Wiseman, M. (2008) The Second World Cancer Research Fund/American Institute for Cancer Research Expert Report. Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Proc Nutr Soc
67, 253–56.
PubMed
CrossRef
Google Scholar
Ross, S.A. (2003) Diet and DNA methylation interactions in cancer prevention. Ann NY Acad Sci
983, 197–207.
PubMed
CrossRef
CAS
Google Scholar
McGowan, P.O., Meaney, M.J., and Szyf, M. (2008) Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res
1237, 12–24.
PubMed
CrossRef
CAS
Google Scholar
Kim, D.H., Saetrom, P., Snøve, O., Jr., and Rossi, J.J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA
105, 16230–35.
Google Scholar
Esteller, M. (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol
45, 629–56.
PubMed
CrossRef
CAS
Google Scholar
Tost, J. (2009) DNA methylation: An introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol Biol
507, 3–20.
PubMed
Google Scholar
Razin, A., and Riggs, A.D. (1980) DNA methylation and gene function. Science
210, 604–10.
PubMed
CrossRef
CAS
Google Scholar
Brenner, C., Deplus, R., Didelot, C., Loriot, A., Viré, E., De Smet, C., Gutierrez, A., Danovi, D., Bernard, D., Boon, T., Pelicci, P.G., Amati, B., Kouzarides, T., de Launoit, Y., Di Croce, L., and Fuks, F. (2005) Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J
24,336–46.
PubMed
CrossRef
CAS
Google Scholar
Ooi, S.K., and Bestor, T.H. (2008) The colorful history of active DNA demethylation. Cell
133, 1145–48.
PubMed
CrossRef
CAS
Google Scholar
Kim, J.K., Samaranayake, M., and Pradhan, S. (2008) Epigenetic mechanisms in mammals. Cell Mol Life Sci Nov 3. [Epub ahead of print].
Google Scholar
Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet
8, 286–98.
PubMed
CrossRef
CAS
Google Scholar
Li, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet
3, 662–73.
PubMed
CrossRef
CAS
Google Scholar
Belinsky, S.A. (2005) Silencing of genes by promoter hypermethylation: Key event in rodent and human lung cancer. Carcinogenesis
26, 1481–87.
PubMed
CrossRef
CAS
Google Scholar
Ehrlich, M. (2002) DNA methylation in cancer: Too much, but also too little. Oncogene
21, 5400–13.
PubMed
CrossRef
CAS
Google Scholar
Kautiainen, T.L., and Jones, P.A. (1986) DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem
261, 1594–98.
PubMed
CAS
Google Scholar
Wolffe, A.P. (1994) Inheritance of chromatin states. Dev Genet
15, 463–70.
PubMed
CrossRef
CAS
Google Scholar
Kornberg, R.D., and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell
98, 285–94.
PubMed
CrossRef
CAS
Google Scholar
Jenuwein, T. (2001) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol
11, 266–73.
PubMed
CrossRef
CAS
Google Scholar
Oki, M., Aihara, H., and Ito, T. (2007) Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem
41, 319–36.
PubMed
Google Scholar
Wade, P.A., Pruss, D., and Wolffe, A.P. (1997) Histone acetylation: Chromatin in action. Trends Biochem Sci
22, 128–32.
PubMed
CrossRef
CAS
Google Scholar
Shiio, Y., and Eisenman, R.N. (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA
100, 13225–30.
PubMed
CrossRef
CAS
Google Scholar
Shilatifard, A. (2006) Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu Rev Biochem
75, 243–69.
PubMed
CrossRef
CAS
Google Scholar
Kothapalli, N., Camporeale, G., Kueh, A., Chew, Y.C., Oommen, A.M., Griffin, J.B., and Zempleni, J. (2005) Biological functions of biotinylated histones. J Nutr Biochem
16, 446–48.
PubMed
CrossRef
CAS
Google Scholar
Shukla, V., Vaissière, T., and Herceg, Z. (2008) Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res
637, 1–15.
PubMed
CrossRef
CAS
Google Scholar
Jenuwein, T., and Allis, C.D. (2001) Translating the histone. Code Sci
293, 1074–80.
CAS
Google Scholar
Fraga, M.F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N.G., Pérez-Rosado, A., Calvo, E., Lopez, J.A., Cano, A., Calasanz, M.J., Colomer, D., Piris, M.A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T., and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet
37, 391–400.
PubMed
CrossRef
CAS
Google Scholar
Rosato, R.R., and Grant, S. (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther
2, 30–37.
PubMed
Google Scholar
Gibbons, R.J. (2005) Histone modifying and chromatin remodeling enzymes in cancer and dysplastic syndromes. Hum Mol Genet
14, R85–R92.
PubMed
CrossRef
CAS
Google Scholar
Varga-Weisz, P.D., and Becker, P.B. (2006) Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev
16, 151–56.
PubMed
CrossRef
CAS
Google Scholar
Medina, P.P., and Cespedes, M.S. (2008) Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics
3, 64–68.
PubMed
CrossRef
Google Scholar
Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Côté, J., and Wang, W. (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell
2, 851–61.
PubMed
CrossRef
CAS
Google Scholar
Morey, L., Brenner, C., Fazi, F., Villa, R., Gutierrez, A., Buschbeck, M., Nervi, C., Minucci, S., Fuks, F., and Di Croce, L. (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol
28, 5912–23.
PubMed
CrossRef
CAS
Google Scholar
Sparmann, A., and van Lohuizen, M. (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer
6, 846–56.
PubMed
CrossRef
CAS
Google Scholar
Takihara, Y. (2008) Role of polycomb-group genes in sustaining activities of normal and malignant stem cells. Int J Hematol
87, 25–34.
PubMed
CrossRef
CAS
Google Scholar
Fabbri, M., Croce, C.M., and Calin, G.A. (2008) MicroRNAs. Cancer J
14, 1–6.
PubMed
CrossRef
CAS
Google Scholar
Kim, D.H., Saetrom, P., Snøve, O., Jr., and Rossi, J.J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA
105, 16230–35.
PubMed
CrossRef
CAS
Google Scholar
Hawkins, P.G., and Morris, K.V. (2008) RNA and transcriptional modulation of gene expression. Cell Cycle
7, 602–07.
PubMed
CrossRef
CAS
Google Scholar
Wolff, G.L., Kodell, R.L., Moore, S.R., and Cooney, C.A. (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J
12, 949–57.
PubMed
CAS
Google Scholar
Waterland, R.A., and Jirtle, R.L. (2003) Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol
23, 5293–300.
PubMed
CrossRef
CAS
Google Scholar
Cropley, J.E., Suter, C.M., Beckman, K.B., and Martin, D.I. (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA
103, 17308–12.
PubMed
CrossRef
CAS
Google Scholar
Dolinoy, D.C., Weidman, J.R., Waterland, R.A., and Jirtle, R.L. (2006) Maternal genistein alters coat color and protects A
vy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect
114, 567–72.
PubMed
CrossRef
CAS
Google Scholar
Waterland, R.A., Dolinoy, D.C., Lin, J.R., Smith, C.A., Shi, X., and Tahiliani, K.G. (2006) Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis
44, 401–06.
PubMed
CrossRef
CAS
Google Scholar
Waterland, R.A., Lin, J.R., Smith, C.A., and Jirtle, R.L. (2006) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (IGF2) locus. Hum Mol Genet
15, 705–16.
PubMed
CrossRef
CAS
Google Scholar
Heijmans, B.T., Tobi, E.W., Stein, A.D., Putter, H., Blauw, G.J., Susser, E.S., Slagboom, P.E., and Lumey, L.H. (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA
105, 17046–49.
PubMed
CrossRef
CAS
Google Scholar
Duhl, D.M., Vrieling, H., Miller, K.A., Wolff, G.L., and Barsh, G.S. (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet
8, 59–65.
PubMed
CrossRef
CAS
Google Scholar
Cooney, C.A., Dave, A.A., and Wolff, G.L. (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr
132, 2393S–400S.
PubMed
CAS
Google Scholar
Dolinoy, D.C., Huang, D., and Jirtle, R.L. (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA
104, 13056–61.
PubMed
CrossRef
CAS
Google Scholar
Waterland, R.A., Travisano, M., Tahiliani, K.G., Rached, M.T., and Mirza, S. (2008) Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond)
32, 1373–79.
CrossRef
CAS
Google Scholar
Rakyan, V.K., Blewitt, M.E., Druker, R., Preis, J.I., and Whitelaw, E. (2002) Metastable epialleles in mammals. Trends Genet
18, 348–51.
PubMed
CrossRef
CAS
Google Scholar
Whitelaw, E., and Martin, D.I. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet
27, 361–65.
PubMed
CrossRef
CAS
Google Scholar
Kotsopoulos, J., Sohn, K.J., and Kim, Y.I. (2008) Postweaning dietary folate deficiency provided through childhood to puberty permanently increases genomic DNA methylation in adult rat liver. J Nutr
138, 703–09.
PubMed
CAS
Google Scholar
Ingrosso, D., Cimmino, A., Perna, A.F., Masella, L., De Santo, N.G., De Bonis, M.L., Vacca, M., D’Esposito, M., D’Urso, M., Galletti, P., and Zappia, V. (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet
61, 1693–99.
CrossRef
CAS
Google Scholar
Fang, M., Chen, D., and Yang, C.S. (2007) Dietary polyphenols may affect DNA methylation. J Nutr
137, 223S–8S.
PubMed
CAS
Google Scholar
Fang, M.Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W., and Yang, C.S. (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res
63, 7563–70.
PubMed
CAS
Google Scholar
Fang, M.Z., Chen, D., Sun, Y., Jin, Z., Christman, J.K., and Yang, C.S. (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res
11, 7033–41.
PubMed
CrossRef
CAS
Google Scholar
Fini, L., Selgrad, M., Fogliano, V., Graziani, G., Romano, M., Hotchkiss, E., Daoud, Y.A., De Vol, E.B., Boland, C.R., and Ricciardiello, L. (2007) Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. J Nutr
137, 2622–28.
PubMed
CAS
Google Scholar
Klein, E.A., Thompson, I.M., Lippman, S.M., Goodman, P.J., Albanes, D., Taylor, P.R., and Coltman, C. (2000) SELECT: The selenium and vitamin E cancer prevention trial: Rationale and design. Prostate Cancer Prostatic Dis
3, 145–51.
PubMed
CrossRef
CAS
Google Scholar
Xiang, N., Zhao, R., Song, G., and Zhong, W. (2008) Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis
29, 2175–81.
PubMed
CrossRef
CAS
Google Scholar
Garfinkel, M.D., and Ruden, D.M. (2004) Chromatin effects in nutrition, cancer and obesity. Nutrition
20, 56–62.
PubMed
CrossRef
CAS
Google Scholar
Myzak, M.C., and Dashwood, R.H. (2006) Histone deacetylases as targets for dietary cancer preventive agents: Lessons learned with butyrate, diallyl disulfide and sulforaphane. Curr Drug Targets
7, 443–52.
PubMed
CrossRef
CAS
Google Scholar
Mariadason, J.M., Corner, G.A., and Augenlicht, L.H. (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: Comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res
60, 4561–72.
PubMed
CAS
Google Scholar
Bernhard, D., Ausserlechner, M.J., Tonko, M., Löffler, M., Hartmann, B.L., Csordas, A., and Kofler, R. (1999) Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J
13, 1991–2001.
PubMed
CAS
Google Scholar
Fang, Y.J., Chen, Y.X., Lu, J., Lu, R., Yang, L., Zhu, H.Y., Gu, W.Q., and Lu, L.G. (2004) Epigenetic modification regulates both expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines: Colo-320 and SW1116. Cell Res
14, 217–26.
PubMed
CrossRef
CAS
Google Scholar
Davie, J.R. (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr
133, 2485S–93S.
PubMed
CAS
Google Scholar
Druesne, N., Pagniez, A., Mayeur, C., Thomas, M., Cherbuy, C., Duée, P.H., Martel, P., and Chaumontet, C. (2004) Diallyl disulfide (DADS) increases histone acetylation and p21waf1/cip1 expression in human colon tumor cell lines. Carcinogenesis
25, 1227–36.
PubMed
CrossRef
CAS
Google Scholar
Druesne-Pecollo, N., Pagniez, A., Thomas, A., Cherbuy, C., Duée, P.H., Martel, P., and Chaumontet, C. (2006) Diallyl disulfide increases CDKN1A promoter-associated histone acetylation in human colon tumor cell lines. J Agric Food Chem
54, 7503–07.
PubMed
CrossRef
CAS
Google Scholar
Lea, M.A., and Randolph, V.M. (2001) Induction of histone acetylation in rat liver and hepatoma by organosulfur compounds including diallyl disulfide. Anticancer Res
21, 2841–46.
PubMed
CAS
Google Scholar
Druesne-Pecollo, N., Chaumontet, C., Pagniez, A., Vaugelade, P., Bruneau, A., Thomas, M., Cherbuy, C., Duée, P.H., and Martel, P. (2007) In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes. Biochem Biophys Res Commun
354, 140–47.
PubMed
CrossRef
CAS
Google Scholar
Lea, M.A., Rasheed, M., Randolph, V.M., Khan, F., Shareef, A., and desBordes, C. (2002) Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr Cancer
43, 90–102.
PubMed
CrossRef
CAS
Google Scholar
Myzak, M.C., Karplus, A., Chung, F.-L., and Dashwood, R.H. (2004) A novel mechanism of chemoprotection by sulforaphane: Inhibition of histone deactylase. Cancer Res
64, 5767–74.
PubMed
CrossRef
CAS
Google Scholar
Myzak, M.C., Hardin, K., Wang, R., Dashwood, R.H., and Ho, E. (2006) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis
27, 811–19.
PubMed
CrossRef
CAS
Google Scholar
Myzak, M.C., Dashwood, W.M., Orner, G.A., Ho, E., and Dashwood, R.H. (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesi in APC
min mice. FASEB J
20, 506–08.
PubMed
CAS
Google Scholar
Myzak, M.C., Tong, P., Dashwood, W.M., Dashwood, R.H., and Ho, E. (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood)
232, 227–34.
CAS
Google Scholar
Wang, L.G., Belkemisheva, A., Liu, X.M., Ferrari, A.C., Feng, J., and Chiao, J.W. (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog
46, 24–31.
PubMed
CrossRef
CAS
Google Scholar
Majid, S., Kikuno, N., Nelles, J., Noonan, E., Tanaka, Y., Kawamoto, K., Hirata, H., Li, L.C., Zhao, H., Okino, S.T., Place, R.F., Pookot, D., and Dahiya, R. (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res
68, 2736–44.
PubMed
CrossRef
CAS
Google Scholar
Kikuno, N., Shiina, H., Urakami, S., Kawamoto, K., Hirata, H., Tanaka, Y., Majid, S., Igawa, M., and Dahiya, R. (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer
123, 552–60.
PubMed
CrossRef
CAS
Google Scholar
Lam, Y., Galvez, A., and de Lumen, B.O. (2003) Lunasin suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutr Cancer
47, 88–94.
PubMed
CrossRef
CAS
Google Scholar
Jeong, H.J., Jeong, J.B., Kim, D.S., and de Lumen, B.O. (2007) Inhibition of core histone acetylation by the cancer preventive peptide lunasin J Agri Food Chem
55, 632–37.
CrossRef
CAS
Google Scholar
Aagaard-Tillery, K.M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R., and Lane, R.H. (2008) Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome. J Mol Endocrinol
41, 91–102.
PubMed
CrossRef
CAS
Google Scholar
Pogribny, I.P., Ross, S.A., Tryndyak, V.P., Pogribna, M., Poirier, L.A., and Karpinets, T.V. (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis
27, 1180–86.
PubMed
CrossRef
CAS
Google Scholar
Chew, Y.C., West, J.T., Kratzer, S.J., Ilvarsonn, A.M., Eissenberg, J.C., Dave, B.J., Klinkebiel, D., Christman, J.K., and Zempleni, J. (2008) Biotinylation of histones represses transposable elements in human and mouse cells and cell lines and in Drosophila melanogaster. J Nutr
138, 2316–22.
PubMed
CrossRef
CAS
Google Scholar
Lee, E.R., Murdoch, F.E., and Fritsch, M.K. (2007) High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells
25, 2191–99.
PubMed
CrossRef
CAS
Google Scholar
Kim, J.H., Yoon, S.Y., Kim, C.N., Joo, J.H., Moon, S.K., Choe, I.S., Choe, Y.K., and Kim, J.W. (2004) The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett
203, 217–24.
PubMed
CrossRef
CAS
Google Scholar
Vonlanthen, S., Heighway, J., Altermatt, H.J., Gugger, M., Kappeler, A., Borner, M.M., van Lohuizen, M., and Betticher, D.C. (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer
84, 1372–76.
PubMed
CrossRef
CAS
Google Scholar
Lee, K., Adhikary, G., Balasubramanian, S., Gopalakrishna, R., McCormick, T., Dimri, G.P., Eckert, R.L., and Rorke, E.A. (2008) Expression of Bmi-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis. J Invest Dermatol
128, 9–17.
PubMed
CrossRef
CAS
Google Scholar
Balasubramanian, S., Lee, K., Adhikary, G., Gopalakrishnan, R., Rorke, E.A., and Eckert, R.L. (2008) The Bmi-1 polycomb group gene in skin cancer – Regulation of function by (-)-Epigallocatechin-3-gallate (EGCG). Nutr Rev
66, S65–S68.
PubMed
CrossRef
Google Scholar
Pogribny, I.P., Tryndyak, V.P., Muskhelishvili, L., Rusyn, I., and Ross, S.A. (2007) Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr
137, 216S–22S.
PubMed
CAS
Google Scholar
Newberne, P.M. (1986) Lipotropic factors and oncogenesis. Adv Exp Med Biol
206, 223–51.
PubMed
CAS
Google Scholar
Poirier, L.A. (1994) Methyl group deficiency in hepatocarcinogenesis. Drug Metab Rev
26, 185–99.
PubMed
CrossRef
CAS
Google Scholar
Denda, A., Kitayama, W., Kishida, H., Murata, N., Tsutsumi, M., Tsujiuchi, T., Nakae, D., and Konishi, Y. (2002) Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6 J male mice given a choline-deficient, L-amino acid-defined diet. Jpn J Cancer Res
93, 125–32.
PubMed
CrossRef
CAS
Google Scholar
Christman, J.K. (2003) Diet, DNA methylation and cancer. In: Daniel, H., and Zempleni, J. eds.. Molecular Nutrition. Oxon: CABI Publishing, 237–65.
CrossRef
Google Scholar
Wainfan, E., and Poirier, L.A. (1992) Methyl groups in carcinogenesis: Effects on DNA methylation and gene expression. Cancer Res
52, 2071S–7S.
PubMed
CAS
Google Scholar
Christman, J.K., Sheikhnejad, G., Dizik, M., Abileah, S., and Wainfan, E. (1993) Reversibility of changes in nucleic acid methylation and gene expression in rat liver by severe dietary methyl deficiency. Carcinogenesis
14, 551–57.
PubMed
CrossRef
CAS
Google Scholar
Pogribny, I.P., James, S.J., Jernigan, S., and Pogribna, M. (2004) Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat Res
548, 53–59.
PubMed
CrossRef
CAS
Google Scholar
Ghoshal, K., Li, X., Datta, J., Bai, S., Pogribny, I., Pogribny, M., Huang, Y., Young, D., and Jacob, S.T. (2006) A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr
136, 1522–27.
PubMed
CAS
Google Scholar
Kutay, H., Bai, S., Datta, J., Motiwala, T., Pogribny, I., Frankel, W., Jacob, S.T., and Ghoshal, K. (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem
99, 671–78.
PubMed
CrossRef
CAS
Google Scholar
Tryndyak, V.P., Ross, S.A., Beland, F.A., and Pogribny, I.P. (2008) Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog Oct 21 [Epub ahead of print].
Google Scholar
Pogribny, I.P., Ross, S.A., Wise, C., Pogribna, M., Jones, E.A., Tryndyak, V.P., James, S.J., Dragan, Y.P., and Poirier, L.A. (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res
593, 80–87.
Google Scholar
Powel, C.L., Kosyk, O., Bradford, B.U., Parker, J.S., Lobenhofer, E.K., Denda, A., Uematsu, F., Nakae, D., and Rusyn, I. (2005) Temporal correlation of pathology and DNA damage with gene expression in a choline-deficient model of rat liver injury. Hepatology
42, 1137–47.
CrossRef
CAS
Google Scholar
Sun, M., Estrov, Z., Ji, Y., Coombes, K.R., Harris, D.H., and Kurzrock, R. (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther
7, 464–73.
PubMed
CrossRef
CAS
Google Scholar
Guil, S., and Esteller, M. (2009) DNA methylomes, histone codes and miRNAs: Tying it all together. Int J Biochem Cell Biol
41, 87–95.
PubMed
CrossRef
CAS
Google Scholar