Management of Gram-Positive Bacterial Disease: Staphylococcus aureus, Streptococcal, Pneumococcal and Enterococcal Infections

  • Samuel Shelburne
  • Daniel M. Musher
Part of the Current Clinical Oncology book series (CCO)


Gram-positive bacteria are a diverse group of organisms that are a major source of morbidity and mortality in patients with cancer. The increasing use of long-term indwelling central catheters and cytotoxic chemotherapies has contributed to the emergence of Gram-positive bacteria as the leading cause of bacteremia in cancer patients. These organisms are also among the foremost causes of pneumonia, skin and soft-tissue infections, osteomyelitis, and central nervous system infections in cancer patients. Gram-positive organisms have a remarkable ability to develop resistance to many of the currently available antimicrobials, but the predilection to become antimicrobial resistant varies substantially for particular organisms and for individual antimicrobial agents. Therefore physicians treating cancer patients need to be familiar with the common clinical manifestations, complications, and treatment options for a wide variety of diseases caused by Gram-positive bacteria.


Staphylococcus aureus Streptococcal, pneumococcal, and enterococcal Infections Cancer Antibiotic resistance 


  1. 1.
    Klastersky J. Science and pragmatism in the treatment and prevention of neutropenic infection. J Antimicrob Chemother. 1998;41(Suppl D):13–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Frei III E et al. The nature and control of infections in patients with acute leukemia. Cancer Res. 1965;25(9):1511–5.PubMedGoogle Scholar
  3. 3.
    Viscoli C, Castagnola E. Treatment of febrile neutropenia: what is new? Curr Opin Infect Dis. 2002;15(4):377–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Cordonnier C et al. Epidemiology and risk factors for gram-positive coccal infections in neutropenia: toward a more targeted antibiotic strategy. Clin Infect Dis. 2003;36(2):149–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on gram-positive and resistant bacteria. Clin Infect Dis. 1999;29(3):490–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Winston DJ et al. Randomized, double-blind, multicenter trial comparing clinafloxacin with imipenem as empirical monotherapy for febrile granulocytopenic patients. Clin Infect Dis. 2001;32(3):381–90.PubMedCrossRefGoogle Scholar
  7. 7.
    Feld R et al. Meropenem versus ceftazidime in the treatment of cancer patients with febrile neutropenia: a randomized, double-blind trial. J Clin Oncol. 2000;18(21):3690–8.PubMedGoogle Scholar
  8. 8.
    Del Favero A et al. A multicenter, double-blind, placebo-controlled trial comparing piperacillin-tazobactam with and without amikacin as empiric therapy for febrile neutropenia. Clin Infect Dis. 2001;33(8):1295–301.PubMedCrossRefGoogle Scholar
  9. 9.
    Rubio M et al. Predominance of gram-positive microorganisms as a cause of septicemia in patients with hematological malignancies. Infect Control Hosp Epidemiol. 1994;15(2):101–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Ortega M et al. Bacterial and fungal bloodstream isolates from 796 hematopoietic stem cell transplant recipients between 1991 and 2000. Ann Hematol. 2005;84(1):40–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Koll BS, Brown AE. The changing epidemiology of infections at cancer hospitals. Clin Infect Dis. 1993;17 Suppl 2:S322–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Safdar A et al. Changing trends in etiology of bacteremia in patients with cancer. Eur J Clin Microbiol Infect Dis. 2006;25(8):522–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Ramphal R. Changes in the etiology of bacteremia in febrile neutropenic patients and the susceptibilities of the currently isolated pathogens. Clin Infect Dis. 2004;39 Suppl 1:S25–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Oppenheim BA. The changing pattern of infection in neutropenic patients. J Antimicrob Chemother. 1998;41(Suppl D):7–11.PubMedCrossRefGoogle Scholar
  15. 15.
    Viscoli C, Varnier O, Machetti M. Infections in patients with febrile neutropenia: epidemiology, microbiology, and risk stratification. Clin Infect Dis. 2005;40 Suppl 4:S240–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Rolston KV et al. The spectrum of Gram-positive bloodstream infections in patients with hematologic malignancies, and the in vitro activity of various quinolones against Gram-positive bacteria isolated from cancer patients. Int J Infect Dis. 2006;10(3):223–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Kanamaru A, Tatsumi Y. Microbiological data for patients with febrile neutropenia. Clin Infect Dis. 2004;39 Suppl 1:S7–10.PubMedCrossRefGoogle Scholar
  18. 18.
    Wisplinghoff H et al. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36(9):1103–10.PubMedCrossRefGoogle Scholar
  19. 19.
    Puig N et al. A study of incidence and characteristics of infections in 476 patients from a single center undergoing autologous blood stem cell transplantation. Int J Hematol. 2007;86(2):186–92.PubMedCrossRefGoogle Scholar
  20. 20.
    Archer GL, Climo MW. Staphylococcus epidermidis and other coagulase-negative staphylococci. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 2352–9.Google Scholar
  21. 21.
    Moreillon P, Que YA, Glauser MP. Staphylococcus aureus (including staphylococcal toxic shock). In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 2321–51.Google Scholar
  22. 22.
    Dossi CM, Zepeda FG, Ledermann DW. Nasal carriage of Staphylococcus aureus in a cohort of children with cancer. Rev Chilena Infectol. 2007;24(3):194–8.Google Scholar
  23. 23.
    Kuehnert MJ et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J Infect Dis. 2006;193(2):172–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Klevens RM et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA. 2007;298(15):1763–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46 Suppl 5:S344–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Navarro MB, Huttner B, Harbarth S. Methicillin-resistant Staphylococcus aureus control in the 21st century: beyond the acute care hospital. Curr Opin Infect Dis. 2008;21(4):372–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghanem G et al. The role of molecular methods in the prevention of nosocomial methicillin-resistant Staphylococcus aureus clusters in cancer patients. Am J Infect Control. 2008;36(9):656–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Rolston KV. Challenges in the treatment of infections caused by gram-positive and gram-negative bacteria in patients with cancer and neutropenia. Clin Infect Dis. 2005;40 Suppl 4:S246–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Laupland KB, Ross T, Gregson DB. Staphylococcus aureus bloodstream infections: risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada, 2000–2006. J Infect Dis. 2008;198(3):336–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Mihu CN et al. Risk factors for late Staphylococcus aureus bacteremia after allogeneic hematopoietic stem cell transplantation: a single-institution, nested case-controlled study. Biol Blood Marrow Transplant. 2008;14(12):1429–33.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang FD et al. Risk factors and mortality in patients with nosocomial Staphylococcus aureus bacteremia. Am J Infect Control. 2008;36(2):118–22.PubMedCrossRefGoogle Scholar
  32. 32.
    Ghanem GA et al. Catheter-related Staphylococcus aureus bacteremia in cancer patients: high rate of complications with therapeutic implications. Medicine (Baltimore). 2007;86(1):54–60.CrossRefGoogle Scholar
  33. 33.
    Raad I et al. Serious complications of vascular catheter-related Staphylococcus aureus bacteremia in cancer patients. Eur J Clin Microbiol Infect Dis. 1992;11(8):675–82.PubMedCrossRefGoogle Scholar
  34. 34.
    Rolston KV. The spectrum of pulmonary infections in cancer patients. Curr Opin Oncol. 2001;13(4):218–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Rubinstein E, Kollef MH, Nathwani D. Pneumonia caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46 Suppl 5:S378–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Miller LG et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med. 2005;352(14):1445–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Denniston S, Riordan FA. Staphylococcus aureus bacteraemia in children and neonates: a 10 year retrospective review. J Infect. 2006;53(6):387–93.PubMedCrossRefGoogle Scholar
  38. 38.
    Ewig S et al. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia. Am J Respir Crit Care Med. 1999;159(1):188–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Moellering Jr RC. Current treatment options for community-acquired methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46(7):1032–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee MC et al. Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant Staphylococcus aureus. Pediatr Infect Dis J. 2004;23(2):123–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339(8):520–32.PubMedCrossRefGoogle Scholar
  42. 42.
    Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med. 2004;351(16):1645–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Mermel LA et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis. 2001;32(9):1249–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Chang FY et al. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Medicine (Baltimore). 2003;82(5):333–9.CrossRefGoogle Scholar
  45. 45.
    Stryjewski ME et al. Use of vancomycin or first-generation cephalosporins for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis. 2007;44(2):190–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Ruotsalainen E et al. Methicillin-sensitive Staphylococcus aureus bacteraemia and endocarditis among injection drug users and nonaddicts: host factors, microbiological and serological characteristics. J Infect. 2008;56(4):249–56.PubMedCrossRefGoogle Scholar
  47. 47.
    Daum RS. Clinical practice. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N Engl J Med. 2007;357(4):380–90.PubMedCrossRefGoogle Scholar
  48. 48.
    Chang FY et al. A prospective multicenter study of Staphylococcus aureus bacteremia: incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine (Baltimore). 2003;82(5):322–32.CrossRefGoogle Scholar
  49. 49.
    Fowler Jr VG et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Weigelt J et al. Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother. 2005;49(6):2260–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Fagon J et al. Treatment of gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am J Respir Crit Care Med. 2000;161(3 Pt 1):753–62.PubMedCrossRefGoogle Scholar
  52. 52.
    Postier RG et al. Results of a multicenter, randomized, open-label efficacy and safety study of two doses of tigecycline for complicated skin and skin-structure infections in hospitalized patients. Clin Ther. 2004;26(5):704–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Kim AI, Adal KA, Schmitt SK. Staphylococcus aureus bacteremia: using echocardiography to guide length of therapy. Cleve Clin J Med. 2003;70(6):517, 520–1, 525–6 passim.Google Scholar
  54. 54.
    Livorsi DJ et al. Outcomes of treatment for hematogenous Staphylococcus aureus vertebral osteomyelitis in the MRSA ERA. J Infect. 2008;57(2):128–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Murray RJ. Staphylococcus aureus infective endocarditis: diagnosis and management guidelines. Intern Med J. 2005;35 Suppl 2:S25–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Daver NG et al. Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J Infect. 2007;54(6):539–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Kaplan SL. Community-acquired methicillin-resistant Staphylo-coccus aureus infections in children. Semin Pediatr Infect Dis. 2006;17(3):113–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Costa SF et al. Colonization and molecular epidemiology of coagulase-negative Staphylococcal bacteremia in cancer patients: a pilot study. Am J Infect Control. 2006;34(1):36–40.PubMedCrossRefGoogle Scholar
  59. 59.
    Persson L et al. Phenotypic and genotypic characterization of coagulase-negative staphylococci isolated in blood cultures from patients with haematological malignancies. Eur J Clin Microbiol Infect Dis. 2006;25(5):299–309.PubMedCrossRefGoogle Scholar
  60. 60.
    Kirby JT, Fritsche TR, Jones RN. Influence of patient age on the frequency of occurrence and antimicrobial resistance patterns of isolates from hematology/oncology patients: report from the Chemotherapy Alliance for Neutropenics and the Control of Emerging Resistance Program (North America). Diagn Microbiol Infect Dis. 2006;56(1):75–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Ashour HM, el-Sharif A. Microbial spectrum and antibiotic susceptibility profile of gram-positive aerobic bacteria isolated from cancer patients. J Clin Oncol. 2007;25(36):5763–9.PubMedCrossRefGoogle Scholar
  62. 62.
    von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002;2(11):677–85.CrossRefGoogle Scholar
  63. 63.
    Conen A et al. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis. 2008;47(1):73–82.PubMedCrossRefGoogle Scholar
  64. 64.
    Raad I, Hanna H, Maki D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis. 2007;7(10):645–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Yusuf SW et al. Culture-positive and culture-negative endocarditis in patients with cancer: a retrospective observational study, 1994–2004. Medicine (Baltimore). 2006;85(2):86–94.CrossRefGoogle Scholar
  66. 66.
    Klastersky J et al. Bacteraemia in febrile neutropenic cancer patients. Int J Antimicrob Agents. 2007;30 Suppl 1:S51–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang A et al. Contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA. 2007;297(12):1354–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Chu V et al. Coagulase-negative staphylococcal prosthetic valve endocarditis: a contemporary update based on the International Collaboration on Endocarditis – Prospective Cohort Study. Heart. 2009;95:570–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Beekmann SE, Diekema DJ, Doern GV. Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol. 2005;26(6):559–66.PubMedCrossRefGoogle Scholar
  70. 70.
    Bouza E et al. A randomized and prospective study of 3 procedures for the diagnosis of catheter-related bloodstream infection without catheter withdrawal. Clin Infect Dis. 2007;44(6):820–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Raad I et al. Impact of central venous catheter removal on the recurrence of catheter-related coagulase-negative staphylococcal bacteremia. Infect Control Hosp Epidemiol. 1992;13(4):215–21.PubMedCrossRefGoogle Scholar
  72. 72.
    Mutnick AH, Kirby JT, Jones RN. CANCER resistance surveillance program: initial results from hematology-oncology centers in North America. Chemotherapy Alliance for Neutropenics and the Control of Emerging Resistance. Ann Pharmacother. 2003;37(1):47–56.PubMedCrossRefGoogle Scholar
  73. 73.
    Kloos WE, Bannerman TL. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev. 1994;7(1):117–40.PubMedGoogle Scholar
  74. 74.
    Karchmer AW, Archer GL, Dismukes WE. Rifampin treatment of prosthetic valve endocarditis due to Staphylococcus epidermidis. Rev Infect Dis. 1983;5 Suppl 3:S543–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Elting LS et al. Outcomes of bacteremia in patients with cancer and neutropenia: observations from two decades of epidemiological and clinical trials. Clin Infect Dis. 1997;25(2):247–59.PubMedCrossRefGoogle Scholar
  76. 76.
    Facklam R. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev. 2002;15(4):613–30.PubMedCrossRefGoogle Scholar
  77. 77.
    Johnson CC, Tunkel AR. Viridans group streptococci, groups C and G streptococci, and Gemella morbilliform. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 2434–50.Google Scholar
  78. 78.
    Han XY, Kamana M, Rolston KV. Viridans streptococci isolated by culture from blood of cancer patients: clinical and microbiologic analysis of 50 cases. J Clin Microbiol. 2006;44(1):160–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Husain E et al. Viridans streptococci bacteremia in children with malignancy: relevance of species identification and penicillin susceptibility. Pediatr Infect Dis J. 2005;24(6):563–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Lyytikainen O et al. Nosocomial bloodstream infections due to viridans streptococci in haematological and non-haematological patients: species distribution and antimicrobial resistance. J Antimicrob Chemother. 2004;53(4):631–4.PubMedCrossRefGoogle Scholar
  81. 81.
    Fowler Jr VG et al. Staphylococcus aureus endocarditis: a consequence of medical progress. JAMA. 2005;293(24):3012–21.PubMedCrossRefGoogle Scholar
  82. 82.
    Castagnola E et al. A prospective study on the epidemiology of febrile episodes during chemotherapy-induced neutropenia in children with cancer or after hemopoietic stem cell transplantation. Clin Infect Dis. 2007;45(10):1296–304.PubMedCrossRefGoogle Scholar
  83. 83.
    Shenep JL. Viridans-group streptococcal infections in immunocompromised hosts. Int J Antimicrob Agents. 2000;14(2):129–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Ahmed R et al. Viridans streptococcus bacteremia in children on chemotherapy for cancer: an underestimated problem. Pediatr Hematol Oncol. 2003;20(6):439–44.PubMedGoogle Scholar
  85. 85.
    Paganini H et al. Viridans streptococci bacteraemia in children with fever and neutropenia: a case-control study of predisposing factors. Eur J Cancer. 2003;39(9):1284–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Tunkel AR, Sepkowitz KA. Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis. 2002;34(11):1524–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Richard P et al. Viridans streptococcal bacteraemia in patients with neutropenia. Lancet. 1995;345(8965):1607–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Prabhu RM et al. Emergence of quinolone resistance among viridans group streptococci isolated from the oropharynx of neutropenic peripheral blood stem cell transplant patients receiving quinolone antimicrobial prophylaxis. Eur J Clin Microbiol Infect Dis. 2005;24(12):832–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Marron A et al. Serious complications of bacteremia caused by viridans streptococci in neutropenic patients with cancer. Clin Infect Dis. 2000;31(5):1126–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Elting LS, Bodey GP, Keefe BH. Septicemia and shock syndrome due to viridans streptococci: a case-control study of predisposing factors. Clin Infect Dis. 1992;14(6):1201–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Richter SS et al. Minimizing the workup of blood culture contaminants: implementation and evaluation of a laboratory-based algorithm. J Clin Microbiol. 2002;40(7):2437–44.PubMedCrossRefGoogle Scholar
  92. 92.
    Huang WT et al. Clinical features and complications of viridans streptococci bloodstream infection in pediatric hemato-oncology patients. J Microbiol Immunol Infect. 2007;40(4):349–54.PubMedGoogle Scholar
  93. 93.
    Collin BA et al. Evolution, incidence, and susceptibility of bacterial bloodstream isolates from 519 bone marrow transplant patients. Clin Infect Dis. 2001;33(7):947–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Hughes WT et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis. 2002;34(6):730–51.PubMedCrossRefGoogle Scholar
  95. 95.
    Razonable RR et al. Bacteremia due to viridans group streptococci with diminished susceptibility to levofloxacin among neutropenic patients receiving levofloxacin prophylaxis. Clin Infect Dis. 2002;34(11):1469–74.PubMedCrossRefGoogle Scholar
  96. 96.
    Ohuoba EF et al. Failure of viridans group streptococci causing bacteremia in pediatric oncology patients to express superantigens. J Pediatr Hematol Oncol. 2006;28(9):627–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Sylvetsky N et al. Bacteremia due to beta-hemolytic Streptococcus group G: increasing incidence and clinical characteristics of patients. Am J Med. 2002;112(8):622–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Nielsen HU, Kolmos HJ, Frimodt-Moller N. Beta-hemolytic streptococcal bacteremia: a review of 241 cases. Scand J Infect Dis. 2002;34(7):483–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Colford Jr JM, Mohle-Boetani J, Vosti KL. Group B streptococcal bacteremia in adults. Five years’ experience and a review of the literature. Medicine (Baltimore). 1995;74(4):176–90.CrossRefGoogle Scholar
  100. 100.
    Bisno AL, Ruoff KL. Streptococcus pyogenes. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 2362–79.Google Scholar
  101. 101.
    Peter G, Smith AL. Group A streptococcal infections of the skin and pharynx (second of two parts). N Engl J Med. 1977;297(7):365–70.PubMedCrossRefGoogle Scholar
  102. 102.
    Peter G, Smith AL. Group A streptococcal infections of the skin and pharynx (first of two parts). N Engl J Med. 1977;297(6):311–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Edwards MS et al. Group B streptococcal colonization and serotype-specific immunity in healthy elderly persons. Clin Infect Dis. 2005;40(3):352–7.PubMedCrossRefGoogle Scholar
  104. 104.
    McDonald MI et al. Low rates of streptococcal pharyngitis and high rates of pyoderma in Australian aboriginal communities where acute rheumatic fever is hyperendemic. Clin Infect Dis. 2006;43(6):683–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Lamagni TL et al. Epidemiology of severe Streptococcus pyogenes disease in Europe. J Clin Microbiol. 2008;46(7):2359–67.PubMedCrossRefGoogle Scholar
  106. 106.
    Phares CR et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. JAMA. 2008;299(17):2056–65.PubMedCrossRefGoogle Scholar
  107. 107.
    Simon MS, Cody RL. Cellulitis after axillary lymph node dissection for carcinoma of the breast. Am J Med. 1992;93(5):543–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Awada A et al. Streptococcal and enterococcal bacteremia in patients with cancer. Clin Infect Dis. 1992;15(1):33–48.PubMedCrossRefGoogle Scholar
  109. 109.
    Ekelund K et al. Invasive group A, B, C and G streptococcal infections in Denmark 1999–2002: epidemiological and clinical aspects. Clin Microbiol Infect. 2005;11(7):569–76.PubMedCrossRefGoogle Scholar
  110. 110.
    Sharkawy A et al. Severe group A streptococcal soft-tissue infections in Ontario: 1992–1996. Clin Infect Dis. 2002;34(4):454–60.PubMedCrossRefGoogle Scholar
  111. 111.
    Gabillot-Carre M, Roujeau JC. Acute bacterial skin infections and cellulitis. Curr Opin Infect Dis. 2007;20(2):118–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Bonnetblanc JM, Bedane C. Erysipelas: recognition and management. Am J Clin Dermatol. 2003;4(3):157–63.PubMedCrossRefGoogle Scholar
  113. 113.
    Wong CH, Wang YS. The diagnosis of necrotizing fasciitis. Curr Opin Infect Dis. 2005;18(2):101–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Solis-Garcia del Pozo J et al. Vertebral osteomyelitis caused by Streptococcus agalactiae. J Infect. 2000;41(1):84–90.PubMedCrossRefGoogle Scholar
  115. 115.
    Bisno AL et al. Practice guidelines for the diagnosis and management of group A streptococcal pharyngitis. Infectious Diseases Society of America. Clin Infect Dis. 2002;35(2):113–25.PubMedCrossRefGoogle Scholar
  116. 116.
    The Working Group on Severe Streptococcal Infections. Defining the group A streptococcal toxic shock syndrome. Rationale and consensus definition. JAMA. 1993;269(3):390–1.CrossRefGoogle Scholar
  117. 117.
    Shet A, Kaplan EL. Clinical use and interpretation of group A streptococcal antibody tests: a practical approach for the pediatrician or primary care physician. Pediatr Infect Dis J. 2002;21(5):420–6. quiz 427–30.PubMedCrossRefGoogle Scholar
  118. 118.
    Kaplan EL. Recent evaluation of antimicrobial resistance in beta-hemolytic streptococci. Clin Infect Dis. 1997;24 Suppl 1:S89–92.PubMedCrossRefGoogle Scholar
  119. 119.
    Sodhi M et al. Is it safe to use carbapenems in patients with a history of allergy to penicillin? J Antimicrob Chemother. 2004;54(6):1155–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Martin JM et al. Erythromycin-resistant group A streptococci in schoolchildren in Pittsburgh. N Engl J Med. 2002;346(16):1200–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Ayer V et al. Tetracycline resistance in group A streptococci: emergence on a global scale and influence on multiple-drug resistance. Antimicrob Agents Chemother. 2007;51(5):1865–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Traub WH, Leonhard B. Comparative susceptibility of clinical group A, B, C, F, and G beta-hemolytic streptococcal isolates to 24 antimicrobial drugs. Chemotherapy. 1997;43(1):10–20.PubMedCrossRefGoogle Scholar
  123. 123.
    King A, Phillips I. The in vitro activity of daptomycin against 514 Gram-positive aerobic clinical isolates. J Antimicrob Chemother. 2001;48(2):219–23.PubMedCrossRefGoogle Scholar
  124. 124.
    Jones RN et al. United States resistance surveillance results for linezolid (LEADER Program for 2007). Diagn Microbiol Infect Dis. 2008;62(4):416–26.PubMedCrossRefGoogle Scholar
  125. 125.
    Russell NE, Pachorek RE. Clindamycin in the treatment of streptococcal and staphylococcal toxic shock syndromes. Ann Pharmacother. 2000;34(7–8):936–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Garcia-Rodriguez JA, Fresnadillo Martinez MJ. Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother. 2002;50(Suppl S2):59–73.PubMedCrossRefGoogle Scholar
  127. 127.
    Mandell LA et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44 Suppl 2:S27–72.PubMedCrossRefGoogle Scholar
  128. 128.
    Scarborough M et al. Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N Engl J Med. 2007;357(24):2441–50.PubMedCrossRefGoogle Scholar
  129. 129.
    Lexau CA et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA. 2005;294(16):2043–51.PubMedCrossRefGoogle Scholar
  130. 130.
    Kyaw MH et al. The influence of chronic illnesses on the incidence of invasive pneumococcal disease in adults. J Infect Dis. 2005;192(3):377–86.PubMedCrossRefGoogle Scholar
  131. 131.
    Kulkarni S et al. Chronic graft versus host disease is associated with long-term risk for pneumococcal infections in recipients of bone marrow transplants. Blood. 2000;95(12):3683–6.PubMedGoogle Scholar
  132. 132.
    Engelhard D et al. Early and late invasive pneumococcal infection following stem cell transplantation: a European Bone Marrow Transplantation survey. Br J Haematol. 2002;117(2):444–50.PubMedCrossRefGoogle Scholar
  133. 133.
    Meisel R et al. Increased risk for invasive pneumococcal diseases in children with acute lymphoblastic leukaemia. Br J Haematol. 2007;137(5):457–60.PubMedCrossRefGoogle Scholar
  134. 134.
    Musher DM. Streptococcus pneumoniae. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 2392–410.Google Scholar
  135. 135.
    Youssef S et al. Streptococcus pneumoniae infections in 47 hematopoietic stem cell transplantation recipients: clinical characteristics of infections and vaccine-breakthrough infections, 1989–2005. Medicine (Baltimore). 2007;86(2):69–77.CrossRefGoogle Scholar
  136. 136.
    Le Monnier A et al. Microbiological diagnosis of empyema in children: comparative evaluations by culture, polymerase chain reaction, and pneumococcal antigen detection in pleural fluids. Clin Infect Dis. 2006;42(8):1135–40.PubMedCrossRefGoogle Scholar
  137. 137.
    Klugman KP, Madhi SA, Albrich WC. Novel approaches to the identification of Streptococcus pneumoniae as the cause of community-acquired pneumonia. Clin Infect Dis. 2008;47 Suppl 3:S202–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Centers for Disease Control and Prevention. Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae – United States, 2006–2007. MMWR Morb Mortal Wkly Rep. 2008;57(50):1353–5.Google Scholar
  139. 139.
    Jones RN et al. Gatifloxacin used for therapy of outpatient community-acquired pneumonia caused by Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 2002;44(1):93–100.PubMedCrossRefGoogle Scholar
  140. 140.
    Sahm DF et al. Tracking resistance among bacterial respiratory tract pathogens: summary of findings of the TRUST Surveillance Initiative, 2001–2005. Postgrad Med. 2008;120(3 Suppl 1):8–15.PubMedCrossRefGoogle Scholar
  141. 141.
    San Pedro GS et al. Linezolid versus ceftriaxone/cefpodoxime in patients hospitalized for the treatment of Streptococcus pneumoniae pneumonia. Scand J Infect Dis. 2002;34(10):720–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Targonski PV, Poland GA. Pneumococcal vaccination in adults: recommendations, trends, and prospects. Cleve Clin J Med. 2007;74(6):401–6, 408–10, 413–4.Google Scholar
  143. 143.
    Centers for Disease Control and Prevention. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 1997;46(RR-8):1–24.Google Scholar
  144. 144.
    Safdar A et al. Multiple-dose granulocyte-macrophage-colony-stimulating factor plus 23-valent polysaccharide pneumococcal vaccine in patients with chronic lymphocytic leukemia: a prospective, randomized trial of safety and immunogenicity. Cancer. 2008;113(2):383–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Sader HS, Fritsche TR, Jones RN. Frequency of occurrence and daptomycin susceptibility rates of Gram-positive organisms causing bloodstream infections in cancer patients. J Chemother. 2008;20(5):570–6.PubMedGoogle Scholar
  146. 146.
    Moellering Jr RC. Enterococcus species, Streptococcus bovis, and Leuconostoc species. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. Philadelphia: Elsevier; 2005. p. 2411–2.Google Scholar
  147. 147.
    Ghanem G et al. Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol. 2007;28(9):1054–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Vergis EN et al. Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. A prospective multicenter study. Ann Intern Med. 2001;135(7):484–92.PubMedCrossRefGoogle Scholar
  149. 149.
    Cetinkaya Y, Falk P, Mayhall CG. Vancomycin-resistant enterococci. Clin Microbiol Rev. 2000;13(4):686–707.PubMedCrossRefGoogle Scholar
  150. 150.
    Mundy LM, Sahm DF, Gilmore M. Relationships between enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev. 2000;13(4):513–22.PubMedCrossRefGoogle Scholar
  151. 151.
    Maki DG, Agger WA. Enterococcal bacteremia: clinical features, the risk of endocarditis, and management. Medicine (Baltimore). 1988;67(4):248–69.CrossRefGoogle Scholar
  152. 152.
    Murray BE. Vancomycin-resistant enterococcal infections. N Engl J Med. 2000;342(10):710–21.PubMedCrossRefGoogle Scholar
  153. 153.
    Rolston KV, Bodey GP, Safdar A. Polymicrobial infection in patients with cancer: an underappreciated and underreported entity. Clin Infect Dis. 2007;45(2):228–33.PubMedCrossRefGoogle Scholar
  154. 154.
    Fry DE. Third generation cephalosporin antibiotics in surgical practice. Am J Surg. 1986;151(2):306–13.PubMedCrossRefGoogle Scholar
  155. 155.
    Weinstein MP. Comparative evaluation of penicillin, ampicillin, and imipenem MICs and susceptibility breakpoints for vancomycin-susceptible and vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. J Clin Microbiol. 2001;39(7):2729–31.PubMedCrossRefGoogle Scholar
  156. 156.
    Deshpande LM et al. Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis. 2007;58(2):163–70.PubMedCrossRefGoogle Scholar
  157. 157.
    Chow JW. Aminoglycoside resistance in enterococci. Clin Infect Dis. 2000;31(2):586–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Raad I et al. Prospective, randomized study comparing quinupristin-dalfopristin with linezolid in the treatment of vancomycin-resistant Enterococcus faecium infections. J Antimicrob Chemother. 2004;53(4):646–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Grim SA et al. Daptomycin for the treatment of vancomycin-resistant enterococcal infections. J Antimicrob Chemother. 2009;63:414–6.PubMedCrossRefGoogle Scholar
  160. 160.
    Boucher HW et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1–12.PubMedCrossRefGoogle Scholar
  161. 161.
    Jaksic B et al. Efficacy and safety of linezolid compared with vancomycin in a randomized, double-blind study of febrile neutropenic patients with cancer. Clin Infect Dis. 2006;42(5):597–607.PubMedCrossRefGoogle Scholar
  162. 162.
    Feld R. Bloodstream infections in cancer patients with febrile neutropenia. Int J Antimicrob Agents. 2008;32 Suppl 1:S30–3.PubMedCrossRefGoogle Scholar
  163. 163.
    Cometta A et al. Vancomycin versus placebo for treating persistent fever in patients with neutropenic cancer receiving piperacillin-tazobactam monotherapy. Clin Infect Dis. 2003;37(3):382–9.PubMedCrossRefGoogle Scholar
  164. 164.
    Paul M et al. Additional anti-Gram-positive antibiotic treatment for febrile neutropenic cancer patients. Cochrane Database Syst Rev. 2005;3:CD003914.PubMedGoogle Scholar
  165. 165.
    Camins BC et al. A population-based investigation of invasive vancomycin-resistant Enterococcus infection in metropolitan Atlanta, Georgia, and predictors of mortality. Infect Control Hosp Epidemiol. 2007;28(8):983–91.PubMedCrossRefGoogle Scholar
  166. 166.
    Kirst HA, Thompson DG, Nicas TI. Historical yearly usage of vancomycin. Antimicrob Agents Chemother. 1998;42(5):1303–4.PubMedGoogle Scholar
  167. 167.
    Irfan S et al. Emergence of carbapenem resistant Gram negative and vancomycin resistant Gram positive organisms in bacteremic isolates of febrile neutropenic patients: a descriptive study. BMC Infect Dis. 2008;8:80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Infectious DiseasesThe University of Texas, M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations