Skip to main content

Burkitt Lymphoma and Leukemia

  • Chapter
  • First Online:
Adult Acute Lymphocytic Leukemia

Part of the book series: Contemporary Hematology ((CH))

  • 1384 Accesses

Abstract

Burkitt lymphoma and Burkitt leukemia are highly aggressive B-cell malignancies characterized genetically by constitutive activation of the c-myc oncogene and clinically by a rapid growth phase often with extranodal presentation including frequent central nervous system (CNS) involvement. The aggressiveness of this malignancy, with a tumor doubling time of 24–48 h, necessitates prompt initiation of therapy. The British surgeon Denis Burkitt first described this disease entity in 1958 after observing a clustering of cases of children with jaw tumors spanning central East Africa [1]. He found that while surgical resection was not particularly effective against the disease, chemotherapy could treat, and in some cases, cure these neoplasms. Survival rates improved significantly first in children through the use of shorter duration, dose-intensive systemic chemotherapy protocols with early prophylaxis/treatment of the CNS. Similar therapeutic regimens have been adapted in adults using intensive multi-agent chemotherapy plans, which have resulted in similarly improved long-term survival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burkitt, D. (1958). A sarcoma involving the jaws in African children. The British Journal of Surgery, 46, 218–223.

    PubMed  CAS  Google Scholar 

  2. Swerdlow, S. H., Campo, E., Harris, N. L., et al. (2008). WHO classification of tumours of hematopoietic and lymphoid tissues. Lyon: IARC.

    Google Scholar 

  3. Harris, N. L., Jaffe, E. S., Stein, H., et al. (1994). A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group. Blood, 84, 1361–1392.

    PubMed  CAS  Google Scholar 

  4. Harris, N. L., Jaffe, E. S., Diebold, J., et al. (1999). World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: Report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. Journal of Clinical Oncology, 17, 3835–3849.

    PubMed  CAS  Google Scholar 

  5. Bennett, J. M., Catovsky, D., Daniel, M. T., et al. (1976). Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. British Journal Haematology, 33, 451–458.

    CAS  Google Scholar 

  6. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood 89, 3909–3918, 1997.

    Google Scholar 

  7. Morton, L. M., Wang, S. S., Devesa, S. S., et al. (2006). Lymphoma incidence patterns by WHO subtype in the United States, 1992–2001. Blood, 107, 265–276.

    PubMed  CAS  Google Scholar 

  8. Orem, J., Mbidde, E. K., Lambert, B., et al. (2007). Burkitt’s lymphoma in Africa, a review of the epidemiology and etiology. African Health Sciences, 7, 166–175.

    PubMed  Google Scholar 

  9. Blinder, V. S., Chadburn, A., Furman, R. R., et al. (2008). Improving outcomes for patients with Burkitt lymphoma and HIV. AIDS Patient Care and STDs, 22, 175–187.

    PubMed  Google Scholar 

  10. Cote, T. R., Biggar, R. J., Rosenberg, P. S., et al. (1997). Non-Hodgkin’s lymphoma among people with AIDS: Incidence, presentation and public health burden. AIDS/Cancer Study Group. International Journal of Cancer, 73, 645–650.

    CAS  Google Scholar 

  11. Biggar, R. J., Chaturvedi, A. K., Goedert, J. J., et al. (2007). AIDS-related cancer and severity of immunosuppression in persons with AIDS. Journal of the National Cancer Institute, 99, 962–972.

    PubMed  Google Scholar 

  12. Oster, S. K., Ho, C. S., Soucie, E. L., et al. (2002). The myc oncogene: MarvelouslY Complex. Advances in Cancer Research, 84, 81–154.

    PubMed  CAS  Google Scholar 

  13. Li, Z., Van Calcar, S., Qu, C., et al. (2003). A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 8164–8169.

    PubMed  CAS  Google Scholar 

  14. Hecht, J. L., & Aster, J. C. (2000). Molecular biology of Burkitt’s lymphoma. Journal of Clinical Oncology, 18, 3707–3721.

    PubMed  CAS  Google Scholar 

  15. Vita, M., & Henriksson, M. (2006). The Myc oncoprotein as a therapeutic target for human cancer. Seminars in Cancer Biology, 16, 318–330.

    PubMed  CAS  Google Scholar 

  16. Neri, A., Barriga, F., Knowles, D. M., et al. (1988). Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 85, 2748–2752.

    PubMed  CAS  Google Scholar 

  17. Gerbitz, A., Mautner, J., Geltinger, C., et al. (1999). Deregulation of the proto-oncogene c-myc through t(8;22) translocation in Burkitt’s lymphoma. Oncogene, 18, 1745–1753.

    PubMed  CAS  Google Scholar 

  18. Blum, K. A., Lozanski, G., & Byrd, J. C. (2004). Adult Burkitt leukemia and lymphoma. Blood, 104, 3009–3020.

    PubMed  CAS  Google Scholar 

  19. Shiramizu, B., Barriga, F., Neequaye, J., et al. (1991). Patterns of chromosomal breakpoint locations in Burkitt’s lymphoma: Relevance to geography and Epstein-Barr virus association. Blood, 77, 1516–1526.

    PubMed  CAS  Google Scholar 

  20. Gutierrez, M. I., Bhatia, K., Barriga, F., et al. (1992). Molecular epidemiology of Burkitt’s lymphoma from South America: Differences in breakpoint location and Epstein-Barr virus association from tumors in other world regions. Blood, 79, 3261–3266.

    PubMed  CAS  Google Scholar 

  21. Bhatia, K., Spangler, G., Gaidano, G., et al. (1994). Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood, 84, 883–888.

    PubMed  CAS  Google Scholar 

  22. Thorley-Lawson, D. A., & Gross, A. (2004). Persistence of the Epstein-Barr virus and the origins of associated lymphomas. The New England Journal of Medicine, 350, 1328–1337.

    PubMed  CAS  Google Scholar 

  23. van den Bosch, C. A. (2004). Is endemic Burkitt’s lymphoma an alliance between three infections and a tumour promoter? The Lancet Oncology, 5, 738–746.

    PubMed  Google Scholar 

  24. Kutok, J. L., & Wang, F. (2006). Spectrum of Epstein-Barr virus-associated diseases. Annual Review of Pathology, 1, 375–404.

    PubMed  CAS  Google Scholar 

  25. Brady, G., MacArthur, G. J., & Farrell, P. J. (2007). Epstein-Barr virus and Burkitt lymphoma. Journal of Clinical Pathology, 60, 1397–1402.

    PubMed  CAS  Google Scholar 

  26. Epstein, M. A., Achong, B. G., & Barr, Y. M. (1964). Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet, 1, 702–703.

    PubMed  CAS  Google Scholar 

  27. Wright, D. H. (1999). What is Burkitt’s lymphoma and when is it endemic? Blood, 93, 758.

    PubMed  CAS  Google Scholar 

  28. Anwar, N., Kingma, D. W., Bloch, A. R., et al. (1995). The investigation of Epstein-Barr viral sequences in 41 cases of Burkitt’s lymphoma from Egypt: Epidemiologic correlations. Cancer, 76, 1245–1252.

    PubMed  CAS  Google Scholar 

  29. Klumb, C. E., Hassan, R., De Oliveira, D. E., et al. (2004). Geographic variation in Epstein-Barr virus-associated Burkitt’s lymphoma in children from Brazil. International Journal of Cancer, 108, 66–70.

    Google Scholar 

  30. Kennedy, G., Komano, J., & Sugden, B. (2003). Epstein-Barr virus provides a survival factor to Burkitt’s lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 100, 14269–14274.

    PubMed  CAS  Google Scholar 

  31. Humme, S., Reisbach, G., Feederle, R., et al. (2003). The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proceedings of the National Academy of Sciences of the United States of America, 100, 10989–10994.

    PubMed  CAS  Google Scholar 

  32. Komano, J., Maruo, S., Kurozumi, K., et al. (1999). Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. Journal of Virology, 73, 9827–9831.

    PubMed  CAS  Google Scholar 

  33. Niller, H. H., Salamon, D., Ilg, K., et al. (2003). The in vivo binding site for oncoprotein c-Myc in the promoter for Epstein-Barr virus (EBV) encoding RNA (EBER) 1 suggests a specific role for EBV in lymphomagenesis. Medical Science Monitor, 9, HY1–HY9.

    PubMed  CAS  Google Scholar 

  34. Caldwell, R. G., Wilson, J. B., Anderson, S. J., et al. (1998). Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity, 9, 405–411.

    PubMed  CAS  Google Scholar 

  35. Spanopoulou, E., Roman, C. A., Corcoran, L. M., et al. (1994). Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes & Development, 8, 1030–1042.

    CAS  Google Scholar 

  36. Mombaerts, P., Iacomini, J., Johnson, R. S., et al. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 68, 869–877.

    PubMed  CAS  Google Scholar 

  37. Fruehling, S., & Longnecker, R. (1997). The immunoreceptor tyrosine-based activation motif of Epstein-Barr virus LMP2A is essential for blocking BCR-mediated signal transduction. Virology, 235, 241–251.

    PubMed  CAS  Google Scholar 

  38. Fruehling, S., Swart, R., Dolwick, K. M., et al. (1998). Tyrosine 112 of latent membrane protein 2A is essential for protein tyrosine kinase loading and regulation of Epstein-Barr virus latency. Journal of Virology, 72, 7796–7806.

    PubMed  CAS  Google Scholar 

  39. Ikeda, A., Merchant, M., Lev, L., et al. (2004). Latent membrane protein 2A, a viral B cell receptor homologue, induces CD5+ B-1 cell development. Journal of Immunology, 172, 5329–5337.

    CAS  Google Scholar 

  40. Engels, N., Merchant, M., Pappu, R., et al. (2001). Epstein-Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module. The Journal of Experimental Medicine, 194, 255–264.

    PubMed  CAS  Google Scholar 

  41. Fukuda, M., & Longnecker, R. (2004). Latent membrane protein 2A inhibits transforming growth factor-beta 1-induced apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. Journal of Virology, 78, 1697–1705.

    PubMed  CAS  Google Scholar 

  42. Merchant, M., & Longnecker, R. (2001). LMP2A survival and developmental signals are transmitted through Btk-dependent and Btk-independent pathways. Virology, 291, 46–54.

    PubMed  CAS  Google Scholar 

  43. Portis, T., & Longnecker, R. (2004). Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene, 23, 8619–8628.

    PubMed  CAS  Google Scholar 

  44. Swart, R., Ruf, I. K., Sample, J., et al. (2000). Latent membrane protein 2A-mediated effects on the phosphatidylinositol 3-Kinase/Akt pathway. Journal of Virology, 74, 10838–10845.

    PubMed  CAS  Google Scholar 

  45. Moody, C. A., Scott, R. S., Amirghahari, N., et al. (2005). Modulation of the cell growth regulator mTOR by Epstein-Barr virus-encoded LMP2A. Journal of Virology, 79, 5499–5506.

    PubMed  CAS  Google Scholar 

  46. Haluska, F. G., Finver, S., Tsujimoto, Y., et al. (1986). The t(8; 14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature, 324, 158–161.

    PubMed  CAS  Google Scholar 

  47. Haluska, F. G., Tsujimoto, Y., & Croce, C. M. (1987). The t(8;14) chromosome translocation of the Burkitt lymphoma cell line Daudi occurred during immunoglobulin gene rearrangement and involved the heavy chain diversity region. Proceedings of the National Academy of Sciences of the United States of America, 84, 6835–6839.

    PubMed  CAS  Google Scholar 

  48. Tamaru, J., Hummel, M., Marafioti, T., et al. (1995). Burkitt’s lymphomas express VH genes with a moderate number of antigen-selected somatic mutations. The American Journal of Pathology, 147, 1398–1407.

    PubMed  CAS  Google Scholar 

  49. Bellan, C., Lazzi, S., Hummel, M., et al. (2005). Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood, 106, 1031–1036.

    PubMed  CAS  Google Scholar 

  50. Dave, S. S., Fu, K., Wright, G. W., et al. (2006). Molecular diagnosis of Burkitt’s lymphoma. The New England Journal of Medicine, 354, 2431–2442.

    PubMed  CAS  Google Scholar 

  51. Hummel, M., Bentink, S., Berger, H., et al. (2006). A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. The New England Journal of Medicine, 354, 2419–2430.

    PubMed  CAS  Google Scholar 

  52. Wright, G. H. (1971). Burkitt’s Lymphoma: A review of the pathology, immunology and possible aetiological factors. New York: Appleton-Century-Crofts.

    Google Scholar 

  53. Perkins, A. S., & Friedberg, J. W. (2008). Burkitt lymphoma in adults. Hematology American Society of Hematology Educcation Program, 2008, 341–348.

    Google Scholar 

  54. Raphael, M., Gentilhomme, O., Tulliez, M., et al. (1991). Histopathologic features of high-grade non-Hodgkin’s lymphomas in acquired immunodeficiency syndrome. The French Study Group of Pathology for Human Immunodeficiency Virus-Associated Tumors. Archives of Pathology & Laboratory Medicine, 115, 15–20.

    CAS  Google Scholar 

  55. Nakamura, N., Nakamine, H., Tamaru, J., et al. (2002). The distinction between Burkitt lymphoma and diffuse large B-Cell lymphoma with c-myc rearrangement. Modern Pathology, 15, 771–776.

    PubMed  Google Scholar 

  56. Haralambieva, E., Boerma, E. J., van Imhoff, G. W., et al. (2005). Clinical, immunophenotypic, and genetic analysis of adult lymphomas with morphologic features of Burkitt lymphoma. The American Journal of Surgical Pathology, 29, 1086–1094.

    PubMed  Google Scholar 

  57. Einerson, R. R., Law, M. E., Blair, H. E., et al. (2006). Novel FISH probes designed to detect IGK-MYC and IGL-MYC rearrangements in B-cell lineage malignancy identify a new breakpoint cluster region designated BVR2. Leukemia, 20, 1790–1799.

    PubMed  CAS  Google Scholar 

  58. Leucci, E., Cocco, M., Onnis, A., et al. (2008). MYC translocation-negative classical Burkitt lymphoma cases: An alternative pathogenetic mechanism involving miRNA deregulation. The Journal of Pathology, 216, 440–450.

    PubMed  CAS  Google Scholar 

  59. He, L., He, X., Lim, L. P., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134.

    PubMed  CAS  Google Scholar 

  60. Savage, K. J., Johnson, N. A., Ben-Neriah, S., et al. (2009). MYC gene rearrangements are associated with a poor prognosis in diffuse large B-cell lymphoma patients treated with R-CHOP chemotherapy. Blood, 114, 3533–3537.

    Google Scholar 

  61. Berglund, M., Thunberg, U., Amini, R. M., et al. (2005). Evaluation of immunophenotype in diffuse large B-cell lymphoma and its impact on prognosis. Modern Pathology, 18, 1113–1120.

    PubMed  CAS  Google Scholar 

  62. Colomo, L., Lopez-Guillermo, A., Perales, M., et al. (2003). Clinical impact of the differentiation profile assessed by immunophenotyping in patients with diffuse large B-cell lymphoma. Blood, 101, 78–84.

    PubMed  CAS  Google Scholar 

  63. Gascoyne, R. D., Adomat, S. A., Krajewski, S., et al. (1997). Prognostic significance of Bcl-2 protein expression and Bcl-2 gene rearrangement in diffuse aggressive non-Hodgkin’s lymphoma. Blood, 90, 244–251.

    PubMed  CAS  Google Scholar 

  64. McClure, R. F., Remstein, E. D., Macon, W. R., et al. (2005). Adult B-cell lymphomas with burkitt-like morphology are phenotypically and genotypically heterogeneous with aggressive clinical behavior. The American Journal of Surgical Pathology, 29, 1652–1660.

    PubMed  Google Scholar 

  65. Colomo, L., Loong, F., Rives, S., et al. (2004). Diffuse large B-cell lymphomas with plasmablastic differentiation represent a heterogeneous group of disease entities. The American Journal of Surgical Pathology, 28, 736–747.

    PubMed  Google Scholar 

  66. Le Gouill, S., Talmant, P., Touzeau, C., et al. (2007). The clinical presentation and prognosis of diffuse large B-cell lymphoma with t(14;18) and 8q24/c-MYC rearrangement. Haematologica, 92, 1335–1342.

    PubMed  Google Scholar 

  67. Kanungo, A., Medeiros, L. J., Abruzzo, L. V., et al. (2006). Lymphoid neoplasms associated with concurrent t(14;18) and 8q24/c-MYC translocation generally have a poor prognosis. Modern Pathology, 19, 25–33.

    PubMed  CAS  Google Scholar 

  68. O’Conor, G. T. (1963). Significant aspects of childhood lymphoma in Africa. Cancer Research, 23, 1514–1518.

    PubMed  Google Scholar 

  69. Armitage, J. O., & Weisenburger, D. D. (1998). New approach to classifying non-Hodgkin’s lymphomas: Clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. Journal of Clinical Oncology, 16, 2780–2795.

    PubMed  CAS  Google Scholar 

  70. Jaffe, E. S., Harris, N. L., Stein, H., et al. (2001). World Health Organization classification of tumours. Lyon: IARC.

    Google Scholar 

  71. Davi, F., Delecluse, H. J., Guiet, P., et al. (1998). Burkitt-like lymphomas in AIDS patients: Characterization within a series of 103 human immunodeficiency virus-associated non-Hodgkin’s lymphomas. Burkitt’s Lymphoma Study Group. Journal of Clinical Oncology, 16, 3788–3795.

    PubMed  CAS  Google Scholar 

  72. Salzburg, J., Burkhardt, B., Zimmermann, M., et al. (2007). Prevalence, clinical pattern, and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: A Berlin-Frankfurt-Munster Group Report. Journal of Clinical Oncology, 25, 3915–3922.

    PubMed  Google Scholar 

  73. Galicier, L., Fieschi, C., Borie, R., et al. (2007). Intensive chemotherapy regimen (LMB86) for St Jude stage IV AIDS-related Burkitt lymphoma/leukemia: A prospective study. Blood, 110, 2846–2854.

    PubMed  CAS  Google Scholar 

  74. Ostronoff, M., Soussain, C., Zambon, E., et al. (1992). Burkitt’s lymphoma in adults: A retrospective study of 46 cases. Nouvelle Revue Française d’Hématologie, 34, 389–397.

    PubMed  CAS  Google Scholar 

  75. Wright, D. H., & Pike, P. A. (1968). Bone marrow involvement in Burkitt’s tumour. British Journal Haematology, 15, 409–416.

    CAS  Google Scholar 

  76. Magrath, I. T., & Sariban, E. (1985). Clinical features of Burkitt’s lymphoma in the USA. IARC Sci Publ, 60, 119–127.

    PubMed  Google Scholar 

  77. van der Burg, M., Barendregt, B. H., van Wering, E. R., et al. (2001). The presence of somatic mutations in immunoglobulin genes of B cell acute lymphoblastic leukemia (ALL-L3) supports assignment as Burkitt’s leukemia-lymphoma rather than B-lineage ALL. Leukemia, 15, 1141–1143.

    PubMed  Google Scholar 

  78. Lister, T. A., Crowther, D., Sutcliffe, S. B., et al. (1989). Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. Journal of Clinical Oncology, 7, 1630–1636.

    PubMed  CAS  Google Scholar 

  79. Murphy, S. B. (1978). Childhood non-Hodgkin’s lymphoma. The New England Journal of Medicine, 299, 1446–1448.

    PubMed  CAS  Google Scholar 

  80. www.nccn.org

  81. Lubel, J. S., Testro, A. G., & Angus, P. W. (2007). Hepatitis B virus reactivation following immunosuppressive therapy: Guidelines for prevention and management. Internal Medicine Journal, 37, 705–712.

    PubMed  CAS  Google Scholar 

  82. Saab, S., Dong, M. H., Joseph, T. A., et al. (2007). Hepatitis B prophylaxis in patients undergoing chemotherapy for lymphoma: A decision analysis model. Hepatology, 46, 1049–1056.

    PubMed  CAS  Google Scholar 

  83. Ziegler, J. L. (1972). Chemotherapy of Burkitt’s lymphoma. Cancer, 30, 1534–1540.

    PubMed  CAS  Google Scholar 

  84. Anderson, J. R., Jenkin, R. D., Wilson, J. F., et al. (1993). Long-term follow-up of patients treated with COMP or LSA2L2 therapy for childhood non-Hodgkin’s lymphoma: A report of CCG-551 from the Childrens Cancer Group. Journal of Clinical Oncology, 11, 1024–1032.

    PubMed  CAS  Google Scholar 

  85. Ziegler, J. L. (1977). Treatment results of 54 American patients with Burkitt’s lymphoma are similar to the African experience. The New England Journal of Medicine, 297, 75–80.

    PubMed  CAS  Google Scholar 

  86. Murphy, S. B., Bowman, W. P., Abromowitch, M., et al. (1986). Results of treatment of advanced-stage Burkitt’s lymphoma and B cell (SIg+) acute lymphoblastic leukemia with high-dose fractionated cyclophosphamide and coordinated high-dose methotrexate and cytarabine. Journal of Clinical Oncology, 4, 1732–1739.

    PubMed  CAS  Google Scholar 

  87. Bowman, W. P., Shuster, J. J., Cook, B., et al. (1996). Improved survival for children with B-cell acute lymphoblastic leukemia and stage IV small noncleaved-cell lymphoma: A pediatric oncology group study. Journal of Clinical Oncology, 14, 1252–1261.

    PubMed  CAS  Google Scholar 

  88. Schwenn, M. R., Blattner, S. R., Lynch, E., et al. (1991). HiC-COM: A 2-month intensive chemotherapy regimen for children with stage III and IV Burkitt’s lymphoma and B-cell acute lymphoblastic leukemia. Journal of Clinical Oncology, 9, 133–138.

    PubMed  CAS  Google Scholar 

  89. Reiter, A., Schrappe, M., Ludwig, W. D., et al. (1992). Favorable outcome of B-cell acute lymphoblastic leukemia in childhood: A report of three consecutive studies of the BFM group. Blood, 80, 2471–2478.

    PubMed  CAS  Google Scholar 

  90. Soussain, C., Patte, C., Ostronoff, M., et al. (1995). Small noncleaved cell lymphoma and leukemia in adults. A retrospective study of 65 adults treated with the LMB pediatric protocols. Blood, 85, 664–674.

    PubMed  CAS  Google Scholar 

  91. Patte, C., Auperin, A., Michon, J., et al. (2001). The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: Highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood, 97(11), 3370–3379.

    PubMed  CAS  Google Scholar 

  92. Patte, C., Auperin, A., Gerrard, M., et al. (2007). Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: It is possible to reduce treatment for the early responding patients. Blood, 109, 2773–2780.

    PubMed  CAS  Google Scholar 

  93. Cairo, M. S., Gerrard, M., Sposto, R., et al. (2007). Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood, 109, 2736–2743.

    PubMed  CAS  Google Scholar 

  94. Hoelzer, D., Ludwig, W. D., Thiel, E., et al. (1996). Improved outcome in adult B-cell acute lymphoblastic leukemia. Blood, 87, 495–508.

    PubMed  CAS  Google Scholar 

  95. Divine, M., Casassus, P., Koscielny, S., et al. (2005). Burkitt lymphoma in adults: A prospective study of 72 patients treated with an adapted pediatric LMB protocol. Annals of Oncology, 16, 1928–1935.

    PubMed  CAS  Google Scholar 

  96. Magrath, I., Adde, M., Shad, A., et al. (1996). Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. Journal of Clinical Oncology, 14, 925–934.

    PubMed  CAS  Google Scholar 

  97. Mead, G. M., Sydes, M. R., Walewski, J., et al. (2002). An international evaluation of CODOX-M and CODOX-M alternating with IVAC in adult Burkitt’s lymphoma: Results of United Kingdom Lymphoma Group LY06 study. Annals of Oncology, 13, 1264–1274.

    PubMed  CAS  Google Scholar 

  98. Lacasce, A., Howard, O., Lib, S., et al. (2004). Modified magrath regimens for adults with Burkitt and Burkitt-like lymphomas: Preserved efficacy with decreased toxicity. Leukaemia & Lymphoma, 45, 761–767.

    CAS  Google Scholar 

  99. Mead, G. M., Barrans, S. L., Qian, W., et al. (2008). A prospective clinicopathologic study of dose-modified CODOX-M/IVAC in patients with sporadic Burkitt lymphoma defined using cytogenetic and immunophenotypic criteria (MRC/NCRI LY10 trial). Blood, 112, 2248–2260.

    PubMed  CAS  Google Scholar 

  100. Thomas, D. A., Cortes, J., O’Brien, S., et al. (1999). Hyper-CVAD program in Burkitt’s-type adult acute lymphoblastic leukemia. Journal of Clinical Oncology, 17, 2461–2470.

    PubMed  CAS  Google Scholar 

  101. Thomas, D. A., Faderl, S., O’Brien, S., et al. (2006). Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer, 106, 1569–1580.

    PubMed  CAS  Google Scholar 

  102. Lee, E. J., Petroni, G. R., Schiffer, C. A., et al. (2001). Brief-duration high-intensity chemotherapy for patients with small noncleaved-cell lymphoma or FAB L3 acute lymphocytic leukemia: Results of cancer and leukemia group B study 9251. Journal of Clinical Oncology, 19, 4014–4022.

    PubMed  CAS  Google Scholar 

  103. Little, R. F., Pittaluga, S., Grant, N., et al. (2003). Highly effective treatment of acquired immunodeficiency syndrome-related lymphoma with dose-adjusted EPOCH: Impact of antiretroviral therapy suspension and tumor biology. Blood, 101, 4653–4659.

    PubMed  CAS  Google Scholar 

  104. Bernstein, J. I., Coleman, C. N., Strickler, J. G., et al. (1986). Combined modality therapy for adults with small noncleaved cell lymphoma (Burkitt’s and non-Burkitt’s types). Journal of Clinical Oncology, 4, 847–858.

    PubMed  CAS  Google Scholar 

  105. McMaster, M. L., Greer, J. P., Greco, F. A., et al. (1991). Effective treatment of small-noncleaved-cell lymphoma with high-intensity, brief-duration chemotherapy. Journal of Clinical Oncology, 9, 941–946.

    PubMed  CAS  Google Scholar 

  106. Feugier, P., Van Hoof, A., Sebban, C., et al. (2005). Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: A study by the Groupe d’Etude des Lymphomes de l’Adulte. Journal of Clinical Oncology, 23, 4117–4126.

    PubMed  CAS  Google Scholar 

  107. Marcus, R., Imrie, K., Solal-Celigny, P., et al. (2008). Phase III study of R-CVP compared with cyclophosphamide, vincristine, and prednisone alone in patients with previously untreated advanced follicular lymphoma. Journal of Clinical Oncology, 26, 4579–4586.

    PubMed  CAS  Google Scholar 

  108. Glennie, M. J., French, R. R., Cragg, M. S., et al. (2007). Mechanisms of killing by anti-CD20 monoclonal antibodies. Molecular Immunology, 44, 3823–3837.

    PubMed  CAS  Google Scholar 

  109. Turzanski, J., Daniels, I., & Haynes, A. P. (2009). Involvement of macroautophagy in the caspase-independent killing of Burkitt lymphoma cell lines by rituximab. British Journal of Haematology, 145(1), 137–140.

    PubMed  CAS  Google Scholar 

  110. Daniels, I., Abulayha, A. M., Thomson, B. J., et al. (2006). Caspase-independent killing of Burkitt lymphoma cell lines by rituximab. Apoptosis, 11, 1013–1023.

    PubMed  CAS  Google Scholar 

  111. Vega, M. I., Huerta-Yepez, S., Jazirehi, A. R., et al. (2005). Rituximab (chimeric anti-CD20) sensitizes B-NHL cell lines to Fas-induced apoptosis. Oncogene, 24, 8114–8127.

    PubMed  CAS  Google Scholar 

  112. Jazirehi, A. R., Huerta-Yepez, S., Cheng, G., et al. (2005). Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin’s lymphoma B-cell lines: Role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Research, 65, 264–276.

    PubMed  CAS  Google Scholar 

  113. http://www.clinicaltrials.gov/ct2/show/NCT00392990?term=rituximab+and+burkitt%27s+lymphoma&rank=6

  114. http://www.clinicaltrials.gov/ct2/show/NCT00388193?term=rituximab+and+burkitt%27s+lymphoma&rank=4

  115. http://clinicaltrials.gov/ct2/show/NCT00039130?cond=%22Burkitt+Lymphoma%22&rank=6

    Google Scholar 

  116. Bower, M., Gazzard, B., Mandalia, S., et al. (2005). A prognostic index for systemic AIDS-related non-Hodgkin lymphoma treated in the era of highly active antiretroviral therapy. Annals of Internal Medicine, 143, 265–273.

    PubMed  Google Scholar 

  117. Lim, S. T., Karim, R., Nathwani, B. N., et al. (2005). AIDS-related Burkitt’s lymphoma versus diffuse large-cell lymphoma in the pre-highly active antiretroviral therapy (HAART) and HAART eras: Significant differences in survival with standard chemotherapy. Journal of Clinical Oncology, 23, 4430–4438.

    PubMed  CAS  Google Scholar 

  118. Spina, M., Simonelli, C., Talamini, R., et al. (2005). Patients with HIV with Burkitt’s lymphoma have a worse outcome than those with diffuse large-cell lymphoma also in the highly active antiretroviral therapy era. Journal of Clinical Oncology, 23, 8132–8133. author reply 8133-4.

    PubMed  Google Scholar 

  119. Wang, E. S., Straus, D. J., Teruya-Feldstein, J., et al. (2003). Intensive chemotherapy with cyclophosphamide, doxorubicin, high-dose methotrexate/ifosfamide, etoposide, and high-dose cytarabine (CODOX-M/IVAC) for human immunodeficiency virus-associated Burkitt lymphoma. Cancer, 98, 1196–1205.

    PubMed  CAS  Google Scholar 

  120. Cortes, J., Thomas, D., Rios, A., et al. (2002). Hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone and highly active antiretroviral therapy for patients with acquired immunodeficiency syndrome-related Burkitt lymphoma/leukemia. Cancer, 94, 1492–1499.

    PubMed  CAS  Google Scholar 

  121. Oriol, A., Ribera, J. M., Esteve, J., et al. (2003). Lack of influence of human immunodeficiency virus infection status in the response to therapy and survival of adult patients with mature B-cell lymphoma or leukemia. Results of the PETHEMA-LAL3/97 study. Haematologica, 88, 445–453.

    PubMed  Google Scholar 

  122. Kaplan, L. D., Lee, J. Y., Ambinder, R. F., et al. (2005). Rituximab does not improve clinical outcome in a randomized phase 3 trial of CHOP with or without rituximab in patients with HIV-associated non-Hodgkin lymphoma: AIDS-Malignancies Consortium Trial 010. Blood, 106, 1538–1543.

    PubMed  CAS  Google Scholar 

  123. Oriol, A., Ribera, J. M., Bergua, J., et al. (2008). High-dose chemotherapy and immunotherapy in adult Burkitt lymphoma: Comparison of results in human immunodeficiency virus-infected and noninfected patients. Cancer, 113, 117–125.

    PubMed  CAS  Google Scholar 

  124. Spina, M., Jaeger, U., Sparano, J. A., et al. (2005). Rituximab plus infusional cyclophosphamide, doxorubicin, and etoposide in HIV-associated non-Hodgkin lymphoma: Pooled results from 3 phase 2 trials. Blood, 105, 1891–1897.

    PubMed  CAS  Google Scholar 

  125. Dunleavy, K., Healey-Bird, B. R., Pittaluga, S., et al. (2007). Efficacy and toxicity of dose-adjusted EPOCH-Rituximab in adults with newly diagnosed Burkitt lymphoma. JCO, 25, 8035.

    Google Scholar 

  126. Levine, A. M., Lee, J., Kaplan, L., et al. (2008). Efficacy and toxicity of concurrent rituximab plus infusional EPOCH in HIV-associated lymphoma: AIDS Malignancy Consortium Trial 034. JCO, 26, 8527.

    Google Scholar 

  127. Hummel, M., Reiter, S., Adam, K., et al. (2008). Effective treatment and prophylaxis of hyperuricemia and impaired renal function in tumor lysis syndrome with low doses of rasburicase. European Journal of Haematology, 80, 331–336.

    PubMed  CAS  Google Scholar 

  128. Coiffier, B., Altman, A., Pui, C. H., et al. (2008). Guidelines for the management of pediatric and adult tumor lysis syndrome: An evidence-based review. Journal of Clinical Oncology, 26, 2767–2778.

    PubMed  CAS  Google Scholar 

  129. Goldman, S. C., Holcenberg, J. S., Finklestein, J. Z., et al. (2001). A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood, 97, 2998–3003.

    PubMed  CAS  Google Scholar 

  130. Trifilio, S., Gordon, L., Singhal, S., et al. (2006). Reduced-dose rasburicase (recombinant xanthine oxidase) in adult cancer patients with hyperuricemia. Bone Marrow Transplantation, 37, 997–1001.

    PubMed  CAS  Google Scholar 

  131. Griffin, T. C., Weitzman, S., Weinstein, H., et al. (2008). A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: A report from the Children’s Oncology Group. Pediatric Blood Cancer, 52(2), 177–181.

    Google Scholar 

  132. Sweetenham, J. W., Pearce, R., Taghipour, G., et al. (1996). Adult Burkitt’s and Burkitt-like non-Hodgkin’s lymphoma–outcome for patients treated with high-dose therapy and autologous stem-cell transplantation in first remission or at relapse: Results from the European Group for Blood and Marrow Transplantation. Journal of Clinical Oncology, 14, 2465–2472.

    PubMed  CAS  Google Scholar 

  133. Nademanee, A., Molina, A., O’Donnell, M. R., et al. (1997). Results of high-dose therapy and autologous bone marrow/stem cell transplantation during remission in poor-risk intermediate- and high-grade lymphoma: International index high and high-intermediate risk group. Blood, 90, 3844–3852.

    PubMed  CAS  Google Scholar 

  134. Nademanee, A., Molina, A., Dagis, A., et al. (2000). Autologous stem-cell transplantation for poor-risk and relapsed intermediate- and high-grade non-Hodgkin’s lymphoma. Clinical Lymphoma, 1, 46–54.

    PubMed  CAS  Google Scholar 

  135. Bureo, E., Ortega, J. J., Munoz, A., et al. (1995). Bone marrow transplantation in 46 pediatric patients with non-Hodgkin’s lymphoma. Spanish Working Party for Bone Marrow Transplantation in Children. Bone Marrow Transplantation, 15, 353–359.

    PubMed  CAS  Google Scholar 

  136. Peniket, A. J., Ruiz de Elvira, M. C., Taghipour, G., et al. (2003). An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: Allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplantation, 31, 667–678.

    PubMed  CAS  Google Scholar 

  137. McMahon, S. B., Wood, M. A., & Cole, M. D. (2000). The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Molecular and Cellular Biology, 20, 556–562.

    PubMed  CAS  Google Scholar 

  138. Patel, J. H., Du, Y., Ard, P. G., et al. (2004). The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Molecular and Cellular Biology, 24, 10826–10834.

    PubMed  CAS  Google Scholar 

  139. Kano, Y., Akutsu, M., Tsunoda, S., et al. (2007). Cytotoxic effects of histone deacetylase inhibitor FK228 (depsipeptide, formally named FR901228) in combination with conventional anti-leukemia/lymphoma agents against human leukemia/lymphoma cell lines. Investigational New Drugs, 25, 31–40.

    PubMed  CAS  Google Scholar 

  140. Zou, P., Kawada, J., Pesnicak, L., et al. (2007). Bortezomib induces apoptosis of Epstein-Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. Journal of Virology, 81, 10029–10036.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Evens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

David, K.A., Roberts, M., Peterson, L.C., Evens, A.M. (2011). Burkitt Lymphoma and Leukemia. In: Advani, A., Lazarus, H. (eds) Adult Acute Lymphocytic Leukemia. Contemporary Hematology. Humana Press. https://doi.org/10.1007/978-1-60761-707-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-707-5_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-706-8

  • Online ISBN: 978-1-60761-707-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics