Bioactive Compounds and Cancer pp 497-531

Part of the Nutrition and Health book series (NH) | Cite as

Zinc in Cancer Development and Prevention

  • Louise Y.Y. Fong
Chapter

Key Points

1. Zinc is an essential trace element required for maintaining enzyme activity, the immune system, and the conformation of many transcription factors that control cell proliferation, apoptosis, and signaling pathways. The role of zinc in cancer development and prevention is gaining attention.

2. Compelling evidence from epidemiological, clinical, and rodent studies shows that dietary zinc deficiency is associated with an increased risk of developing esophageal and oral cancer.

3. Zinc has similar tumor suppressor effects in esophageal and oral tumors as well as several other types of tumor. Additionally, zinc supplementation has beneficial effects in several diseases in the elderly who are zinc deficiency-prone, including diseases related to dysregulation of the inflammatory/immune response.

4. The concept of zinc as a tumor suppressor agent in cancer prevention is supported by abundant experimental and clinical studies in esophageal, lingual, prostate, and colon cancer. Recent data from gene profiling and immunohistochemical analyses, showing that zinc regulates the proinflammation mediator S100A8 expression, its interaction with RAGE, and the downstream NF-κB-COX-2 signaling pathway, provide the first evidence for an inflammation-modulating role of zinc in early esophageal carcinogenesis and its reversal.

5. Given the recent reignited interest of researchers in the concept of an association of inflammation and the genesis and perpetuation of cancer, the finding that zinc regulates a key inflammation pathway and modulates miRNA expression in esophageal preneoplasia offers opportunities to conduct studies to more precisely define the role of zinc in cancer initiation, progression, and prevention and also to explore the possible link between microRNA expression and inflammation.

6. The finding that targeting only the COX-2 pathway in zinc-deficient animals does not prevent UADT tumor progression strongly suggests that correcting nutritional deficiencies is necessary in a more successful cancer treatment protocol.

Key Words

Zinc deficiency zinc supplementation esophageal and oral cancer cancer prevention antitumor effects of zinc gene and microRNA expression profiling apoptosis cell proliferation 

References

  1. 1.
    Vallee, B.L., and Falchuk, K.H. (1993) The biochemical basis of zinc physiology. Physiol Rev 73, 79–118.PubMedCrossRefGoogle Scholar
  2. 2.
    Berg, J.M., and Shi, Y. (1996) The galvanization of biology: A growing appreciation for the roles of zinc. Science 271, 1081–85.PubMedCrossRefGoogle Scholar
  3. 3.
    O’Halloran, T.V. (1993) Transition metals in control of gene expression. Science 261, 715–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Shankar, A.H., and Prasad, A.S. (1998) Zinc and immune function: The biological basis of altered resistance to infection. Am J Clin Nutr 68, 447S–63S.PubMedGoogle Scholar
  5. 5.
    Devirgiliis, C., Zalewski, P.D., Perozzi, G., and Murgia, C. (2007) Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res 622, 84–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Levenson, C.W., and Somers, R.C. (2008) Nutritionally regulated biomarkers for breast cancer. Nutr Rev 66, 163–66.PubMedCrossRefGoogle Scholar
  7. 7.
    Maret, W., and Sandstead, H.H. (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20, 3–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Raulin, J. (1869) Etudes cliniques sur la vegetation. Ann Sci Nat Bot Biol Veg 11, 93–229.Google Scholar
  9. 9.
    Todd, W.R., Elvehjem, C.A., and Hart, E.B. (1934) Zinc in the nutrition of the rat. Am J Physiol 107, 146–56.Google Scholar
  10. 10.
    Prasad, A.S., Halsted, J.A., and Nadimi, M. (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31, 532–46.PubMedCrossRefGoogle Scholar
  11. 11.
    Prasad, A.S., Miale, A., Jr., Farid, Z., Sandstead, H.H., and Schulert, A.R. (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J Lab Clin Med 61, 537–49.PubMedGoogle Scholar
  12. 12.
    Brown, K.H., Wuehler, S.E., and Peerson, J.M. (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food and Nutrition Bulletin 22, 113–25.Google Scholar
  13. 13.
    Mocchegiani, E., Giacconi, R., Cipriano, C. et al. (2007) Zinc, metallothioneins, and longevity––effect of zinc supplementation: Zincage study. Ann N Y Acad Sci 1119, 129–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Sandstead, H.H. (1973) Zinc nutrition in the United States. Am J Clin Nutr 26, 1251–60.PubMedGoogle Scholar
  15. 15.
    Ho, E., and Ames, B.N. (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappa B, and AP1 DNA binding, and affects DNA repair in a rat glioma cell line. Proc Natl Acad Sci USA 99, 16770–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Prasad, A.S., and Kucuk, O. (2002) Zinc in cancer prevention. Cancer Metastasis Rev 21, 291–95.PubMedCrossRefGoogle Scholar
  17. 17.
    Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94, 153–56.PubMedCrossRefGoogle Scholar
  18. 18.
    American Cancer Society (2008) Cancer Facts and Figures. Atlanta, GA: American Cancer Society.Google Scholar
  19. 19.
    Moore, S.R., Johnson, N.W., Pierce, A.M., and Wilson, D.F. (2000) The epidemiology of tongue cancer: A review of global incidence. Oral Dis 6, 75–84.PubMedCrossRefGoogle Scholar
  20. 20.
    Makuuchi, H., Machimura, T., Shimada, H. et al. (1996) Endoscopic screening for esophageal cancer in 788 patients with head and neck cancers. Tokai J Exp Clin Med 21, 139–45.PubMedGoogle Scholar
  21. 21.
    Slaughter, D.P., Southwick, H.W., and Smejkal, W. (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6, 963–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Magee, P.N. (1989) The experimental basis for the role of nitroso compounds in human cancer. Cancer Surv 8, 207–39.PubMedGoogle Scholar
  23. 23.
    Yang, C.S. (1980) Research on esophageal cancer in China: A review. Cancer Res 40, 2633–44.PubMedGoogle Scholar
  24. 24.
    van Rensburg, S.J. (1981) Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. J Natl Cancer Inst 67, 243–51.PubMedGoogle Scholar
  25. 25.
    Gupta, P.C., Hebert, J.R., Bhonsle, R.B., Murti, P.R., Mehta, H., and Mehta, F.S. (1999) Influence of dietary factors on oral precancerous lesions in a population-based case-control study in Kerala, India. Cancer 85, 1885–93.PubMedGoogle Scholar
  26. 26.
    Iran-IARC study group (1977) Esophageal cancer studies in the Caspian littoral of Iran: Results of population studies––a prodrome. Joint Iran-International Agency for Research on Cancer Study Group. J Natl Cancer Inst 59, 1127–38.Google Scholar
  27. 27.
    Hebert, J.R., Gupta, P.C., Bhonsle, R.B. et al. (2002) Dietary exposures and oral precancerous lesions in Srikakulam District, Andhra Pradesh, India. Public Health Nutr 5, 303–12.PubMedCrossRefGoogle Scholar
  28. 28.
    Poschl, G., and Seitz, H.K. (2004) Alcohol and cancer. Alcohol Alcohol 39, 155–65.PubMedCrossRefGoogle Scholar
  29. 29.
    Abnet, C.C., Lai, B., Qiao, Y.L. et al. (2005) Zinc concentration in esophageal biopsy specimens measured by x-ray fluorescence and esophageal cancer risk. J Natl Cancer Inst 97, 301–06.PubMedCrossRefGoogle Scholar
  30. 30.
    Davis, S.R., and Cousins, R.J. (2000) Metallothionein expression in animals: A physiological perspective on function. J Nutr 130, 1085–88.PubMedGoogle Scholar
  31. 31.
    Maret, W., and Vallee, B.L. (1998) Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95, 3478–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Eide, D.J. (2004) The SLC39 family of metal ion transporters. Pflugers Arch 447, 796–800.PubMedCrossRefGoogle Scholar
  33. 33.
    Palmiter, R.D., and Huang, L. (2004) Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch 447, 744–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Memon, A.U., Kazi, T.G., Afridi, H.I. et al. (2007) Evaluation of zinc status in whole blood and scalp hair of female cancer patients. Clin Chim Acta 379, 66–70.PubMedCrossRefGoogle Scholar
  35. 35.
    Margalioth, E.J., Schenker, J.G., and Chevion, M. (1983) Copper and zinc levels in normal and malignant tissues. Cancer 52, 868–72.PubMedCrossRefGoogle Scholar
  36. 36.
    Cui, Y., Vogt, S., Olson, N., Glass, A.G., and Rohan, T.E. (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomarkers Prev 16, 1682–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Kasper, G., Weiser, A.A., Rump, A. et al. (2005) Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer 117, 961–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Kagara, N., Tanaka, N., Noguchi, S., and Hirano, T. (2007) Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci 98, 692–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Li, M., Zhang, Y., Liu, Z. et al. (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci USA 104, 18636–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Franklin, R.B., Feng, P., Milon, B. et al. (2005) hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer. Mol Cancer 4, 32.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee, R., Woo, W., Wu, B., Kummer, A., Duminy, H., and Xu, Z. (2003) Zinc accumulation in N-methyl-N-nitrosourea-induced rat mammary tumors is accompanied by an altered expression of ZnT-1 and metallothionein. Exp Biol Med (Maywood) 228, 689–96.Google Scholar
  42. 42.
    Lang, C., Murgia, C., Leong, M. et al. (2007) Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am J Physiol Lung Cell Mol Physiol 292, L577–L84.PubMedCrossRefGoogle Scholar
  43. 43.
    Yu, Y.Y., Kirschke, C.P., and Huang, L. (2007) Immunohistochemical analysis of ZnT1, 4, 5, 6, and 7 in the mouse gastrointestinal tract. J Histochem Cytochem 55, 223–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Barch, D.H., Kuemmerle, S.C., Hollenberg, P.F., and Iannaccone, P.M. (1984) Esophageal microsomal metabolism of N-nitrosomethylbenzylamine in the zinc-deficient rat. Cancer Res 44, 5629–33.PubMedGoogle Scholar
  45. 45.
    Fong, L.Y., Li, J.X., Farber, J.L., and Magee, P.N. (1996) Cell proliferation and esophageal carcinogenesis in the zinc-deficient rat. Carcinogenesis 17, 1841–48.PubMedCrossRefGoogle Scholar
  46. 46.
    Castro, L., and Freeman, B.A. (2001) Reactive oxygen species in human health and disease. Nutrition 17(161), 3–5.Google Scholar
  47. 47.
    Ho, E. (2004) Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15, 572–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Conte, D., Narindrasorasak, S., and Sarkar, B. (1996) In vivo and in vitro iron-replaced zinc finger generates free radicals and causes DNA damage. J Biol Chem 271, 5125–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Bray, T.M., and Bettger, W.J. (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8, 281–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Oteiza, P.I., Olin, K.L., Fraga, C.G., and Keen, C.L. (1995) Zinc deficiency causes oxidative damage to proteins, lipids and DNA in rat testes. J Nutr 125, 823–29.PubMedGoogle Scholar
  51. 51.
    Bray, T.M., Kubow, S., and Bettger, W.J. (1986) Effect of dietary zinc on endogenous free radical production in rat lung microsomes. J Nutr 116, 1054–60.PubMedGoogle Scholar
  52. 52.
    Leccia, M.T., Richard, M.J., Favier, A., and Beani, J.C. (1999) Zinc protects against ultraviolet A1-induced DNA damage and apoptosis in cultured human fibroblasts. Biol Trace Elem Res 69, 177–90.PubMedCrossRefGoogle Scholar
  53. 53.
    Age Related Eye Disease Study Research Group (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119, 1417–36.CrossRefGoogle Scholar
  54. 54.
    Fraker, P.J., and Telford, W.G. (1997) A reappraisal of the role of zinc in life and death decisions of cells. Proc Soc Exp Biol Med 215, 229–36.PubMedGoogle Scholar
  55. 55.
    Rink, L., and Haase, H. (2007) Zinc homeostasis and immunity. Trends Immunol 28, 1–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Fernandes, G., Nair, M., Onoe, K., Tanaka, T., Floyd, R., and Good, R.A. (1979) Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice. Proc Natl Acad Sci USA 76, 457–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Fraker, P.J. (1983) Zinc deficiency: A common immunodeficiency state. Surv Immunol Res 2, 155–63.PubMedGoogle Scholar
  58. 58.
    Ibs, K.H., and Rink, L. (2003) Zinc-altered immune function. J Nutr 133, 1452S–6S.PubMedGoogle Scholar
  59. 59.
    Kury, S., Dreno, B., Bezieau, S. et al. (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31, 239–40.PubMedCrossRefGoogle Scholar
  60. 60.
    Liuzzi, J.P., Bobo, J.A., Lichten, L.A., Samuelson, D.A., and Cousins, R.J. (2004) Responsive transporter genes within the murine intestinal-pancreatic axis form a basis of zinc homeostasis. Proc Natl Acad Sci USA 101, 14355–60.PubMedCrossRefGoogle Scholar
  61. 61.
    Gartside, J.M., and Allen, B.R. (1975) Treatment of acrodermatitis enteropathica with zinc sulphate. Br Med J 3, 521–2.PubMedCrossRefGoogle Scholar
  62. 62.
    Overbeck, S., Rink, L., and Haase, H. (2008) Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Arch Immunol Ther Exp (Warsz) 56, 15–30.CrossRefGoogle Scholar
  63. 63.
    Haase, H., Hebel, S., Engelhardt, G., and Rink, L. (2006) Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells. Anal Biochem 352, 222–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Bruinsma, J.J., Jirakulaporn, T., Muslin, A.J., and Kornfeld, K. (2002) Zinc ions and cation diffusion facilitator proteins regulate Ras-mediated signaling. Dev Cell 2, 567–78.PubMedCrossRefGoogle Scholar
  65. 65.
    Barbacid, M. (1987) ras genes. Annu Rev Biochem 56, 779–827.PubMedCrossRefGoogle Scholar
  66. 66.
    Taccioli, C., Wan, S.G., Liu, C.G. et al. (2009) Zinc replenishment reverses overexpression of the proinflammatory mediator S100A8 and esophageal preneoplasia in the rat. Gastroenterology, 136, 953–66.PubMedCrossRefGoogle Scholar
  67. 67.
    Uzzo, R.G., Leavis, P., Hatch, W. et al. (2002) Zinc inhibits nuclear factor-kappa B activation and sensitizes prostate cancer cells to cytotoxic agents. Clin Cancer Res 8, 3579–83.PubMedGoogle Scholar
  68. 68.
    Follis, R., Day, H., and McCollum, E. (1941) Histological studies of the tissues of rats fed a diet extremely low in zinc. J Nutr 22, 223–37.Google Scholar
  69. 69.
    Fong, L.Y., Sivak, A., and Newberne, P.M. (1978) Zinc deficiency and methylbenzylnitrosamine-induced esophageal cancer in rats. J Natl Cancer Inst 61, 145–50.PubMedGoogle Scholar
  70. 70.
    Gabrial, G.N., Schrager, T.F., and Newberne, P.M. (1982) Zinc deficiency, alcohol, and retinoid: Association with esophageal cancer in rats. J Natl Cancer Inst 68, 785–89.PubMedGoogle Scholar
  71. 71.
    Fong, L.Y., Lee, J.S., Chan, W.C., and Newberne, P.M. (1984) Zinc deficiency and the development of esophageal and forestomach tumors in Sprague-Dawley rats fed precursors of N-nitroso-N-benzylmethylamine. J Natl Cancer Inst 72, 419–25.PubMedGoogle Scholar
  72. 72.
    Fong, L.Y., Lin, H.J., and Lee, C.L. (1979) Methylation of DNA in target and non-target organs of the rat with methylbenzylnitrosamine and dimethylnitrosamine. Int J Cancer 23, 679–82.PubMedCrossRefGoogle Scholar
  73. 73.
    Umbenhauer, D., Wild, C.P., Montesano, R. et al. (1985) O(6)-methyldeoxyguanosine in oesophageal DNA among individuals at high risk of oesophageal cancer. Int J Cancer 36, 661–65.PubMedCrossRefGoogle Scholar
  74. 74.
    Stinson, S.F., Squire, R.A., and Sporn, M.B. (1978) Pathology of esophageal neoplasms and associated proliferative lesions induced in rats by N-methyl-N-benzylnitrosamine. J Natl Cancer Inst 61, 1471–75.PubMedGoogle Scholar
  75. 75.
    Fong, L.Y., Zhang, L., Jiang, Y., and Farber, J.L. (2005) Dietary zinc modulation of COX-2 expression and lingual and esophageal carcinogenesis in rats. J Natl Cancer Inst 97, 40–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Taccioli, C., Liu, C.G., Wan, S.G. et al. (2008) Dietary Zinc Modulation of miR-31 Expression in Precancerous Esophagus and Tongue in Rats. San Diego, CA: American Association for Cancer Research, p. abstract # 5028.Google Scholar
  77. 77.
    Liu, C.G., Zhang, L., Jiang, Y. et al. (2005) Modulation of gene expression in precancerous rat esophagus by dietary zinc deficit and replenishment. Cancer Res 65, 7790–99.PubMedGoogle Scholar
  78. 78.
    Fong, L.Y., Nguyen, V.T., and Farber, J.L. (2001) Esophageal cancer prevention in zinc-deficient rats: Rapid induction of apoptosis by replenishing zinc. J Natl Cancer Inst 93, 1525–33.PubMedCrossRefGoogle Scholar
  79. 79.
    Fong, L.Y., Farber, J.L., and Magee, P.N. (1998) Zinc replenishment reduces esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in zinc-deficient rats. Carcinogenesis 19, 1591–96.PubMedCrossRefGoogle Scholar
  80. 80.
    Dietrich, D.R. (1993) Toxicological and pathological applications of proliferating cell nuclear antigen (PCNA), a novel endogenous marker for cell proliferation. Crit Rev Toxicol 23, 77–109.PubMedCrossRefGoogle Scholar
  81. 81.
    Hanahan, D., and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Siglin, J.C., Khare, L., and Stoner, G.D. (1995) Evaluation of dose and treatment duration on the esophageal tumorigenicity of N-nitrosomethylbenzylamine in rats. Carcinogenesis 16, 259–65.PubMedCrossRefGoogle Scholar
  83. 83.
    Fong, L.Y., Nguyen, V.T., Farber, J.L., Huebner, K., and Magee, P.N. (2000) Early deregulation of the p16ink4a-cyclin D1/cyclin-dependent kinase 4-retinoblastoma pathway in cell proliferation-driven esophageal tumorigenesis in zinc-deficient rats. Cancer Res 60, 4589–95.PubMedGoogle Scholar
  84. 84.
    Fong, L.Y., Lau, K.M., Huebner, K., and Magee, P.N. (1997) Induction of esophageal tumors in zinc-deficient rats by single low doses of N-nitrosomethylbenzylamine (NMBA): Analysis of cell proliferation, and mutations in H-ras and p53 genes. Carcinogenesis 18, 1477–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Zimmermann, K.C., Sarbia, M., Weber, A.A., Borchard, F., Gabbert, H.E., and Schror, K. (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59, 198–204.PubMedGoogle Scholar
  86. 86.
    Maaser, K., Daubler, P., Barthel, B. et al. (2003) Oesophageal squamous cell neoplasia in head and neck cancer patients: Upregulation of COX-2 during carcinogenesis. Br J Cancer 88, 1217–22.PubMedCrossRefGoogle Scholar
  87. 87.
    Tsujii, M., and DuBois, R.N. (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83, 493–501.PubMedCrossRefGoogle Scholar
  88. 88.
    Tsujii, M., Kawano, S., Tsuji, S., Sawaoka, H., Hori, M., and DuBois, R.N. (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93, 705–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Tsujii, M., Kawano, S., and DuBois, R.N. (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94, 3336–40.PubMedCrossRefGoogle Scholar
  90. 90.
    Smith, W.L., DeWitt, D.L., and Garavito, R.M. (2000) Cyclooxygenases: Structural, cellular, and molecular biology. Annu Rev Biochem 69, 145–82.PubMedCrossRefGoogle Scholar
  91. 91.
    Guy, N.C., Garewal, H., Holubec, H. et al. (2007) A novel dietary-related model of esophagitis and Barrett’s esophagus, a premalignant lesion. Nutr Cancer 59, 217–27.PubMedCrossRefGoogle Scholar
  92. 92.
    Carter, J.W., Lancaster, H., Hardman, W.E., and Cameron, I.L. (1997) Zinc deprivation promotes progression of 1,2-dimethylhydrazine-induced colon tumors but reduces malignant invasion in mice. Nutr Cancer 27, 217–21.PubMedCrossRefGoogle Scholar
  93. 93.
    Dani, V., Goel, A., Vaiphei, K., and Dhawan, D.K. (2007) Chemopreventive potential of zinc in experimentally induced colon carcinogenesis. Toxicol Lett 171, 10–18.PubMedCrossRefGoogle Scholar
  94. 94.
    Fong, L.Y., and Magee, P.N. (1999) Dietary zinc deficiency enhances esophageal cell proliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumor incidence in C57BL/6 mouse. Cancer Lett 143, 63–69.PubMedCrossRefGoogle Scholar
  95. 95.
    Tang, X.H., Knudsen, B., Bemis, D., Tickoo, S., and Gudas, L.J. (2004) Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 10, 301–13.PubMedCrossRefGoogle Scholar
  96. 96.
    Fong, L.Y., Ishii, H., Nguyen, V.T. et al. (2003) p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice. Cancer Res 63, 186–95.PubMedGoogle Scholar
  97. 97.
    Fong, L.Y., Jiang, Y., and Farber, J.L. (2006) Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice. Carcinogenesis 27, 1489–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Fong, L.Y., Mancini, R., Nakagawa, H., Rustgi, A.K., and Huebner, K. (2003) Combined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis. Cancer Res 63, 4244–52.PubMedGoogle Scholar
  99. 99.
    Drusco, A., Zanesi, N., Roldo, C. et al. (2005) Knockout mice reveal a tumor suppressor function for Testin. Proc Natl Acad Sci USA 102, 10947–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Fong, L.Y., Feith, D.J., and Pegg, A.E. (2003) Antizyme overexpression in transgenic mice reduces cell proliferation, increases apoptosis, and reduces N-nitrosomethylbenzylamine-induced forestomach carcinogenesis. Cancer Res 63, 3945–54.PubMedGoogle Scholar
  101. 101.
    Fong, L.Y., Jiang, Y., Riley, M. et al. (2008) Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: Inefficacy of genetic or pharmacological disruption of COX-2. Int J Cancer 122, 978–89.PubMedCrossRefGoogle Scholar
  102. 102.
    Greenblatt, M.S., Bennett, W.P., Hollstein, M., and Harris, C.C. (1994) Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res 54, 4855–78.PubMedGoogle Scholar
  103. 103.
    Jiang, W., Zhang, Y.J., Kahn, S.M. et al. (1993) Altered expression of the cyclin D1 and retinoblastoma genes in human esophageal cancer. Proc Natl Acad Sci USA 90, 9026–30.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang, Q.S., Sabourin, C.L., Wang, H., and Stoner, G.D. (1996) Overexpression of cyclin D1 and cyclin E in N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis. Carcinogenesis 17, 1583–88.PubMedCrossRefGoogle Scholar
  105. 105.
    Feith, D.J., Shantz, L.M., and Pegg, A.E. (2001) Targeted antizyme expression in the skin of transgenic mice reduces tumor promoter induction of ornithine decarboxylase and decreases sensitivity to chemical carcinogenesis. Cancer Res 61, 6073–81.PubMedGoogle Scholar
  106. 106.
    Mitchell, J.L., Leyser, A., Holtorff, M.S. et al. (2002) Antizyme induction by polyamine analogues as a factor of cell growth inhibition. Biochem J 366, 663–71.PubMedCrossRefGoogle Scholar
  107. 107.
    Fong, L.Y., Nguyen, V.T., Pegg, A.E., and Magee, P.N. (2001) Alpha-difluoromethylornithine induction of apoptosis: A mechanism which reverses pre-established cell proliferation and cancer initiation in esophageal carcinogenesis in zinc-deficient rats. Cancer Epidemiol Biomarkers Prev 10, 191–99.PubMedGoogle Scholar
  108. 108.
    Fong, L.Y., Pegg, A.E., and Magee, P.N. (1998) Alpha-difluoromethylornithine inhibits N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in zinc-deficient rats: Effects on esophageal cell proliferation and apoptosis. Cancer Res 58, 5380–88.PubMedGoogle Scholar
  109. 109.
    Oshima, M., Dinchuk, J.E., Kargman, S.L. et al. (1996) Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–09.PubMedCrossRefGoogle Scholar
  110. 110.
    Tiano, H.F., Loftin, C.D., Akunda, J. et al. (2002) Deficiency of either cyclooxygenase (COX)-1 or COX-2 alters epidermal differentiation and reduces mouse skin tumorigenesis. Cancer Res 62, 3395–401.PubMedGoogle Scholar
  111. 111.
    Korsmeyer, S.J., Shutter, J.R., Veis, D.J., Merry, D.E., and Oltvai, Z.N. (1993) Bcl-2/Bax: A rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol 4, 327–32.PubMedGoogle Scholar
  112. 112.
    Reed, J.C. (1995) Regulation of apoptosis by bcl-2 family proteins and its role in cancer and chemoresistance. Curr Opin Oncol 7, 541–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Altorki, N.K., Subbaramaiah, K., and Dannenberg, A.J. (2004) COX-2 inhibition in upper aerodigestive tract tumors. Semin Oncol 31, 30–36.PubMedCrossRefGoogle Scholar
  114. 114.
    Greenwald, P. (2002) Cancer prevention clinical trials. J Clin Oncol 20, 14S–22S.PubMedGoogle Scholar
  115. 115.
    Wirth, L.J., Haddad, R.I., Lindeman, N.I. et al. (2005) Phase I study of gefitinib plus celecoxib in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 23, 6976–81.PubMedCrossRefGoogle Scholar
  116. 116.
    Heath, E.I., Canto, M.I., Piantadosi, S. et al. (2007) Secondary chemoprevention of Barrett’s esophagus with celecoxib: Results of a randomized trial. J Natl Cancer Inst 99, 545–57.PubMedCrossRefGoogle Scholar
  117. 117.
    Shiotani, H., Denda, A., Yamamoto, K. et al. (2001) Increased expression of cyclooxygenase-2 protein in 4-nitroquinoline-1-oxide-induced rat tongue carcinomas and chemopreventive efficacy of a specific inhibitor, nimesulide. Cancer Res 61, 1451–56.PubMedGoogle Scholar
  118. 118.
    Yamamoto, K., Kitayama, W., Denda, A., Morisaki, A., Kuniyasu, H., and Kirita, T. (2003) Inhibitory effects of selective cyclooxygenase-2 inhibitors, nimesulide and etodolac, on the development of squamous cell dysplasias and carcinomas of the tongue in rats initiated with 4-nitroquinoline 1-oxide. Cancer Lett 199, 121–29.PubMedCrossRefGoogle Scholar
  119. 119.
    Prasad, A.S., Bao, B., Beck, F.W., Kucuk, O., and Sarkar, F.H. (2004) Antioxidant effect of zinc in humans. Free Radic Biol Med 37, 1182–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Uzzo, R.G., Crispen, P.L., Golovine, K., Makhov, P., Horwitz, E.M., and Kolenko, V.M. (2006) Diverse effects of zinc on NF-kappaB and AP-1 transcription factors: Implications for prostate cancer progression. Carcinogenesis 27, 1980–90.PubMedCrossRefGoogle Scholar
  121. 121.
    Doerr, T.D., Prasad, A.S., Marks, S.C. et al. (1997) Zinc deficiency in head and neck cancer patients. J Am Coll Nutr 16, 418–22.PubMedGoogle Scholar
  122. 122.
    Yan, M., Song, Y., Wong, C.P., Hardin, K., and Ho, E. (2008) Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr 138, 667–73.PubMedGoogle Scholar
  123. 123.
    Cousins, R.J., Blanchard, R.K., Popp, M.P. et al. (2003) A global view of the selectivity of zinc deprivation and excess on genes expressed in human THP-1 mononuclear cells. Proc Natl Acad Sci USA 100, 6952–57.PubMedCrossRefGoogle Scholar
  124. 124.
    Kindermann, B., Doring, F., Pfaffl, M., and Daniel, H. (2004) Identification of genes responsive to intracellular zinc depletion in the human colon adenocarcinoma cell line HT-29. J Nutr 134, 57–62.PubMedGoogle Scholar
  125. 125.
    Haase, H., Mazzatti, D.J., White, A. et al. (2007) Differential gene expression after zinc supplementation and deprivation in human leukocyte subsets. Mol Med 13, 362–70.PubMedCrossRefGoogle Scholar
  126. 126.
    Blanchard, R.K., Moore, J.B., Green, C.L., and Cousins, R.J. (2001) Modulation of intestinal gene expression by dietary zinc status: Effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. Proc Natl Acad Sci USA 98, 13507–13.PubMedCrossRefGoogle Scholar
  127. 127.
    tom Dieck, H., Doring, F., Fuchs, D., Roth, H.P., and Daniel, H. (2005) Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats. J Nutr 135, 199–205.PubMedGoogle Scholar
  128. 128.
    tom Dieck, H., Doring, F., Roth, H.P., and Daniel, H. (2003) Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. J Nutr 133, 1004–10.PubMedGoogle Scholar
  129. 129.
    Pfaffl, M.W., Gerstmayer, B., Bosio, A., and Windisch, W. (2003) Effect of zinc deficiency on the mRNA expression pattern in liver and jejunum of adult rats: Monitoring gene expression using cDNA microarrays combined with real-time RT-PCR. J Nutr Biochem 14, 691–702.PubMedCrossRefGoogle Scholar
  130. 130.
    Moore, J.B., Blanchard, R.K., McCormack, W.T., and Cousins, R.J. (2001) cDNA array analysis identifies thymic LCK as upregulated in moderate murine zinc deficiency before T-lymphocyte population changes. J Nutr 131, 3189–96.PubMedGoogle Scholar
  131. 131.
    Moore, J.B., Blanchard, R.K., and Cousins, R.J. (2003) Dietary zinc modulates gene expression in murine thymus: Results from a comprehensive differential display screening. Proc Natl Acad Sci USA 100, 3883–88.PubMedCrossRefGoogle Scholar
  132. 132.
    Gomez, N.N., Davicino, R.C., Biaggio, V.S. et al. (2006) Overexpression of inducible nitric oxide synthase and cyclooxygenase-2 in rat zinc-deficient lung: Involvement of a NF-kappaB dependent pathway. Nitric Oxide 14, 30–38.PubMedCrossRefGoogle Scholar
  133. 133.
    Bruwer, M., Schmid, K.W., Metz, K.A., Krieglstein, C.F., Senninger, N., and Schurmann, G. (2001) Increased expression of metallothionein in inflammatory bowel disease. Inflamm Res 50, 289–93.PubMedCrossRefGoogle Scholar
  134. 134.
    Hishikawa, Y., Koji, T., Dhar, D.K., Kinugasa, S., Yamaguchi, M., and Nagasue, N. (1999) Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus. Br J Cancer 81, 712–20.PubMedCrossRefGoogle Scholar
  135. 135.
    Sundelin, K., Jadner, M., Norberg-Spaak, L., Davidsson, A., and Hellquist, H.B. (1997) Metallothionein and Fas (CD95) are expressed in squamous cell carcinoma of the tongue. Eur J Cancer 33, 1860–64.PubMedCrossRefGoogle Scholar
  136. 136.
    Gebhardt, C., Nemeth, J., Angel, P., and Hess, J. (2006) S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol 72, 1622–31.PubMedCrossRefGoogle Scholar
  137. 137.
    Hummerich, L., Muller, R., Hess, J. et al. (2006) Identification of novel tumour-associated genes differentially expressed in the process of squamous cell cancer development. Oncogene 25, 111–21.PubMedGoogle Scholar
  138. 138.
    Kumar, A., Chatopadhyay, T., Raziuddin, M., and Ralhan, R. (2007) Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray. Int J Cancer 120, 230–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Bax, D.A., Siersema, P.D., Haringsma, J. et al. (2007) High-grade dysplasia in Barrett’s esophagus is associated with increased expression of calgranulin A and B. Scand J Gastroenterol 42, 902–10.PubMedCrossRefGoogle Scholar
  140. 140.
    Hermani, A., De Servi, B., Medunjanin, S., Tessier, P.A., and Mayer, D. (2006) S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res 312, 184–97.PubMedCrossRefGoogle Scholar
  141. 141.
    Ghavami, S., Rashedi, I., Dattilo, B.M. et al. (2008) S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J Leukoc Biol 83, 1484–92PubMedCrossRefGoogle Scholar
  142. 142.
    Gebhardt, C., Riehl, A., Durchdewald, M. et al. (2008) RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 205, 275–85.PubMedCrossRefGoogle Scholar
  143. 143.
    Taguchi, A., Blood, D.C., del Toro, G. et al. (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405, 354–60.PubMedCrossRefGoogle Scholar
  144. 144.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Identification of novel genes coding for small expressed RNAs. Science 294, 853–58.PubMedCrossRefGoogle Scholar
  145. 145.
    Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Lee, R.C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–64.PubMedCrossRefGoogle Scholar
  147. 147.
    Ambros, V. (2003) MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing. Cell 113, 673–76.PubMedCrossRefGoogle Scholar
  148. 148.
    Calin, G.A., and Croce, C.M. (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6, 857–66.PubMedCrossRefGoogle Scholar
  149. 149.
    Costinean, S., Zanesi, N., Pekarsky, Y. et al. (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103, 7024–29.PubMedCrossRefGoogle Scholar
  150. 150.
    He, L., Thomson, J.M., Hemann, M.T. et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435, 828–33.PubMedCrossRefGoogle Scholar
  151. 151.
    Lu, J., Getz, G., Miska, E.A. et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834–38.PubMedCrossRefGoogle Scholar
  152. 152.
    Marsit, C.J., Eddy, K., and Kelsey, K.T. (2006) MicroRNA responses to cellular stress. Cancer Res 66, 10843–48.PubMedCrossRefGoogle Scholar
  153. 153.
    Kutay, H., Bai, S., Datta, J. et al. (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99, 671–78.PubMedCrossRefGoogle Scholar
  154. 154.
    Bandres, E., Cubedo, E., Agirre, X. et al. (2006) Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5, 29.PubMedCrossRefGoogle Scholar
  155. 155.
    Wong, T.S., Liu, X.B., Wong, B.Y., Ng, R.W., Yuen, A.P., and Wei, W.I. (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14, 2588–92.PubMedCrossRefGoogle Scholar
  156. 156.
    Guo, Y., Chen, Z., Zhang, L. et al. (2008) Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68, 26–33.PubMedCrossRefGoogle Scholar
  157. 157.
    Costello, L.C., Franklin, R.B., Feng, P., Tan, M., and Bagasra, O. (2005) Zinc and prostate cancer: A critical scientific, medical, and public interest issue (United States). Cancer Causes Control 16, 901–15.PubMedCrossRefGoogle Scholar
  158. 158.
    Killilea, A.N., Downing, K.H., and Killilea, D.W. (2007) Zinc deficiency reduces paclitaxel efficacy in LNCaP prostate cancer cells. Cancer Lett 258, 70–79.PubMedCrossRefGoogle Scholar
  159. 159.
    Sunderman, F.W., Jr. (1995) The influence of zinc on apoptosis. Ann Clin Lab Sci 25, 134–42.PubMedGoogle Scholar
  160. 160.
    Donadelli, M., Dalla Pozza, E., Costanzo, C., Scupoli, M.T., Scarpa, A., and Palmieri, M. (2008) Zinc depletion efficiently inhibits pancreatic cancer cell growth by increasing the ratio of antiproliferative/proliferative genes. J Cell Biochem 104, 202–12.PubMedCrossRefGoogle Scholar
  161. 161.
    Feng, P., Li, T., Guan, Z., Franklin, R.B., and Costello, L.C. (2008) The involvement of Bax in zinc-induced mitochondrial apoptogenesis in malignant prostate cells. Mol Cancer 7, 25.PubMedCrossRefGoogle Scholar
  162. 162.
    Liang, J.Y., Liu, Y.Y., Zou, J., Franklin, R.B., Costello, L.C., and Feng, P. (1999) Inhibitory effect of zinc on human prostatic carcinoma cell growth. Prostate 40, 200–07.PubMedCrossRefGoogle Scholar
  163. 163.
    Feng, P., Liang, J.Y., Li, T.L. et al. (2000) Zinc induces mitochondria apoptogenesis in prostate cells. Mol Urol 4, 31–36.PubMedGoogle Scholar
  164. 164.
    Bae, S.N., Lee, Y.S., Kim, M.Y., Kim, J.D., and Park, L.O. (2006) Antiproliferative and apoptotic effects of zinc-citrate compound (CIZAR(R)) on human epithelial ovarian cancer cell line, OVCAR-3. Gynecol Oncol 103, 127–36.PubMedCrossRefGoogle Scholar
  165. 165.
    Bae, S.N., Kim, J., Lee, Y.S., Kim, J.D., Kim, M.Y., and Park, L.O. (2007) Cytotoxic effect of zinc-citrate compound on choriocarcinoma cell lines. Placenta 28, 22–30.PubMedCrossRefGoogle Scholar
  166. 166.
    Rudolf, E., Rudolf, K., and Cervinka, M. (2005) Zinc induced apoptosis in HEP-2 cancer cells: The role of oxidative stress and mitochondria. Biofactors 23, 107–20.PubMedCrossRefGoogle Scholar
  167. 167.
    Jaiswal, A.S., and Narayan, S. (2004) Zinc stabilizes adenomatous polyposis coli (APC) protein levels and induces cell cycle arrest in colon cancer cells. J Cell Biochem 93, 345–57.PubMedCrossRefGoogle Scholar
  168. 168.
    Munoz, N., Hayashi, M., Bang, L.J., Wahrendorf, J., Crespi, M., and Bosch, F.X. (1987) Effect of riboflavin, retinol, and zinc on micronuclei of buccal mucosa and of esophagus: A randomized double-blind intervention study in China. J Natl Cancer Inst 79, 687–91.PubMedGoogle Scholar
  169. 169.
    Munoz, N., Wahrendorf, J., Bang, L.J. et al. (1985) No effect of riboflavine, retinol, and zinc on prevalence of precancerous lesions of oesophagus. Randomised double-blind intervention study in high-risk population of China. Lancet 2, 111–14.PubMedCrossRefGoogle Scholar
  170. 170.
    Taylor, P.R., Li, B., Dawsey, S.M. et al. (1994) Prevention of esophageal cancer: The nutrition intervention trials in Linxian, China. Linxian Nutrition Intervention Trials Study Group. Cancer Res 54, 2029s–31s.PubMedGoogle Scholar
  171. 171.
    Rao, M., Liu, F.S., Dawsey, S.M. et al. (1994) Effects of vitamin/mineral supplementation on the proliferation of esophageal squamous epithelium in Linxian, China. Cancer Epidemiol Biomarkers Prev 3, 277–79.PubMedGoogle Scholar
  172. 172.
    Hercberg, S., Galan, P., Preziosi, P. et al. (2004) The SU.VI.MAX study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch Intern Med 164, 2335–42.PubMedCrossRefGoogle Scholar
  173. 173.
    Limburg, P.J., Wei, W., Ahnen, D.J. et al. (2005) Randomized, placebo-controlled, esophageal squamous cell cancer chemoprevention trial of selenomethionine and celecoxib. Gastroenterology 129, 863–73.PubMedCrossRefGoogle Scholar
  174. 174.
    Huang, H.Y., Caballero, B., Chang, S. et al. (2006) The efficacy and safety of multivitamin and mineral supplement use to prevent cancer and chronic disease in adults: A systematic review for a National Institutes of Health state-of-the-science conference. Ann Intern Med 145, 372–85.PubMedGoogle Scholar
  175. 175.
    Andersson, S.O., Wolk, A., Bergstrom, R. et al. (1996) Energy, nutrient intake and prostate cancer risk: A population-based case-control study in Sweden. Int J Cancer 68, 716–22.PubMedCrossRefGoogle Scholar
  176. 176.
    Vlajinac, H.D., Marinkovic, J.M., Ilic, M.D., and Kocev, N.I. (1997) Diet and prostate cancer: A case-control study. Eur J Cancer 33, 101–07.PubMedCrossRefGoogle Scholar
  177. 177.
    Kristal, A.R., Stanford, J.L., Cohen, J.H., Wicklund, K., and Patterson, R.E. (1999) Vitamin and mineral supplement use is associated with reduced risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 8, 887–92.PubMedGoogle Scholar
  178. 178.
    Key, T.J., Silcocks, P.B., Davey, G.K., Appleby, P.N., and Bishop, D.T. (1997) A case-control study of diet and prostate cancer. Br J Cancer 76, 678–87.PubMedCrossRefGoogle Scholar
  179. 179.
    Leitzmann, M.F., Stampfer, M.J., Wu, K., Colditz, G.A., Willett, W.C., and Giovannucci, E.L. (2003) Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst 95, 1004–07.PubMedCrossRefGoogle Scholar
  180. 180.
    Krone, C.A., and Harms, L.C. (2003) Re: Zinc supplement use and risk of prostate cancer. J Natl Cancer Inst 95, 1556.PubMedCrossRefGoogle Scholar
  181. 181.
    Lee, D.H., Anderson, K.E., Harnack, L.J., Folsom, A.R., and Jacobs, D.R., Jr. (2004) Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women’s Health Study. J Natl Cancer Inst 96, 403–07.PubMedCrossRefGoogle Scholar
  182. 182.
    Greten, F.R., and Karin, M. (2004) The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 206, 193–99.PubMedCrossRefGoogle Scholar
  183. 183.
    Perwez Hussain, S., and Harris, C.C. (2007) Inflammation and cancer: An ancient link with novel potentials. Int J Cancer 121, 2373–80.PubMedCrossRefGoogle Scholar
  184. 184.
    Balkwill, F., Charles, K.A., and Mantovani, A. (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–17.PubMedCrossRefGoogle Scholar
  185. 185.
    Moroni, F., Di Paolo, M.L., Rigo, A. et al. (2005) Interrelationship among neutrophil efficiency, inflammation, antioxidant activity and zinc pool in very old age. Biogerontology 6, 271–81.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Louise Y.Y. Fong
    • 1
  1. 1.Department of Pharmacology and Experimental TherapeuticsKimmel Cancer Center, Thomas Jefferson UniversityPennsylvaniaUSA

Personalised recommendations