Skip to main content

Antibacterial Distribution and Drug–Drug Interactions in Cancer Patients

  • Chapter
  • First Online:

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

Cancer as such does not impact distribution of antimicrobials; however, various pathophysiological changes in cancer patients may do so. Neutropenia, cachexia, hypoproteinemia, and effusions are common situations in cancer patients that may change the concentrations of antibiotics in blood and tissues. Such changes should be taken into account and dosage regimens adapted accordingly. As the therapeutic management of cancer patients becomes more complex, drug–drug interactions in oncology are of particular importance. Commonly used antibiotics that are most likely involved in drug–drug interactions are rifampin and its derivates, the macrolides erythromycin and clarithromycin, the fluoroquinolone ciprofloxacin, and trimethoprim/sulfonamide combinations. Knowing the interaction profiles of individual agents and potential outcomes of the interaction allows healthcare providers to minimize the risk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   259.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kunin CM. Clinical pharmacology of the new penicillins. 1. The importance of serum protein binding in determining antimicrobial activity and concentration in serum. Clin Pharmacol Ther. 1966;7(2):166–79.

    PubMed  CAS  Google Scholar 

  2. Beer J, Wagner CC, Zeitlinger M. Protein binding of antimicrobials: methods for quantification and for investigation of its impact on bacterial killing. AAPS J. 2009;11:1–12.

    Article  PubMed  CAS  Google Scholar 

  3. Hyatt JM, McKinnon PS, Zimmer GS, Schentag JJ. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents. Clin Pharmacokinet. 1995;28(2):143–60.

    Article  PubMed  CAS  Google Scholar 

  4. Toutain PL, del Castillo JR, Bousquet-Melou A. The pharmacokinetic-pharmacodynamic approach to a rational dosage regimen for antibiotics. Res Vet Sci. 2002;73(2):105–14.

    Article  PubMed  CAS  Google Scholar 

  5. Nicolau DP. Predicting antibacterial response from pharmacodynamic and pharmacokinetic profiles. Infection. 2001;29 Suppl 2:11–5.

    PubMed  CAS  Google Scholar 

  6. Frimodt-Moller N. How predictive is PK/PD for antibacterial agents? Int J Antimicrob Agents. 2002;19(4):333–9.

    Article  PubMed  CAS  Google Scholar 

  7. Vogelman B, Gudmundsson S, Leggett J, Turnidge J, Ebert S, Craig WA. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988;158(4):831–47.

    Article  PubMed  CAS  Google Scholar 

  8. Nicolau DP. Pharmacodynamic optimization of beta-lactams in the patient care setting. Crit Care. 2008;12 Suppl 4:S2.

    Article  PubMed  Google Scholar 

  9. Pettorossi VE, Ferraresi A, Errico P, Draicchio F, Dionisotti S. The impact of different dosing regimens of the aminoglycosides netilmicin and amikacin on vestibulotoxicity in the guinea pig. Eur Arch Otorhinolaryngol. 1990;247(5):277–82.

    Article  PubMed  CAS  Google Scholar 

  10. Christensen ML, Stewart CF, Crom WR. Evaluation of aminoglycoside disposition in patients previously treated with cisplatin. Ther Drug Monit. 1989;11(6):631–6.

    Article  PubMed  CAS  Google Scholar 

  11. Joukhadar C, Klein N, Mayer BX, Kreischitz N, Delle-Karth G, Palkovits P, et al. Plasma and tissue pharmacokinetics of cefpirome in patients with sepsis. Crit Care Med. 2002;30(7):1478–82.

    Article  PubMed  CAS  Google Scholar 

  12. Zeitlinger MA, Dehghanyar P, Mayer BX, Schenk BS, Neckel U, Heinz G, et al. Relevance of soft-tissue penetration by levofloxacin for target site bacterial killing in patients with sepsis. Antimicrob Agents Chemother. 2003;47(11):3548–53.

    Article  PubMed  CAS  Google Scholar 

  13. Zeitlinger MA, Marsik C, Georgopoulos A, Muller M, Heinz G, Joukhadar C. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. Int J Antimicrob Agents. 2003;21(6):562–7.

    Article  PubMed  CAS  Google Scholar 

  14. FDA. Guidance for Industry. Developing antimicrobial drugs – general considerations for clinical trials. 1998. (wwwfdagov/cder/guidance/2580dftpdf).

  15. EMEA. Points to consider on pharmacokinetics and pharmacodynamics in the development of antibacterial medicinal products. 2000. (wwwemeaeuint/pdfs/human/ewp/265599enpdf).

    Google Scholar 

  16. Theuretzbacher U. Tissue penetration of antibacterial agents: how should this be incorporated into pharmacodynamic analyses? Curr Opin Pharmacol. 2007;7(5):498–504.

    Article  PubMed  CAS  Google Scholar 

  17. Pea F, Viale P, Furlanut M. Antimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability. Clin Pharmacokinet. 2005;44(10):1009–34.

    Article  PubMed  CAS  Google Scholar 

  18. Li J, Gwilt P. The effect of malignant effusions on methotrexate disposition. Cancer Chemother Pharmacol. 2002;50(5):373–82.

    Article  PubMed  CAS  Google Scholar 

  19. Lanao JM, Dominguez-Gil A, Macias JG, Diez JL, Nieto MJ. The influence of ascites on the pharmacokinetics of amikacin. Int J Clin Pharmacol Ther Toxicol. 1980;18(2):57–61.

    PubMed  CAS  Google Scholar 

  20. Lechi A, Arosio E, Xerri L, Mengoli C, Montesi G, Ghidini O. The kinetics of cefuroxime in ascitic and pleural fluid. Int J Clin Pharmacol Ther Toxicol. 1982;20(10):493–6.

    PubMed  CAS  Google Scholar 

  21. Benoni G, Arosio E, Cuzzolin L, Vaona B, Raimondi MG, Lechi A. Penetration of ceftriaxone into human pleural fluid. Antimicrob Agents Chemother. 1986;29(5):906–8.

    Article  PubMed  CAS  Google Scholar 

  22. Lortholary O, Lefort A, Tod M, Chomat AM, Darras-Joly C, Cordonnier C. Pharmacodynamics and pharmacokinetics of antibacterial drugs in the management of febrile neutropenia. Lancet Infect Dis. 2008;8(10):612–20.

    Article  PubMed  CAS  Google Scholar 

  23. Nyhlen A, Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of ceftazidime in febrile neutropenic patients. Scand J Infect Dis. 2001;33(3):222–6.

    Article  PubMed  CAS  Google Scholar 

  24. Nyhlen A, Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of meropenem in febrile neutropenic patients. Swedish study group. Eur J Clin Microbiol Infect Dis. 1997;16(11):797–802.

    Article  PubMed  CAS  Google Scholar 

  25. Drusano GL, Plaisance KI, Forrest A, Bustamante C, Devlin A, Standiford HC, et al. Steady-state pharmacokinetics of imipenem in febrile neutropenic cancer patients. Antimicrob Agents Chemother. 1987;31(9):1420–2.

    Article  PubMed  CAS  Google Scholar 

  26. Davis RL, Lehmann D, Stidley CA, Neidhart J. Amikacin pharmacokinetics in patients receiving high-dose cancer chemotherapy. Antimicrob Agents Chemother. 1991;35(5):944–7.

    Article  PubMed  CAS  Google Scholar 

  27. Phillips JK, Spearing RL, Crome DJ, Davies JM. Gentamicin volumes of distribution in patients with hematologic disorders. N Engl J Med. 1988;319(19):1290.

    PubMed  CAS  Google Scholar 

  28. Higa GM, Murray WE. Alterations in aminoglycoside pharmacokinetics in patients with cancer. Clin Pharm. 1987;6(12):963–6.

    PubMed  CAS  Google Scholar 

  29. Tod M, Padoin C, Petitjean O. Clinical pharmacokinetics and pharmacodynamics of isepamicin. Clin Pharmacokinet. 2000;38(3):205–23.

    Article  PubMed  CAS  Google Scholar 

  30. Anon. Efficacy and toxicity of single daily doses of amikacin and ceftriaxone versus multiple daily doses of amikacin and ceftazidime for infection in patients with cancer and granulocytopenia. The International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. Ann Intern Med. 1993;119(7 Pt 1):584–93.

    Google Scholar 

  31. Sung L, Dupuis LL, Bliss B, Taddio A, Abdolell M, Allen U, et al. Randomized controlled trial of once- versus thrice-daily tobramycin in febrile neutropenic children undergoing stem cell transplantation. J Natl Cancer Inst. 2003;95(24):1869–77.

    Article  PubMed  CAS  Google Scholar 

  32. Fernandez de Gatta MM, Fruns I, Hernandez JM, Caballero D, San Miguel JF, Martinez Lanao J, et al. Vancomycin pharmacokinetics and dosage requirements in hematologic malignancies. Clin Pharm. 1993;12(7):515–20.

    PubMed  CAS  Google Scholar 

  33. Le Normand Y, Milpied N, Kergueris MF, Harousseau JL. Pharmacokinetic parameters of vancomycin for therapeutic regimens in neutropenic adult patients. Int J Biomed Comput. 1994;36(1–2):121–5.

    Article  PubMed  Google Scholar 

  34. Bubalo JS, Munar MY, Cherala G, Hayes-Lattin B, Maziarz R. Daptomycin pharmacokinetics in adult oncology patients with neutropenic fever. Antimicrob Agents Chemother. 2009;53(2):428–34.

    Article  PubMed  CAS  Google Scholar 

  35. Benvenuto M, Benziger DP, Yankelev S, Vigliani G. Pharmacokinetics and tolerability of daptomycin at doses up to 12 milligrams per kilogram of body weight once daily in healthy volunteers. Antimicrob Agents Chemother. 2006;50(10):3245–9.

    Article  PubMed  CAS  Google Scholar 

  36. Smith PF, Birmingham MC, Noskin GA, Meagher AK, Forrest A, Rayner CR, et al. Safety, efficacy and pharmacokinetics of linezolid for treatment of resistant Gram-positive infections in cancer patients with neutropenia. Ann Oncol. 2003;14(5):795–801.

    Article  PubMed  CAS  Google Scholar 

  37. Hutschala D, Kinstner C, Skhirtladze K, Mayer-Helm BX, Zeitlinger M, Wisser W, et al. The impact of perioperative atelectasis on antibiotic penetration into lung tissue: an in vivo microdialysis study. Intensive Care Med. 2008;34(10):1827–34.

    Article  PubMed  CAS  Google Scholar 

  38. Brunner M, Pernerstorfer T, Mayer BX, Eichler HG, Muller M. Surgery and intensive care procedures affect the target site distribution of piperacillin. Crit Care Med. 2000;28(6):1754–9.

    Article  PubMed  CAS  Google Scholar 

  39. Hackam DJ, Christou N, Khaliq Y, Duffy DR, Vaughan D, Marshall JC, et al. Bioavailability of oral ciprofloxacin in early postsurgical patients. Arch Surg. 1998;133(11):1221–5.

    Article  PubMed  CAS  Google Scholar 

  40. Gonzalez-Hernandez I, Jung-Cook H, Sotelo A. Effect of malnutrition on the pharmacokinetics of cefuroxime axetil in young rats. J Pharm Pharm Sci. 2008;11(1):9–21.

    PubMed  CAS  Google Scholar 

  41. Herrington JD, Tran HT, Riggs MW. Prospective evaluation of carboplatin AUC dosing in patients with a BMI>or=27 or cachexia. Cancer Chemother Pharmacol. 2006;57(2):241–7.

    Article  PubMed  CAS  Google Scholar 

  42. Murry DJ, Riva L, Poplack DG. Impact of nutrition on pharmacokinetics of anti-neoplastic agents. Int J Cancer Suppl. 1998;11:48–51.

    Article  PubMed  CAS  Google Scholar 

  43. Ronchera-Oms CL, Tormo C, Ordovas JP, Abad J, Jimenez NV. Expanded gentamicin volume of distribution in critically ill adult patients receiving total parenteral nutrition. J Clin Pharm Ther. 1995;20(5):253–8.

    Article  PubMed  CAS  Google Scholar 

  44. Tormo C, Abad FJ, Ronchera-Oms CL, Parra V, Jimenez NV. Critically-ill patients receiving total parenteral nutrition show altered amikacin pharmacokinetics. Clin Nutr. 1995;14(4):254–9.

    Article  PubMed  CAS  Google Scholar 

  45. Raghuram TC, Krishnaswamy K. Pharmacokinetics of tetracycline in nutritional edema. Chemotherapy. 1982;28(6):428–33.

    Article  PubMed  CAS  Google Scholar 

  46. Lares-Asseff I, Cravioto J, Santiago P, Perez-Ortiz B. Pharmacokinetics of metronidazole in severely malnourished and nutritionally rehabilitated children. Clin Pharmacol Ther. 1992;51(1):42–50.

    Article  PubMed  CAS  Google Scholar 

  47. Oravcova J, Bohs B, Lindner W. Drug-protein binding sites. New trends in analytical and experimental methodology. J Chromatogr B Biomed Appl. 1996;677(1):1–28.

    Article  PubMed  Google Scholar 

  48. Craig WA, Ebert SC. Protein binding and its significance in ­antibacterial therapy. Infect Dis Clin North Am. 1989;3(3):407–14.

    PubMed  CAS  Google Scholar 

  49. Craig WA, Kunin CM. Significance of serum protein and tissue ­binding of antimicrobial agents. Annu Rev Med. 1976;27:287–300.

    Article  PubMed  CAS  Google Scholar 

  50. Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev. 1988;40(1):1–47.

    PubMed  CAS  Google Scholar 

  51. Gamba G, Contreras AM, Cortes J, Nares F, Santiago Y, Espinosa A, et al. Hypoalbuminemia as a risk factor for amikacin nephrotoxicity. Rev Invest Clin. 1990;42(3):204–9.

    PubMed  CAS  Google Scholar 

  52. Wilson RC, Green NK. Pharmacokinetics of minocycline hydrochloride in clinically normal and hypoproteinemic sheep. Am J Vet Res. 1986;47(3):650–2.

    PubMed  CAS  Google Scholar 

  53. Ryan DM. Pharmacokinetics of antibiotics in natural and experimental superficial compartments in animals and humans. J Antimicrob Chemother. 1993;31(Suppl D):1–16.

    Article  PubMed  CAS  Google Scholar 

  54. Kearney BP, Aweeka FT. The penetration of anti-infectives into the central nervous system. Neurol Clin. 1999;17(4):883–900.

    Article  PubMed  CAS  Google Scholar 

  55. Zeitlinger M, Muller M, Joukhadar C. Lung microdialysis–a powerful tool for the determination of exogenous and endogenous compounds in the lower respiratory tract (mini-review). AAPS J. 2005;7(3):E600–8.

    Article  PubMed  CAS  Google Scholar 

  56. Zhanel GG, Dueck M, Hoban DJ, Vercaigne LM, Embil JM, Gin AS, et al. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs. 2001;61(4):443–98.

    Article  PubMed  CAS  Google Scholar 

  57. Bergogne-Berezin E. New concepts in the pulmonary disposition of antibiotics. Pulm Pharmacol. 1995;8(2–3):65–81.

    Article  PubMed  CAS  Google Scholar 

  58. Joukhadar C, Frossard M, Mayer BX, Brunner M, Klein N, Siostrzonek P, et al. Impaired target site penetration of beta-­lactams may account for therapeutic failure in patients with septic shock. Crit Care Med. 2001;29(2):385–91.

    Article  PubMed  CAS  Google Scholar 

  59. van Dalen R, Vree TB. Pharmacokinetics of antibiotics in critically ill patients. Intensive Care Med. 1990;16 Suppl 3:S235–8.

    Article  PubMed  Google Scholar 

  60. Zeitlinger BS, Zeitlinger M, Leitner I, Muller M, Joukhadar C. Clinical scoring system for the prediction of target site penetration of antimicrobials in patients with sepsis. Clin Pharmacokinet. 2007;46(1):75–83.

    Article  PubMed  CAS  Google Scholar 

  61. Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987;31(7):1054–60.

    Article  PubMed  CAS  Google Scholar 

  62. Crokaert F. Pharmacodynamics, a tool for a better use of antibiotics? Intensive Care Med. 2001;27(2):340–3.

    Article  PubMed  CAS  Google Scholar 

  63. Otero MJ, Garcia MJ, Barrueco M, Dominguez-Gil A, Gomez F, Portugal Alvarez J. Pharmacokinetics of cefoxitin administered by i.v. infusion to patients with a pleural effusion. Eur J Clin Pharmacol. 1984;26(3):389–92.

    Article  PubMed  CAS  Google Scholar 

  64. Goonetilleke AK, Dev D, Aziz I, Hughes C, Smith MJ, Basran GS. A comparative analysis of pharmacokinetics of ceftriaxone in serum and pleural fluid in humans: a study of once daily administration by intramuscular and intravenous routes. J Antimicrob Chemother. 1996;38(6):969–76.

    Article  PubMed  CAS  Google Scholar 

  65. Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6:546–58.

    Article  PubMed  CAS  Google Scholar 

  66. Tam-McDevitt J. Polypharmacy, aging, and cancer. Oncology. 2008;22:1052–5. discussion 1055, 1058, 1060.

    PubMed  Google Scholar 

  67. Blower P, de Wit R, Goodin S, Aapro M. Drug-drug interactions in oncology: why are they important and can they be minimized? Crit Rev Oncol Hematol. 2005;55:117–42.

    Article  PubMed  Google Scholar 

  68. Riechelmann RP, Tannock IF, Wang L, Saad ED, Taback NA, Krzyzanowska MK. Potential drug interactions and duplicate prescriptions among cancer patients. J Natl Cancer Inst. 2007;99:592–600.

    Article  PubMed  Google Scholar 

  69. Sokol KC, Knudsen JF, Li MM. Polypharmacy in older oncology patients and the need for an interdisciplinary approach to side-effect management. J Clin Pharm Ther. 2007;32:169–75.

    Article  PubMed  CAS  Google Scholar 

  70. Beijnen JH, Schellens JH. Drug interactions in oncology. Lancet Oncol. 2004;5:489–96.

    Article  PubMed  CAS  Google Scholar 

  71. Hanigan MH, Dela Cruz BL, Thompson DM, Farmer KC, Medina PJ. Use of prescription and nonprescription medications and ­supplements by cancer patients during chemotherapy: questionnaire validation. J Oncol Pharm Pract. 2008;14:123–30.

    Article  PubMed  Google Scholar 

  72. Riechelmann RP, Saad ED. A systematic review on drug interactions in oncology. Cancer Invest. 2006;24:704–12.

    Article  PubMed  CAS  Google Scholar 

  73. Riechelmann RP, Moreira F, Smaletz O, Saad ED. Potential for drug interactions in hospitalized cancer patients. Cancer Chemother Pharmacol. 2005;56:286–90.

    Article  PubMed  Google Scholar 

  74. Huang SM, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol. 2008;48:662–70.

    Article  PubMed  CAS  Google Scholar 

  75. Freifeld A, Sankaranarayanan J, Ullrich F, Sun J. Clinical practice patterns of managing low-risk adult febrile neutropenia during cancer chemotherapy in the USA. Support Care Cancer. 2008;16:181–91.

    Article  PubMed  Google Scholar 

  76. Guidance for Industry. Drug Interaction Studies – Study Design, Data Analysis, and Implications for Dosing and Labeling. September 2006. Accessed Feb 2009. http://www.fda.gov/cder/Guidance/6695dft.pdf

  77. Pal D, Mitra AK. MDR- and CYP3A4-mediated drug-drug interactions. J Neuroimmune Pharmacol. 2006;1:323–39.

    Article  PubMed  Google Scholar 

  78. Cohen KA, Lautenbach E, Weiner MG, Synnestvedt M, Gasink LB. Coadministration of oral levofloxacin with agents that impair absorption: impact on antibiotic resistance. Infect Control Hosp Epidemiol. 2008;29:975–7.

    Article  PubMed  Google Scholar 

  79. Lynch T, Price A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician. 2007;76:391–6.

    PubMed  Google Scholar 

  80. Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008;9:310–22.

    Article  PubMed  CAS  Google Scholar 

  81. Zhou SF. Potential strategies for minimizing mechanism-based inhibition of cytochrome P450 3A4. Curr Pharm Des. 2008;14:990–1000.

    Article  PubMed  CAS  Google Scholar 

  82. Brinkmann U, Roots I, Eichelbaum M. Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy. Drug Discov Today. 2001;6:835–9.

    Article  PubMed  CAS  Google Scholar 

  83. Hennessy M, Kelleher D, Spiers JP, Barry M, Kavanagh P, Back D, et al. St Johns wort increases expression of P-glycoprotein: implications for drug interactions. Br J Clin Pharmacol. 2002;53:75–82.

    Article  PubMed  CAS  Google Scholar 

  84. Michalets EL. Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 1998;18:84–112.

    PubMed  CAS  Google Scholar 

  85. Brøsen K. Sex differences in pharmacology. Ugeskr Laeger. 2007;169:2408–11.

    PubMed  Google Scholar 

  86. Snawder JE, Lipscomb JC. Interindividual variance of cytochrome P450 forms in human hepatic microsomes: correlation of individual forms with xenobiotic metabolism and implications in risk assessment. Regul Toxicol Pharmacol. 2000;32:200–9.

    Article  PubMed  CAS  Google Scholar 

  87. Finch CK, Chrisman CR, Baciewicz AM, Self TH. Rifampin and rifabutin drug interactions. Arch Intern Med. 2002;162:985–92.

    Article  PubMed  CAS  Google Scholar 

  88. Weber A, Kaplan M, Chughtai SA, Cohn LA, Smith AL, Unadkat JD. CYP3A inductive potential of the rifamycins, Rifabutin and rifampin, in the rabbit. Biopharm Drug Dispos. 2001;22:157–68.

    Article  PubMed  CAS  Google Scholar 

  89. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. November 2008. http://aidsinfo.nih.gov/contentfiles/AdultandAdolescentGL.pdf Accessed Feb 2009.

  90. Glaeser H, Drescher S, Eichelbaum M, Fromm MF. Influence of rifampicin on the expression and function of human intes-tinal cytochrome P450 enzymes. Br J Clin Pharmacol. 2005;59:199–206.

    Article  PubMed  CAS  Google Scholar 

  91. Gebhart BC, Barker BC, Markewitz BA. Decreased serum linezolid levels in a critically ill patient receiving concomitant linezolid and rifampin. Pharmacotherapy. 2007;27:476–9.

    Article  PubMed  CAS  Google Scholar 

  92. Hafner R, Bethel J, Power M. Tolerance and pharmacokinetic interactions of rifabutin and clarithromycin in human immunodeficiency virus–infected volunteers. Antimicrob Agents Chemother. 1998;42:631–9.

    PubMed  CAS  Google Scholar 

  93. Label information ciprofloxacin (2009) http://www.fda.gov/cder/foi/label/2009/019537s69,19847s43,19857s50,20780s27lbl.pdf. Accessed Feb 2009.

  94. Shakeri-Nejad K, Stahlmann R. Drug interactions during therapy with three major groups of antimicrobial agents. Expert Opin Pharmacother. 2006;7:639–51.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang L, Wie MJ, Zhao CY, Qi HM. Determination of the inhibitory potential of 6 fluoroquinolones on CYP1A2 and CYP2C9 in human liver microsomes. Acta Pharmacol Sin. 2008;29:1507–14.

    Article  PubMed  CAS  Google Scholar 

  96. Dalle JH, Auvrignon A, Vassal G, Leverger G. Interaction between methotrexate and ciprofloxacin. J Pediatr Hematol Oncol. 2002;24:321–2.

    Article  PubMed  Google Scholar 

  97. Label information Linezolid. 2008. http://www.fda.gov/cder/foi/label/2008/021130s016,021131s013,021132s014lbl.pdf. Accessed Feb 2009.

  98. Steinberg M, Morin AK. Mild serotonin syndrome associated with concurrent linezolid and fluoxetine. Am J Health Syst Pharm. 2007;64:59–62.

    Article  PubMed  Google Scholar 

  99. Huang V, Gortney JS. Risk of serotonin syndrome with concomitant administration of linezolid and serotonin agonists. Pharmacotherapy. 2006;26:1784–93.

    Article  PubMed  CAS  Google Scholar 

  100. Condon RE, Munshi CA, Arfman RC. Interaction of vecuronium with piperacillin or cefoxitin evaluated in a prospective, randomized, double-blind clinical trial. Am Surg. 1995;61:403–6.

    PubMed  CAS  Google Scholar 

  101. Zarychanski R, Wlodarczyk K, Ariano R, Bow E. Pharmacokinetic interaction between methotrexate and piperacillin/tazobactam resulting in prolonged toxic concentrations of methotrexate. J Antimicrob Chemother. 2006;58:228–30.

    Article  PubMed  CAS  Google Scholar 

  102. de Miguel D, García-Suárez J, Martín Y, Gil-Fernández JJ, Burgaleta C. Severe acute renal failure following high-dose methotrexate therapy in adults with haematological malignancies: a significant number result from unrecognized co-administration of several drugs. Nephrol Dial Transplant. 2008;23:3762–6.

    Article  PubMed  Google Scholar 

  103. Mori H, Takahashi K, Mizutani T. Interaction between valproic acid and carbapenem antibiotics. Drug Metab Rev. 2007;9:647–57.

    Article  Google Scholar 

  104. Karamanakos PN, Pappas P, Boumba VA, Thomas C, Malamas M, Vougiouklakis T, et al. Pharmaceutical agents known to produce disulfiram-like reaction: effects on hepatic ethanol metabolism and brain monoamines. Int J Toxicol. 2007;26:423–32.

    Article  PubMed  CAS  Google Scholar 

  105. Wen X, Wang JS, Backman JT, Laitila J, Neuvonen PJ. Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab Dispos. 2002;30:631–5.

    Article  PubMed  CAS  Google Scholar 

  106. Label information tigecycline (2009) http://www.fda.gov/cder/foi/label/2009/021821s016lbl.pdf. Accessed Feb 2009.

  107. Note for guidance on the investigation of drug interactions CPMP/EWP/560/95 1997. http://www.emea.europa.eu/pdfs/human/ewp/056095en.pdf Accessed Feb 2009.

  108. Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers. http://www.fda.gov/cder/drug/drugInteractions/tableSubstrates.htm. Accessed Feb 2009.

  109. Flockhart DA. Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine. 2007. http://medicine.iupui.edu/flockhart/table.htm. Accessed Feb 2009.

  110. Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ. Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther. 2004;76:598–606.

    Article  PubMed  CAS  Google Scholar 

  111. Zhang X, Jones DR, Hall SD. Prediction of the effect of erythromycin, diltiazem, and their metabolites, alone and in combination, on CYP3A4 inhibition. Drug Metab Dispos. 2009;37:150–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Theuretzbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Theuretzbacher, U., Zeitlinger, M. (2011). Antibacterial Distribution and Drug–Drug Interactions in Cancer Patients. In: Safdar, A. (eds) Principles and Practice of Cancer Infectious Diseases. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-644-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-644-3_38

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-643-6

  • Online ISBN: 978-1-60761-644-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics