Skip to main content

Thoracic Malignancies

  • Chapter
  • First Online:
  • 2169 Accesses

Part of the book series: Respiratory Medicine ((RM))

Abstract

Lung cancer is the leading cause of cancer death in the U.S. and in the world. Individuals with chronic obstructive pulmonary disease (COPD) are disproportionately affected by lung cancer, even after adjustment for smoking history and other factors. In the Lung Health Study, lung cancer was the leading overall cause of death in follow-up of individuals with mild to moderate COPD. The presence of COPD and lung function impairment may significantly affect treatment options and outcomes after the diagnosis of lung cancer. Thus, lung cancer is a significant comorbidity of COPD. The relation between COPD and lung cancer has also provoked interest in common genetic susceptibilities and pathogenetic mechanisms with hopes of gaining insight into these two common diseases. This chapter will examine the epidemiology of lung cancer in COPD, the relationship between emphysema and lung cancer, what is currently known about the genetics and pathophysiology of lung cancer in COPD, and aspects of lung cancer management and outcomes in relation to the presence of COPD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anthonisen NR, Skeans MA, Wise RA, et al. The effects of a smoking cessation intervention on 14.5 year mortality: a randomized clinical trial. Ann Intern Med. 2005;142:233–9.

    PubMed  Google Scholar 

  2. Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease: a prospective, matched, controlled study. Ann Intern Med. 1986;105:503–7.

    PubMed  CAS  Google Scholar 

  3. Tockman MS, Anthonisen NR, Wright E, et al. Airways obstruction and the risk for lung cancer. Ann Intern Med. 1987;106:512–8.

    PubMed  CAS  Google Scholar 

  4. Young RP, Hopkins RJ, Christmas T, et al. COPD prevalence is increased in lung cancer, independent of age, sex, and smoking history. Eur Respir J. 2009;34:380–6.

    Article  PubMed  CAS  Google Scholar 

  5. Rodríguez LA, Wallander M-A, Martín-Merino E, et al. Heart failure, myocardial infarction, lung cancer and death in COPD patients: a UK primary care study. Respir Med. 2010;104:1691–9.

    Article  PubMed  Google Scholar 

  6. Koshiol J, Rotunno M, Consonni D, et al. Chronic obstructive pulmonary disease and altered risk of lung cancer in a population-based case-control study. PLoS One. 2009;4:e7380.

    Article  PubMed  CAS  Google Scholar 

  7. Turner MC, Chen Y, Krewski D, et al. Chronic obstructive pulmonary disease is associated with lung cancer mortality in a prospective study of never smokers. Am J Respir Crit Care Med. 2007;176:285–90.

    Article  PubMed  Google Scholar 

  8. Islam SS, Schottenfeld D. Declining FEV1 and chronic productive cough in cigarette smokers: a 25-year prospective study of lung cancer incidence in Tecumseh, Michigan. Cancer Epidemiol Biomarkers Prev. 1994;3:289–98.

    PubMed  CAS  Google Scholar 

  9. Kuller LH, Ockene J, Meilahn E, et al. Relation of forced expiratory volume in one second (FEV1) to lung cancer mortality in the Multiple Risk Factor Intervention Trial (MRFIT). Am J Epidemiol. 1990;132:265–74.

    PubMed  CAS  Google Scholar 

  10. Purdue MP, Gold L, Järvhom B, et al. Impaired lung function and lung cancer incidence in a cohort of Swedish construction workers. Thorax. 2007;62:51–6.

    Article  PubMed  Google Scholar 

  11. Mannino DM, Aguayo SM, Petty TL, et al. Low lung function and incident lung cancer in the United States: data from the First National Health and Nutrition Examination Survey follow-up. Arch Intern Med. 2003;163:1475–80.

    Article  PubMed  Google Scholar 

  12. Wasswa-Kintu S, Gan WQ, Man SF, et al. Relationship between reduced forced expiratory volume in one second and the risk of lung cancer: a systematic review and meta-analysis. Thorax. 2005;60:570–5.

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz AG, Cote ML, Wenzlaff AS, et al. Chronic obstructive lung diseases and risk of non-small cell lung cancer in women. J Thorac Oncol. 2009;4:291–9.

    Article  PubMed  Google Scholar 

  14. Kiri VA, Soriano JB, Visick G, et al. Recent trends in lung cancer and its association with COPD: an analysis using the UK GP Research Database. Prim Care Resp J. 2010;19:57–61.

    Article  Google Scholar 

  15. Peto R, Speizer FE, Cochrane AL, et al. The relevance in adults of air-flow obstruction, but not of mucus hypersecretion, to mortality from chronic lung disease: results from 20 years of prospective observation. Am Rev Respir Dis. 1983;128:491–500.

    PubMed  CAS  Google Scholar 

  16. Lange P, Parner J, Prescott E, et al. Chronic bronchitis in an elderly population. Age Ageing. 2003;32:636–42.

    Article  PubMed  Google Scholar 

  17. de Torres JP, Bastarrika G, Wisnivesky JP, et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest. 2007;132:1932–8.

    Article  PubMed  Google Scholar 

  18. Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178:738–44.

    Article  PubMed  Google Scholar 

  19. Maldonado F, Bartholmai BJ, Swensen SJ, et al. Are airflow obstruction and radiographic evidence of emphysema risk factors for lung cancer? A nested case-control study using quantitative emphysema analysis. Chest. 2010;138:1295–302.

    Article  PubMed  Google Scholar 

  20. Brown DW, Young KE, Anda RF, et al. Asthma and risk of death from lung cancer: NHANES II Mortality Study. J Asthma. 2005;42:597–600.

    Article  PubMed  Google Scholar 

  21. Ramanakumar AV, Parent M-E, Menzies D, et al. Risk of lung cancer following nonmalignant respiratory conditions: evidence from two case-control studies in Montreal, Canada. Lung Cancer. 2006;53:5–12.

    Article  PubMed  Google Scholar 

  22. Wu AH, Fontham ET, Reynolds P, et al. Previous lung disease and risk of lung cancer among lifetime nonsmoking women in the United States. Am J Epidemiol. 1995;141:1023–32.

    PubMed  CAS  Google Scholar 

  23. Santillan AA, Camargo CA, Colditz GA. A meta-analysis of asthma and risk of lung cancer (United States). Cancer Causes Control. 2003;14:327–34.

    Article  PubMed  Google Scholar 

  24. González-Pérez A, Fernández-Vidaurre C, Rueda A, et al. Cancer incidence in a general ­population of asthma patients. Pharmacoepidemiol Drug Safety. 2006;15:131–8.

    Article  Google Scholar 

  25. Huovinen E, Kaprio J, Vesterinen E, et al. Mortality of adults with asthma: a prospective cohort study. Thorax. 1997;52:49–54.

    Article  PubMed  CAS  Google Scholar 

  26. Hospers JJ, Postma DS, Rijcken B, et al. Histamine airway hyper-responsiveness and mortality from chronic obstructive pulmonary disease: a cohort study. Lancet. 2000;356:1313–7.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen BH, Diamond EL, Graves CG, et al. A common familial component in lung cancer and chronic obstructive pulmonary disease. Lancet. 1977;2:523–6.

    Article  PubMed  CAS  Google Scholar 

  28. Spira A, Beane J, Shah V, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. PNAS. 2004;101:10143–8.

    Article  PubMed  CAS  Google Scholar 

  29. ATS/ERS Task Force. American Thoracic Society/European Respiratory Society Statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2003;168:818–900.

    Article  Google Scholar 

  30. Yang P, Sun Z, Krowka MJ, et al. Alpha1-antitrypsin deficiency carriers, tobacco smoke, chronic obstructive pulmonary disease, and lung cancer risk. Arch Intern Med. 2008;168: 1097–103.

    Article  PubMed  Google Scholar 

  31. Yang P, Bamlet WR, Sun Z, et al. α1-Antitrypsin and neutrophil elastase imbalance and lung cancer risk. Chest. 2005;128:445–52.

    Article  PubMed  CAS  Google Scholar 

  32. Amos CI, Wu X, Broderick P, et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet. 2008;40:616–22.

    Article  PubMed  CAS  Google Scholar 

  33. Hung RJ, McKay JD, Gaborieau V, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452:633–7.

    Article  PubMed  CAS  Google Scholar 

  34. Thorgeirsson TE, Geller F, Sulem P, et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature. 2008;452:638–41.

    Article  PubMed  CAS  Google Scholar 

  35. Saccone NL, Culverhouse RC, Schwantes-An T-H, et al. Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet. 2010;6:e1001053.

    Article  CAS  Google Scholar 

  36. Thorgeirsson TE, Gudbjartsson DF, Surakka I, et al. Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet. 2010;42:448–53.

    Article  PubMed  CAS  Google Scholar 

  37. Pillai SG, Kong X, Edwards LD, et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182:1498–505.

    Article  PubMed  Google Scholar 

  38. Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5: e1000421.

    Article  PubMed  CAS  Google Scholar 

  39. Lambrechts D, Buysschaert I, Zanen P, et al. The 15q24/25 susceptibility variant for lung cancer and chronic obstructive pulmonary disease is associated with emphysema. Am J Respir Crit Care Med. 2010;181:486–93.

    Article  PubMed  Google Scholar 

  40. Lips EH, Gaborieau V, McKay JD, et al. Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17,000 individuals. Int J Epidemiol. 2010;39: 563–77.

    Article  PubMed  Google Scholar 

  41. Wang J, Spitz MR, Amos CI, et al. Mediating effects of smoking and chronic obstructive pulmonary disease on the relation between the CHRNA5-A3 genetic locus and lung cancer risk. Cancer. 2010;116:3458–62.

    Article  PubMed  CAS  Google Scholar 

  42. Truong T, Hung RJ, Amos CI, et al. Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst. 2010;102:959–71.

    Article  PubMed  CAS  Google Scholar 

  43. Galvan A, Dragani TA. Nicotine dependence may link the 15q25 locus to lung cancer risk. Carcinogenesis. 2010;31:331–3.

    Article  PubMed  CAS  Google Scholar 

  44. Wilk JB, Chen T-H, Gottlieb DJ, et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 2009;5:e1000429.

    Article  PubMed  CAS  Google Scholar 

  45. Repapi E, Sayers I, Wain LV, et al. Genome-wide association study identifies five loci associated with lung function. Nat Genet. 2010;42:36–44.

    Article  PubMed  CAS  Google Scholar 

  46. Young RP, Whittington CF, Hopkins RJ, et al. Chromosome 4q31 locus in COPD is also associated with lung cancer. Eur Respir J. 2010;36:1375–82.

    Article  PubMed  CAS  Google Scholar 

  47. Huang S, Yang L, An Y, et al. Expression of hedgehog signaling molecules in lung cancer. Acta Histochemica 2010; doi:10.1016/j.acthis.2010.06.003.

  48. Carlsten C, Sagoo GS, Frodsham AJ, et al. Glutathione s-transferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol. 2008;167:759–74.

    Article  PubMed  CAS  Google Scholar 

  49. Shi X, Zhou S, Wang Z, et al. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008;59:155–63.

    Article  PubMed  Google Scholar 

  50. Castaldi PJ, Cho MH, Cohn M, et al. The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet. 2010;19:526–34.

    Article  PubMed  CAS  Google Scholar 

  51. Hansel TT, Barnes PJ. New drugs for exacerbations of chronic obstructive pulmonary disease. Lancet. 2009;374:744–55.

    Article  PubMed  CAS  Google Scholar 

  52. Brody JS, Spira A. Chronic obstructive pulmonary disease, inflammation, and lung cancer. Proc Am Thorac Soc. 2006;3:535–8.

    Article  PubMed  CAS  Google Scholar 

  53. Houghton AM, Mouded M, Shapiro SD. Common origins of lung cancer and COPD. Nat Med. 2008;14:1023–4.

    Article  PubMed  CAS  Google Scholar 

  54. Yoshida T, Tuder RM. Pathobiology of cigarette-smoke-induced chronic obstructive pulmonary disease. Physiol Rev. 2007;87:1047–82.

    Article  PubMed  CAS  Google Scholar 

  55. Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2009;41:631–8.

    Article  PubMed  CAS  Google Scholar 

  56. Man SF, Connett JE, Anthonisen NR, et al. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax. 2006;61:849–53.

    Article  PubMed  CAS  Google Scholar 

  57. Parimon T, Chien JW, Bryson CL, et al. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175: 712–9.

    Article  PubMed  CAS  Google Scholar 

  58. Kiri VA, Fabbri LM, Davis KJ, et al. Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir Med. 2009;103:85–90.

    Article  PubMed  Google Scholar 

  59. Lam S, leRiche JC, McWilliams A. A randomized phase IIb trial of Pulmicort Turbuhaler (budesonide) in people with dysplasia of the bronchial epithelium. Clin Cancer Res. 2004;10:6502–11.

    Article  PubMed  CAS  Google Scholar 

  60. Wolff H, Saukkonen K, Anttila S, et al. Expression of cyclooxygenase-2 in human lung ­carcinoma. Cancer Res. 1998;58:4997–5001.

    PubMed  CAS  Google Scholar 

  61. Cuzick J, Otto F, Baron JA, et al. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009;10:501–7.

    Article  PubMed  CAS  Google Scholar 

  62. Skriver MV, Nørgaard M, Poulsen AH, et al. Use of nonaspirin NSAIDs and risk of lung cancer. Int J Cancer. 2005;117:873–6.

    Article  PubMed  CAS  Google Scholar 

  63. Rothwell PM, Fowkes FG, Belch JF, et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  PubMed  CAS  Google Scholar 

  64. Shuto T, Xu H, Wang B, et al. Activation of NF-ĸB by nontypeable Hemophilus influenza is mediated by toll-like receptor 2-TAK1-dependent NIK-IKKα/β-Iĸβα and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. PNAS. 2001;98:8774–9.

    Article  PubMed  CAS  Google Scholar 

  65. Moghaddam SJ, Li H, Cho S-N, et al. Promotion of lung carcinogenesis by chronic obstructive pulmonary disease-like airway inflammation in a K-ras-induced mouse model. Am J Respir Cell Mol Biol. 2009;40:443–53.

    Article  PubMed  CAS  Google Scholar 

  66. Ochoa CE, Mirabolfathinejad SG, Venado AR, et al. Interleukin 6, but not T helper cytokines, promotes lung carcinogenesis. Cancer Prev Res. 2011;4:51–64.

    Article  CAS  Google Scholar 

  67. Qu P, Roberts J, Li Y, et al. Stat3 downstream genes serve as biomarkers in human lung carcinomas and chronic obstructive pulmonary disease. Lung Cancer. 2009;63:341–7.

    Article  PubMed  Google Scholar 

  68. Qu P, Du H, Wang X, et al. Matrix-metalloproteinase 12 overexpression in lung epithelial cells plays a key role in emphysema to lung bronchioalveolar adenocarcinoma transition. Cancer Res. 2009;69:7252–61.

    Article  PubMed  CAS  Google Scholar 

  69. Moghaddam SJ, Barta P, Mirabolfathinejad SG, et al. Curcumin inhibits COPD-like airway inflammation and lung cancer progression in mice. Carcinogenesis. 2009;30:1949–56.

    Article  PubMed  CAS  Google Scholar 

  70. Rennard SI, Fogarty C, Kelsen S, et al. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175:926–34.

    Article  PubMed  CAS  Google Scholar 

  71. Boelens MC, Gustafson AM, Postma DS, et al. A chronic obstructive pulmonary disease related signature in squamous cell lung cancer. Lung Cancer 2010; doi:10.1016/j.lungcan. 2010.08.014.

  72. Suzuki M, Wada H, Yoshino M, et al. Molecular characterization of chronic obstructive pulmonary disease-related non-small cell lung cancer through aberrant methylation and alterations of EGFR signaling. Ann Surg Oncol. 2010;17:878–88.

    Article  PubMed  Google Scholar 

  73. Cilli A, Ozkaynak C, Onur R, et al. Lung cancer detection with low-dose spiral computed tomography in chronic obstructive pulmonary disease patients. Acta Radiologica. 2007;48:405–11.

    Article  PubMed  CAS  Google Scholar 

  74. Rivera MP, Mehta AC. Initial diagnosis of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest. 2007;132:131S–48.

    Article  PubMed  Google Scholar 

  75. British Thoracic Society Bronchoscopy Guidelines Committee, a Subcommittee of the Standards of Care Committee of the British Thoracic Society. British Thoracic Society guidelines on diagnostic flexible bronchoscopy. Thorax. 2001;56(Suppl I):i1–21.

    Google Scholar 

  76. Stolz D, Pollak V, Chhajed PN, et al. A randomized, placebo-controlled trial of bronchodilators for bronchoscopy in patients with COPD. Chest. 2007;131:765–72.

    Article  PubMed  CAS  Google Scholar 

  77. Oikonomou A, Matzinger FR, Seely JM, et al. Ultrathin needle (25 G) aspiration lung biopsy: diagnostic accuracy and complication rates. Eur Radiol. 2004;14:375–82.

    Article  PubMed  Google Scholar 

  78. Laurent F, Michel P, Latrabe V, et al. Pneumothoraces and chest tube placement after CT-guided transthoracic lung biopsy using a coaxial technique: incidence and risk factors. AJR. 1999;172:1049–53.

    PubMed  CAS  Google Scholar 

  79. Kazerooni EA, Lim FT, Mikhail A, et al. Risk of pneumothorax in CT-guided transthoracic needle aspiration biopsy of the lung. Radiology. 1996;198:371–5.

    PubMed  CAS  Google Scholar 

  80. Heyer CM, Reichelt S, Peters SA, et al. Computed tomography-navigated transthoracic core biopsy of pulmonary lesions: which factors affect diagnostic yield and complication rates? Acad Radiol. 2008;15:1017–26.

    Article  PubMed  Google Scholar 

  81. Colice GL, Shafazand S, Griffin JP, et al. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132:161S–77.

    Article  PubMed  Google Scholar 

  82. Ferguson MK, Little L, Rizzo L, et al. Diffusing capacity predicts morbidity and mortality after pulmonary resection. J Thorac Cardiovasc Surg. 1988;96:894–900.

    PubMed  CAS  Google Scholar 

  83. Ferguson MK, Vigneswaran WT. Diffusing capacity predicts morbidity after lung resection in patients without obstructive lung disease. Ann Thorac Surg. 2008;85:1158–65.

    Article  PubMed  Google Scholar 

  84. Linden PA, Bueno R, Colson YL, et al. Lung resection in patients with preoperative FEV1 <35% predicted. Chest. 2005;127:1984–90.

    Article  PubMed  Google Scholar 

  85. Brunelli A, Refai M, Xiumé F, et al. Performance at symptom-limited stair-climbing test is associated with increased cardiopulmonary complications, mortality, and costs after major lung resection. Ann Thorac Surg. 2008;86:240–8.

    Article  PubMed  Google Scholar 

  86. Win T, Jackson A, Groves AM, et al. Relationship of shuttle walk test and lung cancer surgical outcome. Eur J Cardiothorac Surg. 2004;26:1216–9.

    Article  PubMed  Google Scholar 

  87. Win T, Jackson A, Groves AM, et al. Comparison of shuttle walk with measured peak oxygen consumption in patients with operable lung cancer. Thorax. 2006;61:57–60.

    Article  PubMed  CAS  Google Scholar 

  88. Benzo R, Kelley GA, Recchi L, et al. Complications of lung resection and exercise capacity: a meta-analysis. Respir Med. 2007;101:1790–7.

    Article  PubMed  Google Scholar 

  89. Licker M, Schnyder J-M, Frey J-G, et al. Impact of aerobic exercise capacity and procedure-related factors in lung cancer surgery. ERJ Express 2010; doi:10.1183/09031936.00069910.

  90. Win T, Laroche CM, Groves AM, et al. Use of quantitative lung scintigraphy to predict postoperative pulmonary function in lung cancer patients undergoing lobectomy. Ann Thorac Surg. 2004;78:1215–8.

    Article  PubMed  Google Scholar 

  91. Wang T, Tagayun A, Bogardus A, et al. How accurately can we predict forced expiratory volume in one second after major pulmonary resection. Am Surgeon. 2007;73:1047–51.

    PubMed  Google Scholar 

  92. Stein M, Cassara EL. Preoperative pulmonary evaluation and therapy for surgery patients. JAMA. 1970;211:787–90.

    Article  PubMed  CAS  Google Scholar 

  93. Warner MA, Offord KP, Warner ME, et al. Role of preoperative cessation of smoking and other factors in postoperative complications: a blinded prospective study of coronary artery bypass patients. Mayo Clin Proc. 1989;64:609–16.

    PubMed  CAS  Google Scholar 

  94. Bluman LG, Mosca L, Newman N, et al. Preoperative smoking habits and postoperative pulmonary complications. Chest. 1998;113:883–9.

    Article  PubMed  CAS  Google Scholar 

  95. Barrera R, Shi W, Amar D, et al. Smoking and timing of cessation: impact on pulmonary complications after thoracotomy. Chest. 2005;127:1977–83.

    Article  PubMed  Google Scholar 

  96. Kobayashi S, Suzuki S, Niikawa H, Sugawara T, Yanai M. Preoperative use of inhaled tiotropium in lung cancer patients with untreated COPD. Respirology 2009;14:675–9.

    Article  CAS  Google Scholar 

  97. Bölükbas S, Eberlein M, Eckhoff J, et al. Short-term effects of inhalative tiotropium/formoterol/budesonide versus tiotropium/formoterol in patients with newly diagnosed chronic obstructive pulmonary disease requiring surgery for lung cancer. Eur J Cardiothorac Surg 2010; doi:10.1016/j.ejcts.2010.09.025.

  98. Weiner P, Man A, Weiner M, et al. The effect of incentive spirometry and inspiratory muscle training on pulmonary function after lung resection. J Thorac Cardiovasc Surg. 1997;113: 552–7.

    Article  PubMed  CAS  Google Scholar 

  99. Bobbio A, Chetta A, Ampollini L, et al. Preoperative pulmonary rehabilitation in patients undergoing lung resection for non-small cell lung cancer. Eur J Cardiothorac Surg. 2008;33: 95–8.

    Article  PubMed  Google Scholar 

  100. Spruit MA, Janssen PP, Willemsen SC, et al. Exercise capacity before and after an 8-week multidisciplinary inpatient rehabilitation program in lung cancer patients: a pilot study. Lung Cancer. 2006;52:257–60.

    Article  PubMed  Google Scholar 

  101. Cesario A, Ferri L, Galetta D, et al. Pre-operative pulmonary rehabilitation and surgery for lung cancer. Lung Cancer. 2007;57:118–9.

    Article  PubMed  Google Scholar 

  102. Korst RJ, Ginsberg RJ, Ailawadi M, et al. Lobectomy improves ventilator function in selected patients with severe COPD. Ann Thorac Surg. 1998;66:898–902.

    Article  PubMed  CAS  Google Scholar 

  103. Baldi S, Ruffini E, Harari S, et al. Does lobectomy for lung cancer in patients with chronic obstructive pulmonary disease affect lung function? A multicenter national study. J Thorac Cardiovasc Surg. 2005;130:1616–22.

    Article  PubMed  Google Scholar 

  104. Subotic DR, Mandaric DV, Eminovic RM, et al. Influence of chronic obstructive pulmonary disease on postoperative lung function and complications in patients undergoing operations for primary non-small cell lung cancer. J Thorac Cardiovasc Surg. 2007;134:1292–9.

    Article  PubMed  Google Scholar 

  105. Sekine Y, Iwata T, Chiyo M, et al. Minimal alteration of pulmonary function after lobectomy in lung cancer patients with chronic obstructive pulmonary disease. Ann Thorac Surg. 2003;76:356–62.

    Article  PubMed  Google Scholar 

  106. Kushibe K, Kawaguchi T, Kimura M, et al. Influence of the site of lobectomy and chronic obstructive pulmonary disease on pulmonary function: a follow-up analysis. Interact Cardiovasc Thorac Surg. 2009;8:529–33.

    Article  PubMed  Google Scholar 

  107. Kushibe K, Kawaguchi T, Kimura M, et al. Exercise capacity after lobectomy in patients with chronic obstructive pulmonary disease. Interact Cardiovasc Thorac Surg. 2008;7:398–401.

    Article  PubMed  Google Scholar 

  108. Bobbio A, Chetta A, Carbognani P, et al. Changes in pulmonary function test and cardio-pulmonary exercise capacity in COPD patients after lobar pulmonary resection. Eur J Cardiothorac Surg. 2005;28:754–8.

    Article  PubMed  Google Scholar 

  109. Kearney DJ, Lee TH, Reilly JJ, et al. Assessment of operative risk in patients undergoing lung resection. Importance of predicted pulmonary function. Chest. 1994;105:753–9.

    Article  PubMed  CAS  Google Scholar 

  110. Licker MJ, Widikker I, Robert J, et al. Operative mortality and respiratory complications after lung resection for cancer: impact of chronic obstructive pulmonary disease and time trends. Ann Thorac Surg. 2006;81:1830–8.

    Article  PubMed  Google Scholar 

  111. Sekine Y, Behnia M, Fujisawa T. Impact of COPD on pulmonary complications and on long-term survival of patients undergoing surgery for NSCLC. Lung Cancer. 2002;37:95–101.

    Article  PubMed  Google Scholar 

  112. Schussler O, Alifano M, Dermine H, et al. Postoperative pneumonia after major lung resection. Am J Respir Crit Care Med. 2006;173:1161–9.

    Article  PubMed  Google Scholar 

  113. Sekine Y, Kesler KA, Behnia M, et al. COPD may increase the incidence of refractory supraventricular arrhythmias following pulmonary resection for non-small cell lung cancer. Chest. 2001;120:1783–90.

    Article  PubMed  CAS  Google Scholar 

  114. Stolz AJ, Schützner J, Lischke R, et al. Predictors of prolonged air leak following pulmonary lobectomy. Eur J Cardiothorac Surg. 2005;27:334–6.

    Article  PubMed  Google Scholar 

  115. Algar FJ, Alvarez A, Aranda JL, et al. Prediction of early bronchopleural fistula after pneumonectomy: a multivariate analysis. Ann Thorac Surg. 2001;72:1662–7.

    Article  PubMed  CAS  Google Scholar 

  116. Sekine Y, Yamada Y, Chiyo M, et al. Association of chronic obstructive pulmonary disease and tumor recurrence in patients with stage IA lung cancer after complete resection. Ann Thorac Surg. 2007;84:946–51.

    Article  PubMed  Google Scholar 

  117. López-Encuentra A, Astudillo J, Cerezal J, et al. Prognostic value of chronic obstructive pulmonary disease in 2994 cases of lung cancer. Eur J Cardiothorac Surg. 2005;27:8–13.

    Article  PubMed  Google Scholar 

  118. Birim Ö, Zuydendorp HM, Maat AP, et al. Lung resection for non-small-cell lung cancer in patients older than 70: mortality, morbidity, and late survival compared with the general population. Ann Thorac Surg. 2003;76:1796–801.

    Article  PubMed  Google Scholar 

  119. Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.

    Article  PubMed  CAS  Google Scholar 

  120. Fakiris AJ, McGarry RC, Yiannoutsos CT, et al. Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiation Oncol Biol Phys. 2009;75:677–82.

    Article  Google Scholar 

  121. Powell JW, Dexter E, Scalzetti EM, et al. Treatment advances for medically inoperable non-small-cell lung cancer: emphasis on prospective trials. Lancet Oncol. 2009;10:885–94.

    Article  PubMed  Google Scholar 

  122. Huang L, Han Y, Zhao J, et al. Is radiofrequency thermal ablation a safe and effective procedure in the treatment of pulmonary malignancies? Eur J Cardiothorac Surg. 2011;39: 348–51.

    Article  PubMed  Google Scholar 

  123. Borst GR, De Jaeger K, Belderbos JS, et al. Pulmonary function changes after radiotherapy in non-small-cell lung cancer patients with long-term disease-free survival. Int J Radiat Oncol Biol Phys. 2005;62:639–44.

    Article  PubMed  Google Scholar 

  124. Moreno M, Aristu J, Ramos LI, et al. Predictive factors for radiation-induced pulmonary toxicity after three-dimensional conformal chemoradiation in locally advanced non-small-cell lung cancer. Clin Transl Oncol. 2007;9:596–602.

    Article  PubMed  CAS  Google Scholar 

  125. Goodridge D, Lawson J, Duggleby W, et al. Health care utilization of patients with chronic obstructive pulmonary disease and lung cancer in the last 12 months of life. Respir Med. 2008;102:885–91.

    Article  PubMed  Google Scholar 

  126. Au DH, Udris EM, Fihn SD, et al. Differences in health care utilization at the end of life among patients with chronic obstructive pulmonary disease and patients with lung cancer. Arch Intern Med. 2006;166:326–31.

    Article  PubMed  Google Scholar 

  127. Edmonds P, Karlsen S, Khan S, et al. A comparison of the palliative care needs of patients dying from chronic respiratory diseases and lung cancer. Palliative Med. 2001;15:287–95.

    Article  CAS  Google Scholar 

  128. Gore JM, Brophy CJ, Greenstone MA. How well do we care for patients with end stage chronic obstructive pulmonary disease (COPD)? A comparison of palliative care and quality of life in COPD and lung cancer. Thorax. 2000;55:1000–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Jankowich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jankowich, M.D. (2012). Thoracic Malignancies. In: Nici, L., ZuWallack, R. (eds) Chronic Obstructive Pulmonary Disease. Respiratory Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-673-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-673-3_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-672-6

  • Online ISBN: 978-1-60761-673-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics