Advertisement

Diet and Epigenetics

  • Sharon A. Ross
Part of the Nutrition and Health book series (NH)

Key Points

1. Diet and dietary factors are important contributing factors to health and disease. Since an inappropriate diet may contribute significantly to the causation of chronic disease, including cancer, it is important to uncover the molecular mechanisms of dietary bioactive factors in health and disease in order to determine the best strategies for intervention.

2. Evidence suggests that diet and other environmental factors may be significant regulators of epigenetic events, including DNA methylation, histone posttranslational modification, noncoding RNAs, and factors/proteins that regulate chromatin structure and dynamics.

3. At least four ways in which nutrients may be interrelated with DNA methylation have been found. First, nutrients may influence the supply of methyl groups for the formation of S-adenosylmethionine (SAM). Second, nutrients may modify the utilization of methyl groups by DNA methyltransferases. A third possible mechanism may relate to DNA demethylation activity. Fourth, the DNA methylation patterns may influence the response to a nutrient.

4. One example of the influence of diet in DNA methylation and cancer is the finding that dietary methyl deficiency (of folate, choline, or methionine) has been shown to alter hepatic DNA methylation patterns and induce hepatocarcinogenesis in the absence of a carcinogen in Fisher 344 rats.

5. Although the cancer epigenetic field has advanced in the last decade, much remains to be revealed especially with respect to potential modification by bioactive dietary components. Research needs to address the quantity of dietary components needed to bring about a biological effect, the effects of timing of exposure, and how chemical form and duration of exposure influence the cancer process.

Key Words

Bioactive food components diet DNA methylation histone polycomb repressive complex microRNA epigenetics 

References

  1. 1.
    Wiseman, M. (2008) The Second World Cancer Research Fund/American Institute for Cancer Research Expert Report. Food, nutrition, physical activity, and the prevention of cancer: A global perspective. Proc Nutr Soc 67, 253–56.PubMedCrossRefGoogle Scholar
  2. 2.
    Ross, S.A. (2003) Diet and DNA methylation interactions in cancer prevention. Ann NY Acad Sci 983, 197–207.PubMedCrossRefGoogle Scholar
  3. 3.
    McGowan, P.O., Meaney, M.J., and Szyf, M. (2008) Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 1237, 12–24.PubMedCrossRefGoogle Scholar
  4. 4.
    Kim, D.H., Saetrom, P., Snøve, O., Jr., and Rossi, J.J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105, 16230–35.Google Scholar
  5. 5.
    Esteller, M. (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45, 629–56.PubMedCrossRefGoogle Scholar
  6. 6.
    Tost, J. (2009) DNA methylation: An introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol Biol 507, 3–20.PubMedGoogle Scholar
  7. 7.
    Razin, A., and Riggs, A.D. (1980) DNA methylation and gene function. Science 210, 604–10.PubMedCrossRefGoogle Scholar
  8. 8.
    Brenner, C., Deplus, R., Didelot, C., Loriot, A., Viré, E., De Smet, C., Gutierrez, A., Danovi, D., Bernard, D., Boon, T., Pelicci, P.G., Amati, B., Kouzarides, T., de Launoit, Y., Di Croce, L., and Fuks, F. (2005) Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 24,336–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Ooi, S.K., and Bestor, T.H. (2008) The colorful history of active DNA demethylation. Cell 133, 1145–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, J.K., Samaranayake, M., and Pradhan, S. (2008) Epigenetic mechanisms in mammals. Cell Mol Life Sci Nov 3. [Epub ahead of print].Google Scholar
  11. 11.
    Esteller, M. (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8, 286–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Li, E. (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3, 662–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Belinsky, S.A. (2005) Silencing of genes by promoter hypermethylation: Key event in rodent and human lung cancer. Carcinogenesis 26, 1481–87.PubMedCrossRefGoogle Scholar
  14. 14.
    Ehrlich, M. (2002) DNA methylation in cancer: Too much, but also too little. Oncogene 21, 5400–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Kautiainen, T.L., and Jones, P.A. (1986) DNA methyltransferase levels in tumorigenic and nontumorigenic cells in culture. J Biol Chem 261, 1594–98.PubMedGoogle Scholar
  16. 16.
    Wolffe, A.P. (1994) Inheritance of chromatin states. Dev Genet 15, 463–70.PubMedCrossRefGoogle Scholar
  17. 17.
    Kornberg, R.D., and Lorch, Y. (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–94.PubMedCrossRefGoogle Scholar
  18. 18.
    Jenuwein, T. (2001) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 11, 266–73.PubMedCrossRefGoogle Scholar
  19. 19.
    Oki, M., Aihara, H., and Ito, T. (2007) Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem 41, 319–36.PubMedGoogle Scholar
  20. 20.
    Wade, P.A., Pruss, D., and Wolffe, A.P. (1997) Histone acetylation: Chromatin in action. Trends Biochem Sci 22, 128–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Shiio, Y., and Eisenman, R.N. (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100, 13225–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Shilatifard, A. (2006) Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu Rev Biochem 75, 243–69.PubMedCrossRefGoogle Scholar
  23. 23.
    Kothapalli, N., Camporeale, G., Kueh, A., Chew, Y.C., Oommen, A.M., Griffin, J.B., and Zempleni, J. (2005) Biological functions of biotinylated histones. J Nutr Biochem 16, 446–48.PubMedCrossRefGoogle Scholar
  24. 24.
    Shukla, V., Vaissière, T., and Herceg, Z. (2008) Histone acetylation and chromatin signature in stem cell identity and cancer. Mutat Res 637, 1–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Jenuwein, T., and Allis, C.D. (2001) Translating the histone. Code Sci 293, 1074–80.Google Scholar
  26. 26.
    Fraga, M.F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N.G., Pérez-Rosado, A., Calvo, E., Lopez, J.A., Cano, A., Calasanz, M.J., Colomer, D., Piris, M.A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T., and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391–400.PubMedCrossRefGoogle Scholar
  27. 27.
    Rosato, R.R., and Grant, S. (2003) Histone deacetylase inhibitors in cancer therapy. Cancer Biol Ther 2, 30–37.PubMedGoogle Scholar
  28. 28.
    Gibbons, R.J. (2005) Histone modifying and chromatin remodeling enzymes in cancer and dysplastic syndromes. Hum Mol Genet 14, R85–R92.PubMedCrossRefGoogle Scholar
  29. 29.
    Varga-Weisz, P.D., and Becker, P.B. (2006) Regulation of higher-order chromatin structures by nucleosome-remodelling factors. Curr Opin Genet Dev 16, 151–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Medina, P.P., and Cespedes, M.S. (2008) Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 3, 64–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Xue, Y., Wong, J., Moreno, G.T., Young, M.K., Côté, J., and Wang, W. (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2, 851–61.PubMedCrossRefGoogle Scholar
  32. 32.
    Morey, L., Brenner, C., Fazi, F., Villa, R., Gutierrez, A., Buschbeck, M., Nervi, C., Minucci, S., Fuks, F., and Di Croce, L. (2008) MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 28, 5912–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Sparmann, A., and van Lohuizen, M. (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6, 846–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Takihara, Y. (2008) Role of polycomb-group genes in sustaining activities of normal and malignant stem cells. Int J Hematol 87, 25–34.PubMedCrossRefGoogle Scholar
  35. 35.
    Fabbri, M., Croce, C.M., and Calin, G.A. (2008) MicroRNAs. Cancer J 14, 1–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim, D.H., Saetrom, P., Snøve, O., Jr., and Rossi, J.J. (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA 105, 16230–35.PubMedCrossRefGoogle Scholar
  37. 37.
    Hawkins, P.G., and Morris, K.V. (2008) RNA and transcriptional modulation of gene expression. Cell Cycle 7, 602–07.PubMedCrossRefGoogle Scholar
  38. 38.
    Wolff, G.L., Kodell, R.L., Moore, S.R., and Cooney, C.A. (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12, 949–57.PubMedGoogle Scholar
  39. 39.
    Waterland, R.A., and Jirtle, R.L. (2003) Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23, 5293–300.PubMedCrossRefGoogle Scholar
  40. 40.
    Cropley, J.E., Suter, C.M., Beckman, K.B., and Martin, D.I. (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA 103, 17308–12.PubMedCrossRefGoogle Scholar
  41. 41.
    Dolinoy, D.C., Weidman, J.R., Waterland, R.A., and Jirtle, R.L. (2006) Maternal genistein alters coat color and protects A vy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114, 567–72.PubMedCrossRefGoogle Scholar
  42. 42.
    Waterland, R.A., Dolinoy, D.C., Lin, J.R., Smith, C.A., Shi, X., and Tahiliani, K.G. (2006) Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44, 401–06.PubMedCrossRefGoogle Scholar
  43. 43.
    Waterland, R.A., Lin, J.R., Smith, C.A., and Jirtle, R.L. (2006) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (IGF2) locus. Hum Mol Genet 15, 705–16.PubMedCrossRefGoogle Scholar
  44. 44.
    Heijmans, B.T., Tobi, E.W., Stein, A.D., Putter, H., Blauw, G.J., Susser, E.S., Slagboom, P.E., and Lumey, L.H. (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105, 17046–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Duhl, D.M., Vrieling, H., Miller, K.A., Wolff, G.L., and Barsh, G.S. (1994) Neomorphic agouti mutations in obese yellow mice. Nat Genet 8, 59–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Cooney, C.A., Dave, A.A., and Wolff, G.L. (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132, 2393S–400S.PubMedGoogle Scholar
  47. 47.
    Dolinoy, D.C., Huang, D., and Jirtle, R.L. (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104, 13056–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Waterland, R.A., Travisano, M., Tahiliani, K.G., Rached, M.T., and Mirza, S. (2008) Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond) 32, 1373–79.CrossRefGoogle Scholar
  49. 49.
    Rakyan, V.K., Blewitt, M.E., Druker, R., Preis, J.I., and Whitelaw, E. (2002) Metastable epialleles in mammals. Trends Genet 18, 348–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Whitelaw, E., and Martin, D.I. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27, 361–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Kotsopoulos, J., Sohn, K.J., and Kim, Y.I. (2008) Postweaning dietary folate deficiency provided through childhood to puberty permanently increases genomic DNA methylation in adult rat liver. J Nutr 138, 703–09.PubMedGoogle Scholar
  52. 52.
    Ingrosso, D., Cimmino, A., Perna, A.F., Masella, L., De Santo, N.G., De Bonis, M.L., Vacca, M., D’Esposito, M., D’Urso, M., Galletti, P., and Zappia, V. (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 61, 1693–99.CrossRefGoogle Scholar
  53. 53.
    Fang, M., Chen, D., and Yang, C.S. (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137, 223S–8S.PubMedGoogle Scholar
  54. 54.
    Fang, M.Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W., and Yang, C.S. (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63, 7563–70.PubMedGoogle Scholar
  55. 55.
    Fang, M.Z., Chen, D., Sun, Y., Jin, Z., Christman, J.K., and Yang, C.S. (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11, 7033–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Fini, L., Selgrad, M., Fogliano, V., Graziani, G., Romano, M., Hotchkiss, E., Daoud, Y.A., De Vol, E.B., Boland, C.R., and Ricciardiello, L. (2007) Annurca apple polyphenols have potent demethylating activity and can reactivate silenced tumor suppressor genes in colorectal cancer cells. J Nutr 137, 2622–28.PubMedGoogle Scholar
  57. 57.
    Klein, E.A., Thompson, I.M., Lippman, S.M., Goodman, P.J., Albanes, D., Taylor, P.R., and Coltman, C. (2000) SELECT: The selenium and vitamin E cancer prevention trial: Rationale and design. Prostate Cancer Prostatic Dis 3, 145–51.PubMedCrossRefGoogle Scholar
  58. 58.
    Xiang, N., Zhao, R., Song, G., and Zhong, W. (2008) Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells. Carcinogenesis 29, 2175–81.PubMedCrossRefGoogle Scholar
  59. 59.
    Garfinkel, M.D., and Ruden, D.M. (2004) Chromatin effects in nutrition, cancer and obesity. Nutrition 20, 56–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Myzak, M.C., and Dashwood, R.H. (2006) Histone deacetylases as targets for dietary cancer preventive agents: Lessons learned with butyrate, diallyl disulfide and sulforaphane. Curr Drug Targets 7, 443–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Mariadason, J.M., Corner, G.A., and Augenlicht, L.H. (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: Comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60, 4561–72.PubMedGoogle Scholar
  62. 62.
    Bernhard, D., Ausserlechner, M.J., Tonko, M., Löffler, M., Hartmann, B.L., Csordas, A., and Kofler, R. (1999) Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J 13, 1991–2001.PubMedGoogle Scholar
  63. 63.
    Fang, Y.J., Chen, Y.X., Lu, J., Lu, R., Yang, L., Zhu, H.Y., Gu, W.Q., and Lu, L.G. (2004) Epigenetic modification regulates both expression of tumor-associated genes and cell cycle progressing in human colon cancer cell lines: Colo-320 and SW1116. Cell Res 14, 217–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Davie, J.R. (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133, 2485S–93S.PubMedGoogle Scholar
  65. 65.
    Druesne, N., Pagniez, A., Mayeur, C., Thomas, M., Cherbuy, C., Duée, P.H., Martel, P., and Chaumontet, C. (2004) Diallyl disulfide (DADS) increases histone acetylation and p21waf1/cip1 expression in human colon tumor cell lines. Carcinogenesis 25, 1227–36.PubMedCrossRefGoogle Scholar
  66. 66.
    Druesne-Pecollo, N., Pagniez, A., Thomas, A., Cherbuy, C., Duée, P.H., Martel, P., and Chaumontet, C. (2006) Diallyl disulfide increases CDKN1A promoter-associated histone acetylation in human colon tumor cell lines. J Agric Food Chem 54, 7503–07.PubMedCrossRefGoogle Scholar
  67. 67.
    Lea, M.A., and Randolph, V.M. (2001) Induction of histone acetylation in rat liver and hepatoma by organosulfur compounds including diallyl disulfide. Anticancer Res 21, 2841–46.PubMedGoogle Scholar
  68. 68.
    Druesne-Pecollo, N., Chaumontet, C., Pagniez, A., Vaugelade, P., Bruneau, A., Thomas, M., Cherbuy, C., Duée, P.H., and Martel, P. (2007) In vivo treatment by diallyl disulfide increases histone acetylation in rat colonocytes. Biochem Biophys Res Commun 354, 140–47.PubMedCrossRefGoogle Scholar
  69. 69.
    Lea, M.A., Rasheed, M., Randolph, V.M., Khan, F., Shareef, A., and desBordes, C. (2002) Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine. Nutr Cancer 43, 90–102.PubMedCrossRefGoogle Scholar
  70. 70.
    Myzak, M.C., Karplus, A., Chung, F.-L., and Dashwood, R.H. (2004) A novel mechanism of chemoprotection by sulforaphane: Inhibition of histone deactylase. Cancer Res 64, 5767–74.PubMedCrossRefGoogle Scholar
  71. 71.
    Myzak, M.C., Hardin, K., Wang, R., Dashwood, R.H., and Ho, E. (2006) Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3 prostate epithelial cells. Carcinogenesis 27, 811–19.PubMedCrossRefGoogle Scholar
  72. 72.
    Myzak, M.C., Dashwood, W.M., Orner, G.A., Ho, E., and Dashwood, R.H. (2006) Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesi in APC min mice. FASEB J 20, 506–08.PubMedGoogle Scholar
  73. 73.
    Myzak, M.C., Tong, P., Dashwood, W.M., Dashwood, R.H., and Ho, E. (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med (Maywood) 232, 227–34.Google Scholar
  74. 74.
    Wang, L.G., Belkemisheva, A., Liu, X.M., Ferrari, A.C., Feng, J., and Chiao, J.W. (2007) Dual action on promoter demethylation and chromatin by an isothiocyanate restored GSTP1 silenced in prostate cancer. Mol Carcinog 46, 24–31.PubMedCrossRefGoogle Scholar
  75. 75.
    Majid, S., Kikuno, N., Nelles, J., Noonan, E., Tanaka, Y., Kawamoto, K., Hirata, H., Li, L.C., Zhao, H., Okino, S.T., Place, R.F., Pookot, D., and Dahiya, R. (2008) Genistein induces the p21WAF1/CIP1 and p16INK4a tumor suppressor genes in prostate cancer cells by epigenetic mechanisms involving active chromatin modification. Cancer Res 68, 2736–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Kikuno, N., Shiina, H., Urakami, S., Kawamoto, K., Hirata, H., Tanaka, Y., Majid, S., Igawa, M., and Dahiya, R. (2008) Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer 123, 552–60.PubMedCrossRefGoogle Scholar
  77. 77.
    Lam, Y., Galvez, A., and de Lumen, B.O. (2003) Lunasin suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutr Cancer 47, 88–94.PubMedCrossRefGoogle Scholar
  78. 78.
    Jeong, H.J., Jeong, J.B., Kim, D.S., and de Lumen, B.O. (2007) Inhibition of core histone acetylation by the cancer preventive peptide lunasin J Agri Food Chem 55, 632–37.CrossRefGoogle Scholar
  79. 79.
    Aagaard-Tillery, K.M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R., and Lane, R.H. (2008) Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 41, 91–102.PubMedCrossRefGoogle Scholar
  80. 80.
    Pogribny, I.P., Ross, S.A., Tryndyak, V.P., Pogribna, M., Poirier, L.A., and Karpinets, T.V. (2006) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27, 1180–86.PubMedCrossRefGoogle Scholar
  81. 81.
    Chew, Y.C., West, J.T., Kratzer, S.J., Ilvarsonn, A.M., Eissenberg, J.C., Dave, B.J., Klinkebiel, D., Christman, J.K., and Zempleni, J. (2008) Biotinylation of histones represses transposable elements in human and mouse cells and cell lines and in Drosophila melanogaster. J Nutr 138, 2316–22.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee, E.R., Murdoch, F.E., and Fritsch, M.K. (2007) High histone acetylation and decreased polycomb repressive complex 2 member levels regulate gene specific transcriptional changes during early embryonic stem cell differentiation induced by retinoic acid. Stem Cells 25, 2191–99.PubMedCrossRefGoogle Scholar
  83. 83.
    Kim, J.H., Yoon, S.Y., Kim, C.N., Joo, J.H., Moon, S.K., Choe, I.S., Choe, Y.K., and Kim, J.W. (2004) The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett 203, 217–24.PubMedCrossRefGoogle Scholar
  84. 84.
    Vonlanthen, S., Heighway, J., Altermatt, H.J., Gugger, M., Kappeler, A., Borner, M.M., van Lohuizen, M., and Betticher, D.C. (2001) The bmi-1 oncoprotein is differentially expressed in non-small cell lung cancer and correlates with INK4A-ARF locus expression. Br J Cancer 84, 1372–76.PubMedCrossRefGoogle Scholar
  85. 85.
    Lee, K., Adhikary, G., Balasubramanian, S., Gopalakrishna, R., McCormick, T., Dimri, G.P., Eckert, R.L., and Rorke, E.A. (2008) Expression of Bmi-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis. J Invest Dermatol 128, 9–17.PubMedCrossRefGoogle Scholar
  86. 86.
    Balasubramanian, S., Lee, K., Adhikary, G., Gopalakrishnan, R., Rorke, E.A., and Eckert, R.L. (2008) The Bmi-1 polycomb group gene in skin cancer – Regulation of function by (-)-Epigallocatechin-3-gallate (EGCG). Nutr Rev 66, S65–S68.PubMedCrossRefGoogle Scholar
  87. 87.
    Pogribny, I.P., Tryndyak, V.P., Muskhelishvili, L., Rusyn, I., and Ross, S.A. (2007) Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr 137, 216S–22S.PubMedGoogle Scholar
  88. 88.
    Newberne, P.M. (1986) Lipotropic factors and oncogenesis. Adv Exp Med Biol 206, 223–51.PubMedGoogle Scholar
  89. 89.
    Poirier, L.A. (1994) Methyl group deficiency in hepatocarcinogenesis. Drug Metab Rev 26, 185–99.PubMedCrossRefGoogle Scholar
  90. 90.
    Denda, A., Kitayama, W., Kishida, H., Murata, N., Tsutsumi, M., Tsujiuchi, T., Nakae, D., and Konishi, Y. (2002) Development of hepatocellular adenomas and carcinomas associated with fibrosis in C57BL/6 J male mice given a choline-deficient, L-amino acid-defined diet. Jpn J Cancer Res 93, 125–32.PubMedCrossRefGoogle Scholar
  91. 91.
    Christman, J.K. (2003) Diet, DNA methylation and cancer. In: Daniel, H., and Zempleni, J. eds.. Molecular Nutrition. Oxon: CABI Publishing, 237–65.CrossRefGoogle Scholar
  92. 92.
    Wainfan, E., and Poirier, L.A. (1992) Methyl groups in carcinogenesis: Effects on DNA methylation and gene expression. Cancer Res 52, 2071S–7S.PubMedGoogle Scholar
  93. 93.
    Christman, J.K., Sheikhnejad, G., Dizik, M., Abileah, S., and Wainfan, E. (1993) Reversibility of changes in nucleic acid methylation and gene expression in rat liver by severe dietary methyl deficiency. Carcinogenesis 14, 551–57.PubMedCrossRefGoogle Scholar
  94. 94.
    Pogribny, I.P., James, S.J., Jernigan, S., and Pogribna, M. (2004) Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat Res 548, 53–59.PubMedCrossRefGoogle Scholar
  95. 95.
    Ghoshal, K., Li, X., Datta, J., Bai, S., Pogribny, I., Pogribny, M., Huang, Y., Young, D., and Jacob, S.T. (2006) A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr 136, 1522–27.PubMedGoogle Scholar
  96. 96.
    Kutay, H., Bai, S., Datta, J., Motiwala, T., Pogribny, I., Frankel, W., Jacob, S.T., and Ghoshal, K. (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99, 671–78.PubMedCrossRefGoogle Scholar
  97. 97.
    Tryndyak, V.P., Ross, S.A., Beland, F.A., and Pogribny, I.P. (2008) Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog Oct 21 [Epub ahead of print].Google Scholar
  98. 98.
    Pogribny, I.P., Ross, S.A., Wise, C., Pogribna, M., Jones, E.A., Tryndyak, V.P., James, S.J., Dragan, Y.P., and Poirier, L.A. (2006) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593, 80–87.Google Scholar
  99. 99.
    Powel, C.L., Kosyk, O., Bradford, B.U., Parker, J.S., Lobenhofer, E.K., Denda, A., Uematsu, F., Nakae, D., and Rusyn, I. (2005) Temporal correlation of pathology and DNA damage with gene expression in a choline-deficient model of rat liver injury. Hepatology 42, 1137–47.CrossRefGoogle Scholar
  100. 100.
    Sun, M., Estrov, Z., Ji, Y., Coombes, K.R., Harris, D.H., and Kurzrock, R. (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7, 464–73.PubMedCrossRefGoogle Scholar
  101. 101.
    Guil, S., and Esteller, M. (2009) DNA methylomes, histone codes and miRNAs: Tying it all together. Int J Biochem Cell Biol 41, 87–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sharon A. Ross
    • 1
  1. 1.Nutritional Science Research Group, Division of Cancer Prevention, Department of Health and Human ServicesNational Cancer Institute, National Institutes of HealthBethesdaUnited States

Personalised recommendations