very low birth weight infants. J Pediatr. 1993;122:751–5.

    PubMed  CAS  Google Scholar 

  41. St-Hilaire M, Samson N, Nsegbe E, et al. Postnatal maturation of laryngeal chemoreflexes in the preterm lamb. J Appl Physiol. 2007;102(4):1429–38.

    PubMed  Google Scholar 

  42. Davies AM, Koenig JS, Thach BT. Characteristics of upper airway chemoreflex prolonged apnea in human infants. Am Rev Respir Dis. 1989;139:668–73.

    PubMed  CAS  Google Scholar 

  43. Lopes JM, Muller NL, Bryan MH, Bryan AC. Synergistic behavior of inspiratory muscles after diaphragmatic fatigue in the newborn. J Appl Physiol Respirat Environ Exercise Physiol. 1981;51:547–51.

    CAS  Google Scholar 

  44. Heldt GP. The effect of gavage feeding on the mechanics of the lung, chest wall, and diaphragm of preterm infants. Pediatr Res. 1988;24:55–8.

    PubMed  CAS  Google Scholar 

  45. Poets CF, Langner M, Bohnhorst B. Effects of nipple feeding and 2 different methods of gavage feeding on oxygenation in preterm infants. Acta Paediatr. 1997;86:419–23.

    PubMed  CAS  Google Scholar 

  46. Herbst JJ, Minton SD, Book LS. Gastroesophageal reflux causing respiratory distress and apnea in newborn infants. J Pediatr. 1979;95:763–8.

    PubMed  CAS  Google Scholar 

  47. Menon AP, Schefft GL, Thach BT. Apnea associated with regurgitation in infants. J Pediatr. 1985;106:625–9.

    PubMed  CAS  Google Scholar 

  48. Peter CS, Sprodowski N, Bohnhorst B, Silny J, Poets CF. Gastroesophageal reflux and apnea of prematurity: no temporal relationship. Pediatrics. 2002;109:8–11.

    PubMed  Google Scholar 

  49. Di Fiore JM, Arko M, Whitehouse M, Kimball A, Martin RJ. Apnea is not prolonged by acid gastroesophageal reflux in preterm infants. Pediatrics. 2005;116(5):1059–63.

    PubMed  Google Scholar 

  50. Slocum C, Arko M, Di Fiore J, Martin RJ, Hibbs AM. Apnea, bradycardia and desaturation in preterm infants before and after feeding. J Perinatol. 2009;29(3):209–12.

    PubMed  CAS  Google Scholar 

  51. Kimball AL, Carlton DP. Gastroesophageal reflux medications in the treatment of apnea in premature infants. J Pediatr. 2001;138:355–60.

    PubMed  CAS  Google Scholar 

  52. Ward RM, Lemons JA, Molteni RA. Cisapride: a survey of the frequency of use and adverse events in premature newborns. Pediatrics. 1999;103:469–72.

    PubMed  CAS  Google Scholar 

  53. Heldt GP. Development of stability of the respiratory system in preterm infants. J Appl Physiol. 1988;65:441–4.

    PubMed  CAS  Google Scholar 

  54. Miller HC, Behrle FC, Smull NW. Severe apnea and irregular respiratory rhythms among premature infants. Pediatrics. 1959;23:676–85.

    PubMed  CAS  Google Scholar 

  55. Calder NA, Williams BA, Kumar P, Hanson MA. The respiratory response of healthy term infants to breath-by-breath alternations in inspired oxygen at two postnatal ages. Pediatr Res. 1994;35:321–4.

    PubMed  CAS  Google Scholar 

  56. Fenner A, Schalk U, Hoenicke H, Wendenburg A, Roehling T. Periodic breathing in premature and neonatal babies: incidence, breathing pattern, respiratory gas tensions, response to changes in the composition of ambient air. Pediatr Res. 1973;7:174–83.

    PubMed  CAS  Google Scholar 

  57. Richard D, Poets CF, Neale S, Stebbens VA, Alexander JR, Southall DP. Arterial oxyen saturation in preterm neonates without respiratory failure. J Pediatr. 1993;123:963–8.

    PubMed  CAS  Google Scholar 

  58. Knill R, Bryan AC. An intercostal-phrenic inhibitory reflex in human newborn infants. J Appl Physiol. 1976;40:352–61.

    PubMed  CAS  Google Scholar 

  59. Knill R, Andrews W, Bryan AC, Bryan MH. Respiratory load compensation in infants. J Appl Physiol. 1976;40(3):357–61.

    PubMed  CAS  Google Scholar 

  60. Eastman NJ. Fetal blood studies. Am J Obstetr Gynecol 1936;31:563–72.

    Google Scholar 

  61. Rigatto H, Brady JP, de la Torre Verduzco R. Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics. 1975;55:604–13.

    PubMed  CAS  Google Scholar 

  62. Verbeek MM, Richardson HL, Parslow PM, Walker AM, Harding R, Horne RS. Arousal and ventilatory responses to mild hypoxia in sleeping preterm infants. J Sleep Res. 2008;17(3):344–53.

    PubMed  Google Scholar 

  63. Martin RJ, Di Fiore JM, Davis RL, Miller MJ, Coles SK, Dick TE. Persistence of the biphasic ventilatory response to hypoxia in preterm infants. J Pediatr. 1998;132:960–4.

    PubMed  CAS  Google Scholar 

  64. Alvaro R, Alvarez J, Kwiatkowski K, Cates D, Rigatto H. Small preterm infants (<1,500 g) have only a sustained decrease in ventilation in response to hypoxia. Pediatr Res. 1992;32:403–6.

    PubMed  CAS  Google Scholar 

  65. Lagercrantz H, Ahlstrøm H, Jonson B, Lindroth M, Svenningsen N. A critical oxygen level below which irregular breathing occurs in preterm infants. Oxford: Pergamon Press; 1978. p. 161–4.

    Google Scholar 

  66. Weintraub Z, Alvaro R, Kwiatkowski K, Cates D, Rigatto H. Effects of inhaled oxygen (up to 40%) on periodic breathing and apnea in preterm infants. J Appl Physiol. 1992;72:116–20.

    PubMed  CAS  Google Scholar 

  67. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Annu Rev Biochem. 1985;54:831–62.

    PubMed  CAS  Google Scholar 

  68. Wilken B, Ramirez JM, Probst I, Richter DW, Hanefeld F. Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res. 1998;43:8–14.

    PubMed  CAS  Google Scholar 

  69. Pierard C, Champagnat J, Denavit-Saubie M, et al. Brain stem energy metabolism response to acute hypoxia in anaesthetized rats: a 31P NMR study. Neuro Rep. 1995;7:281–5.

    CAS  Google Scholar 

  70. Lolley RN, Balfour WM, Samson Jr FE. The high-energy phosphates in developing brain. J New Drugs. 1961;7:289–97.

    PubMed  CAS  Google Scholar 

  71. Wilken B, Ramirez JM, Probst I, Richter DW, Hanefeld F. Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation. Arch Dis Child Fetal Neonatal Ed. 2000;82:F224–7.

    PubMed  CAS  Google Scholar 

  72. Wilken B, Ramirez JM, Richter DW, Hanefeld F. Supplemental creatine enhances hypoxic augmentation in vivo by preventing ATP depletion (abstract). Eur J Pediatr. 1998;157:178.

    Google Scholar 

  73. Bohnhorst B, Geuting T, Peter CS, Dördelmann M, Wilken B, Poets CF. Randomized, controlled trial of oral creatine supplementation (not effective) for apnea of prematurity. Pediatrics. 2004;113:e303–7.

    PubMed  Google Scholar 

  74. Khan A, Qurashi M, Kwiatkowski K, Cates D, Rigatto H. Measurement of the CO2 apneic threshold in newborn infants: possible relevance for periodic breathing and apnea. J Appl Physiol. 2005;98(4):1171–6.

    PubMed  Google Scholar 

  75. Al-Saif S, Alvaro R, Manfreda J, et al. A randomized controlled trial of theophylline versus CO2 inhalation for treating apnea of prematurity. J Pediatr. 2008;153(4):513–8.

    PubMed  CAS  Google Scholar 

  76. Tappin DM, Ford RPK, Nelson KP, et al. Breathing, sleep state, and rectal temperature oscillations. Arch Dis Child. 1996;74:427–31.

    PubMed  CAS  Google Scholar 

  77. Gozal D, Colin A, Daskalovic YI, Jaffe M. Environmental overheating as a cause of transient respiratory chemoreceptor dysfunction in an infant. Pediatrics. 1988;82:738–40.

    PubMed  CAS  Google Scholar 

  78. Perlstein PH, Edwards NK, Sutherland JM. Apnea in premature infants and incubator-air-temperature changes. N Engl J Med. 1970;282:461–6.

    PubMed  CAS  Google Scholar 

  79. Tourneux P, Cardot V, Museux N, et al. Influence of thermal drive on central sleep apnea in the preterm neonate. Sleep. 2008;31(4):549–56.

    PubMed  Google Scholar 

  80. Mathew OP, Thoppil CK, Belan M. Motor activity and apnea in preterm infants. Am Rev Respir Dis. 1991;144:842–4.

    PubMed  CAS  Google Scholar 

  81. Weintraub Z, Alvaro R, Mills S, Cates D, Rigatto H. Short apneas and their relationship to body movements and sighs in preterm infants. Biol Neonate. 1994;66:188–94.

    PubMed  CAS  Google Scholar 

  82. Thoppil CK, Belan MA, Cowen CP, Mathew OP. Behavioral arousal in newborn infants and its association with termination of apnea. J Appl Physiol. 1991;70:1479–84.

    Google Scholar 

  83. Wulbrand H, von Zezschwitz G, Bentele KHP. Submental and diaphragmatic muscle activity during and at resolution of mixed and obstructive apneas and cardiorespiratory arousal in preterm infants. Pediatr Res. 1995;38:298–305.

    PubMed  CAS  Google Scholar 

  84. Vecchierini M-F, Curzi-Dascalova L, Trang-Pham H, Bloch J, Gaultier C. Patterns of EEG frequency, movement, heart rate, and oxygenation after isolated short apneas in infants. Pediatr Res. 2001;49:220–6.

    PubMed  CAS  Google Scholar 

  85. Heimler R, Langlois J, Hodel DJ, Nelin LD, Sasidharan P. Effect of positioning on the breathing pattern of preterm infants. Arch Dis Child. 1992;67: 312–4.

    PubMed  CAS  Google Scholar 

  86. Martin RJ, Herrell N, Rubin D, Fanaroff A. Effect of supine and prone positions on arterial oxygen tension in the preterm infant. Pediatrics. 1979;63: 528–31.

    PubMed  CAS  Google Scholar 

  87. Jenni OG, von Siebenthal K, Wolf M, Keel M, Duc G, Bucher HU. Effect of nursing in the head elevated tilt position (15) on the incidence of bradycardic and hypoxemic episodes in preterm infants. Pediatrics. 1997;100:622–5.

    PubMed  CAS  Google Scholar 

  88. Reher C, Kuny KD, Pantalitschka T, Urschitz MS, Poets CF. Randomised crossover trial of different postural interventions on bradycardia and intermittent hypoxia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F289–91.

    PubMed  CAS  Google Scholar 

  89. Bauschatz AS, Kaufmann CM, Haensse D, Pfister R, Bucher HU. A preliminary report of nursing in the three-stair-position to prevent apnoea of prematurity. Acta Paediatr. 2008;97(12):1743–5.

    PubMed  Google Scholar 

  90. Pantalitschka T, Sievers J, Urschitz MS, Herberts T, Reher C, Poets CF. Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2009;94(4):F245–8.

    PubMed  CAS  Google Scholar 

  91. De Paoli AG, Davis PG, Faber B, Morley CJ. Devices and pressure sources for administration of nasal continuous positive airway pressure (NCPAP) in preterm neonates. Cochrane Database Syst Rev. 2008;(1):CD002977

    Google Scholar 

  92. Lemyre B, Davis PG, De Paoli AG. Nasal intermittent positive pressure ventilation versus nasal continuous positive airway presssure for apnea of prematurity. http://www.nichd.nih.gov/cochraneneonatal/lemyre/review01.htm . 2000

  93. Moretti C, Giannini L, Fassi C, Gizzi C, Papoff P, Colarizi P. Nasal flow-synchronized intermittent positive pressure ventilation to facilitate weaning in very low-birthweight infants: unmasked randomized controlled trial. Pediatr Int. 2008;50(1):85–91.

    PubMed  Google Scholar 

  94. Schmidt B. Methylxanthine therapy in premature infants: sound practice, disaster, or fruitless byway? J Pediatr. 1999;135:526–8.

    PubMed  CAS  Google Scholar 

  95. Schmidt B, Roberts RS, Davis P, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21.

    PubMed  CAS  Google Scholar 

  96. Schmidt B, Roberts RS, Davis P, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357(19):1893–902.

    PubMed  CAS  Google Scholar 

  97. Davis PG, Schmidt B, Roberts RS, et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010;156(3):382–7.

    Google Scholar 

  98. Barrington KJ, Roberts R, Schmidt B, et al. The caffeine for apnea of prematurity (CAP) trial, analyses of dose effect. PAS 2010, Abstract-CD. 2010;Abstr 4350.4

    Google Scholar 

  99. Steer PA, Flenady V, Shearman A, Lee TC, Tudehope DI, Charles BG. Periextubation caffeine in preterm neonates: a randomized dose response trial. J Paediatr Child Health. 2003;39:511–5.

    PubMed  CAS  Google Scholar 

  100. Comer AM, Perry CM, Figgitt DP. Caffeine citrate. A review of its use in apnoea of prematurity. Paediatr Drugs. 2001;3:61–79.

    PubMed  CAS  Google Scholar 

  101. Stocks J. Effect of nasogastric tubes on nasal resistance in infancy. Arch Dis Child. 1980;55:17–21.

    PubMed  CAS  Google Scholar 

  102. van Someren V, Linnett SJ, Stothers JK, Sullivan PG. An investigation into the benefits of resiting nasoenteric feeding tubes. Pediatrics. 1984;74:379–83.

    PubMed  Google Scholar 

  103. Bohnhorst B, Cech K, Peter C, Doerdelmann M. Oral versus nasal route for placing feeding tubes: no effect on hypoxemia and bradycardia in infants with apnea of prematurity. Neonatology. 2010;98(2):143–9.

    PubMed  Google Scholar 

  104. Henderson-Smart DJ, Osborn DA. Kinesthetic stimulation for preventing apnea in preterm infants. Cochrane Database Syst Rev. 2002;2:CD000373

    Google Scholar 

  105. Sammon MP, Darnall RA. Entrainment of respiration to rocking in premature infants: coherence analysis. J Appl Physiol. 1994;77:1548–54.

    PubMed  CAS  Google Scholar 

  106. Bloch-Salisbury E, Indic PP, Bednarek F, Paydarfar D. Stabilizing immature breathing patterns of preterm infants using stochastic mechanosensory stimulation. J Appl Physiol. 2009;107(4):1017–27.

    PubMed  Google Scholar 

  107. Marlier L, Gaugler C, Messer J. Olfactory stimulation prevents apnea in premature newborns. Pediatrics. 2005;115:83–8.

    PubMed  Google Scholar 

  108. Simakajornboon N, Beckerman RC, Mack C, Sharon D, Gozal D. Effect of supplemental oxygen on sleep architecture and cardiorespiratory events in preterm infants. Pediatrics. 2002;110:884–8.

    PubMed  Google Scholar 

  109. Flynn JT, Bancalari E, Snyder ES, et al. A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med. 1992;326:1050–4.

    PubMed  CAS  Google Scholar 

  110. Carlo WA, Finer NN, Walsh MC, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362(21):1959–69.

    PubMed  CAS  Google Scholar 

  111. Bifano EM, Smith F, Borer J. Relationship between determinants of oxygen delivery and respiratory abnormalities in preterm infants with anemia. J Pediatr. 1992;120:292–6.

    PubMed  CAS  Google Scholar 

  112. Joshi A, Gerhardt T, Shandloff P, Bancalari E. Blood transfusion effect on the respiratory pattern of preterm infants. Pediatrics. 1987;80:79–84.

    PubMed  CAS  Google Scholar 

  113. Blank JP, Sheagren TG, Vajaria J, Mangurten HH, Benawra RS, Puppala BL. The role of RBC transfusion in the premature infant. Am J Dis Child. 1984;138:831–3.

    PubMed  CAS  Google Scholar 

  114. Poets CF, Pauls U, Bohnhorst B. Effect of blood transfusion on apnea, bradycardia and hypoxemia in preterm infants. Eur J Pediatr. 1997;156:311–6.

    PubMed  CAS  Google Scholar 

  115. Westkamp E, Soditt V, Adrian S, Bohnhorst B, Groneck P, Poets CF. Blood transfusion in anemic infants with apnea of prematurity. Biol Neonate. 2002;82(4):228–32.

    PubMed  Google Scholar 

  116. Bell EF, Strauss R, Widness JA, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics. 2005;115:1685–91.

    PubMed  Google Scholar 

  117. Barrington KJ, Finer NN, Torok-Both G, Jamali F, Coutts RT. Dose-response relationship of doxapram in the therapy for refractory apnea of prematurity. Pediatrics. 1987;80:22–7.

    PubMed  CAS  Google Scholar 

  118. Poets CF, Darraj S, Bohnhorst B. Effect of doxapram on episodes of apnoea, bradycardia and hypoxaemia in preterm infants. Biol Neonate. 1999;76(4): 207–13.

    PubMed  CAS  Google Scholar 

  119. Sreenan C, Etches P, Demianczuk N, Robertson CMT. Isolated mental developmental delay in very low birth weight infants: association with prolonged doxapram therapy for apnea. J Pediatr. 2001;139: 832–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian F. Poets MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poets, C.F. (2012). Apnea of Prematurity. In: Kheirandish-Gozal, L., Gozal, D. (eds) Sleep Disordered Breathing in Children. Respiratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-725-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-725-9_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-724-2

  • Online ISBN: 978-1-60761-725-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics