Reactive Oxygen Species (ROS) and the Sensory Neurovascular Component

  • Rabea Graepel
  • Jennifer Victoria Bodkin
  • Susan Diana Brain
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


A dense perivascular network of C- and Aδ-sensory nerve fibers innervate the vascular system and are ideally situated to influence vascular events. The nerves release potent vasodilator neuropeptides including substances P, CGRP and a range of other agents, depending on their location and the nature of nerve activation. A number of interactions between neuropeptides and ROS have been described and are discussed here. We particularly emphasize the roles of ROS as signaling molecules that have the potential to influence cardiovascular events in an important manner. We also provide evidence of recent findings involving the transient receptor potential (TRP) channels that activate sensory nerves. It is now realized that the sensory nerve-derived TRPA1 channel is directly activated by hydrogen peroxide and a range of lipid peroxidation products. The influence of this on the cardiovascular system is only now beginning to emerge, but a range of exciting, recent findings are summarized in this review.


Sensory nerves · CGRP · Substance P · Neuropeptides · Inflammation Oxidant stress · Channels 



This work was supported by the British Heart Foundation.


  1. 1.
    Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201PubMedGoogle Scholar
  2. 2.
    Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19:1–43PubMedCrossRefGoogle Scholar
  3. 3.
    Szolcsanyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38:377–384PubMedCrossRefGoogle Scholar
  4. 4.
    Brain SD, Cox HM (2006) Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol 147(Suppl 1):S202–S211PubMedCrossRefGoogle Scholar
  5. 5.
    Brain SD, Grant AD (2004) Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 84:903–934PubMedCrossRefGoogle Scholar
  6. 6.
    Gibran NS, Tamura R, Tsou R et al (2003) Human dermal microvascular endothelial cells produce nerve growth factor: implications for wound repair. Shock 19:127–130PubMedCrossRefGoogle Scholar
  7. 7.
    Bayliss WM (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hind-limb, and on the nature of these fibres. J Physiol 26:173–209PubMedGoogle Scholar
  8. 8.
    Lewis T (1927) The blood vessels of the human skin and their responses. Shaw and Sons, LondonGoogle Scholar
  9. 9.
    Jancso N, Jancso-Gabor A, Szolcsanyi J (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol Chemother 31:138–151PubMedCrossRefGoogle Scholar
  10. 10.
    Jancso G, Kiraly E, Jancso-Gabor A (1977) Pharmacologically induced selective degeneration of chemosensitive primary sensory neurones. Nature 270:741–743PubMedCrossRefGoogle Scholar
  11. 11.
    Caterina MJ, Leffler A, Malmberg AB et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313PubMedCrossRefGoogle Scholar
  12. 12.
    Davis JB, Gray J, Gunthorpe MJ et al (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187PubMedCrossRefGoogle Scholar
  13. 13.
    Zhong B, Wang DH (2007) TRPV1 gene knockout impairs preconditioning protection against myocardial injury in isolated perfused hearts in mice. Am J Physiol Heart Circ Physiol 293:H1791–H1798PubMedCrossRefGoogle Scholar
  14. 14.
    Banvolgyi A, Palinkas L, Berki T et al (2005) Evidence for a novel protective role of the vanilloid TRPV1 receptor in a cutaneous contact allergic dermatitis model. J Neuroimmunol 169:86–96PubMedCrossRefGoogle Scholar
  15. 15.
    Clark N, Keeble J, Fernandes ES et al (2007) The transient receptor potential vanilloid 1 (TRPV1) receptor protects against the onset of sepsis after endotoxin. FASEB J 21:3747–3755PubMedCrossRefGoogle Scholar
  16. 16.
    Szallasi A, Cortright DN, Blum CA et al (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372PubMedCrossRefGoogle Scholar
  17. 17.
    Lelkes E, Unsworth BR, Lelkes PI (2001) Reactive oxygen species, apoptosis and altered NGF-induced signaling in PC12 pheochromocytoma cells cultured in elevated glucose: an in vitro cellular model for diabetic neuropathy. Neurotox Res 3:189–203PubMedCrossRefGoogle Scholar
  18. 18.
    Russell JW, Golovoy D, Vincent AM et al (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16:1738–1748PubMedCrossRefGoogle Scholar
  19. 19.
    Vincent AM, Stevens MJ, Backus C et al (2005) Cell culture modeling to test therapies against hyperglycemia-mediated oxidative stress and injury. Antioxid Redox Signal 7:1494–1506PubMedCrossRefGoogle Scholar
  20. 20.
    Ibi M, Matsuno K, Shiba D et al (2008) Reactive oxygen species derived from NOX1/NADPH oxidase enhance inflammatory pain. J Neurosci 28:9486–9494PubMedCrossRefGoogle Scholar
  21. 21.
    Oltman CL, Davidson EP, Coppey LJ et al (2008) Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin. Obesity (Silver Spring) 16:82–89CrossRefGoogle Scholar
  22. 22.
    Touyz RM (2005) Reactive oxygen species as mediators of calcium signaling by angiotensin II: implications in vascular physiology and pathophysiology. Antioxid Redox Signal 7:1302–1314PubMedCrossRefGoogle Scholar
  23. 23.
    Miller AA, Drummond GR, Sobey CG (2006) Reactive oxygen species in the cerebral circulation: are they all bad? Antioxid Redox Signal 8:1113–1120PubMedCrossRefGoogle Scholar
  24. 24.
    Cai H (2005) Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res 68:26–36PubMedCrossRefGoogle Scholar
  25. 25.
    Lee MY, Griendling KK (2008) Redox signaling, vascular function, and hypertension. Antioxid Redox Signal 10:1045–1059PubMedCrossRefGoogle Scholar
  26. 26.
    Zembowicz A, Hatchett RJ, Jakubowski AM et al (1993) Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta. Br J Pharmacol 110:151–158PubMedCrossRefGoogle Scholar
  27. 27.
    Drummond GR, Cai H, Davis ME et al (2000) Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 86:347–354PubMedCrossRefGoogle Scholar
  28. 28.
    Cai H, Davis ME, Drummond GR et al (2001) Induction of endothelial NO synthase by hydrogen peroxide via a Ca(2+)/calmodulin-dependent protein kinase II/janus kinase 2-dependent pathway. Arterioscler Thromb Vasc Biol 21:1571–1576PubMedCrossRefGoogle Scholar
  29. 29.
    Yada T, Shimokawa H, Hiramatsu O et al (2003) Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107:1040–1045PubMedCrossRefGoogle Scholar
  30. 30.
    Yada T, Shimokawa H, Hiramatsu O et al (2006) Cardioprotective role of endogenous hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol Heart Circ Physiol 291:H1138–H1146PubMedCrossRefGoogle Scholar
  31. 31.
    Yada T, Shimokawa H, Hiramatsu O et al (2007) Important role of endogenous hydrogen peroxide in pacing-induced metabolic coronary vasodilation in dogs in vivo. J Am Coll Cardiol 50:1272–1278PubMedCrossRefGoogle Scholar
  32. 32.
    Xu Y, Liu B, Zweier JL et al (2008) Formation of hydrogen peroxide and reduction of peroxynitrite via dismutation of superoxide at reperfusion enhances myocardial blood flow and oxygen consumption in postischemic mouse heart. J Pharmacol Exp Ther 327:402–410PubMedCrossRefGoogle Scholar
  33. 33.
    Capettini L, Cortes SF, Gomes MA et al (2008) Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol 295:H2503–H2511PubMedCrossRefGoogle Scholar
  34. 34.
    Matoba T, Shimokawa H (2003) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in animals and humans. J Pharmacol Sci 92:1–6PubMedCrossRefGoogle Scholar
  35. 35.
    Sobey CG, Heistad DD, Faraci FM (1997) Mechanisms of bradykinin-induced cerebral vasodilatation in rats. Evidence that reactive oxygen species activate K+ channels. Stroke 28:2290–2294; discussion 2295PubMedCrossRefGoogle Scholar
  36. 36.
    Kevil CG, Ohno N, Gute DC et al (1998) Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Radic Biol Med 24:1015–1022PubMedCrossRefGoogle Scholar
  37. 37.
    Keeble JE, Bodkin JV, Liang L et al (2008) Hydrogen peroxide is a novel mediator of inflammatory hyperalgesia, acting via Transient Receptor Potential Vanilloid 1-dependent and independent pathways. Pain. doi: 10.1016/j.pain.2008.10.025Google Scholar
  38. 38.
    Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87:840–844PubMedCrossRefGoogle Scholar
  39. 39.
    Busija DW, Miller AW, Katakam P et al (2006) Adverse effects of reactive oxygen species on vascular reactivity in insulin resistance. Antioxid Redox Signal 8:1131–1140PubMedCrossRefGoogle Scholar
  40. 40.
    Kerr S, Brosnan MJ, McIntyre M et al (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33:1353–1358PubMedCrossRefGoogle Scholar
  41. 41.
    Warnholtz A, Nickenig G, Schulz E et al (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99:2027–2033PubMedCrossRefGoogle Scholar
  42. 42.
    Just A, Olson AJ, Whitten CL et al (2007) Superoxide mediates acute renal vasoconstriction produced by angiotensin II and catecholamines by a mechanism independent of nitric oxide. Am J Physiol Heart Circ Physiol 292:H83–H92PubMedCrossRefGoogle Scholar
  43. 43.
    Wei EP, Christman CW, Kontos HA et al (1985) Effects of oxygen radicals on cerebral arterioles. Am J Physiol 248:H157–H162PubMedGoogle Scholar
  44. 44.
    Cosentino F, Sill JC, Katusic ZS (1994) Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 23:229–235PubMedCrossRefGoogle Scholar
  45. 45.
    Didion SP, Faraci FM (2002) Effects of NADH and NADPH on superoxide levels and cerebral vascular tone. Am J Physiol Heart Circ Physiol 282:H688–H695PubMedGoogle Scholar
  46. 46.
    Wang ZQ, Porreca F, Cuzzocrea S et al (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878PubMedCrossRefGoogle Scholar
  47. 47.
    Holzer P (1998) Implications of tachykinins and calcitonin gene-related peptide in inflammatory bowel disease. Digestion 59:269–283PubMedCrossRefGoogle Scholar
  48. 48.
    Foreman JC, Jordan CC, Oehme P et al (1983) Structure-activity relationships for some substance P-related peptides that cause wheal and flare reactions in human skin. J Physiol 335:449–465PubMedGoogle Scholar
  49. 49.
    Lembeck F, Holzer P, Substance P (1979) as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn Schmiedebergs Arch Pharmacol 310:175–183PubMedCrossRefGoogle Scholar
  50. 50.
    Cao T, Gerard NP, Brain SD (1999) Use of NK(1) knockout mice to analyze substance P-induced edema formation. Am J Physiol 277:R476–R481PubMedGoogle Scholar
  51. 51.
    Amara SG, Jonas V, Rosenfeld MG et al (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244PubMedCrossRefGoogle Scholar
  52. 52.
    Rosenfeld MG, Mermod JJ, Amara SG et al (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135PubMedCrossRefGoogle Scholar
  53. 53.
    Salvatore CA, Hershey JC, Corcoran HA et al (2008) Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carbox amide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine. J Pharmacol Exp Ther 324:416–421PubMedCrossRefGoogle Scholar
  54. 54.
    Rudolf K, Eberlein W, Engel W et al (2005) Development of human calcitonin gene-related peptide (CGRP) receptor antagonists. 1. Potent and selective small molecule CGRP antagonists. 1-[N2-[3,5-dibromo-N-[[4-(3,4-dihydro-2(1H)-oxoquinazolin-3-yl)-1-piperidi nyl]carbonyl]-D-tyrosyl]-l-lysyl]-4-(4-pyridinyl)piperazine: the first CGRP antagonist for clinical trials in acute migraine. J Med Chem 48:5921–5931PubMedCrossRefGoogle Scholar
  55. 55.
    Brain SD, Williams TJ, Tippins JR et al (1985) Calcitonin gene-related peptide is a potent vasodilator. Nature 313:54–56PubMedCrossRefGoogle Scholar
  56. 56.
    Holzer P (2007) Role of visceral afferent neurons in mucosal inflammation and defense. Curr Opin Pharmacol 7:563–569PubMedCrossRefGoogle Scholar
  57. 57.
    Kwiecien S, Brzozowski T, Konturek PC et al (2002) The role of reactive oxygen species in action of nitric oxide-donors on stress-induced gastric mucosal lesions. J Physiol Pharmacol 53:761–773PubMedGoogle Scholar
  58. 58.
    Gazzieri D, Trevisani M, Springer J et al (2007) Substance P released by TRPV1-expressing neurons produces reactive oxygen species that mediate ethanol-induced gastric injury. Free Radic Biol Med 43:581–589PubMedCrossRefGoogle Scholar
  59. 59.
    Mair J, Lechleitner P, Langle T et al (1990) Plasma CGRP in acute myocardial infarction. Lancet 335:168PubMedCrossRefGoogle Scholar
  60. 60.
    Uren NG, Seydoux C, Davies GJ (1993) Effect of intravenous calcitonin gene related peptide on ischaemia threshold and coronary stenosis severity in humans. Cardiovasc Res 27:1477–1481PubMedCrossRefGoogle Scholar
  61. 61.
    Lu R, Li YJ, Deng HW (1999) Evidence for calcitonin gene-related peptide-mediated ischemic preconditioning in the rat heart. Regul Pept 82:53–57PubMedCrossRefGoogle Scholar
  62. 62.
    Tang ZL, Dai W, Li YJ et al (1999) Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine. Naunyn Schmiedebergs Arch Pharmacol 359:243–247PubMedCrossRefGoogle Scholar
  63. 63.
    Nong YH, Titus RG, Ribeiro JM et al (1989) Peptides encoded by the calcitonin gene inhibit macrophage function. J Immunol 143:45–49PubMedGoogle Scholar
  64. 64.
    Schaeffer C, Thomassin L, Rochette L et al (2003) Apoptosis induced in vascular smooth muscle cells by oxidative stress is partly prevented by pretreatment with CGRP. Ann N Y Acad Sci 1010:733–737PubMedCrossRefGoogle Scholar
  65. 65.
    Sueur S, Pesant M, Rochette L et al (2005) Antiapoptotic effect of calcitonin gene-related peptide on oxidative stress-induced injury in H9c2 cardiomyocytes via the RAMP1/CRLR complex. J Mol Cell Cardiol 39:955–963PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang Y, Lu L, Furlonger C et al (2000) Hemokinin is a hematopoietic-specific tachykinin that regulates B lymphopoiesis. Nat Immunol 1:392–397PubMedCrossRefGoogle Scholar
  67. 67.
    Tottrup A, Kraglund K (2004) Endothelium-dependent responses in small human mesenteric arteries. Physiol Res 53:255–263PubMedGoogle Scholar
  68. 68.
    Beny JL, von der Weid PY (1991) Hydrogen peroxide: an endogenous smooth muscle cell hyperpolarizing factor. Biochem Biophys Res Commun 176:378–384PubMedCrossRefGoogle Scholar
  69. 69.
    Edwards G, Feletou M, Gardener MJ et al (2001) Further investigations into the endothelium-dependent hyperpolarizing effects of bradykinin and substance P in porcine coronary artery. Br J Pharmacol 133:1145–1153PubMedCrossRefGoogle Scholar
  70. 70.
    Burnham MP, Bychkov R, Feletou M et al (2002) Characterization of an apamin-sensitive small-conductance Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to EDHF. Br J Pharmacol 135:1133–1143PubMedCrossRefGoogle Scholar
  71. 71.
    Bychkov R, Burnham MP, Richards GR et al (2002) Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Br J Pharmacol 137:1346–1354PubMedCrossRefGoogle Scholar
  72. 72.
    Grocott-Mason R, Anning P, Evans H et al (1994) Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am J Physiol 267:H1804–H1813PubMedGoogle Scholar
  73. 73.
    Yatani A, Yokoyama M, Akita H et al (1990) Endothelium-dependent vasodilating effect of substance P during flow-reducing coronary stenosis in the dog. J Am Coll Cardiol 15:1374–1384PubMedCrossRefGoogle Scholar
  74. 74.
    MacCarthy PA, Grieve DJ, Li JM et al (2001) Impaired endothelial regulation of ventricular relaxation in cardiac hypertrophy: role of reactive oxygen species and NADPH oxidase. Circulation 104:2967–2974PubMedCrossRefGoogle Scholar
  75. 75.
    Khodr B, Khalil Z (2001) Modulation of inflammation by reactive oxygen species: implications for aging and tissue repair. Free Radic Biol Med 30:1–8PubMedCrossRefGoogle Scholar
  76. 76.
    Brunelleschi S, Tarli S, Giotti A et al (1991) Priming effects of mammalian tachykinins on human neutrophils. Life Sci 48:PL1–PL5CrossRefGoogle Scholar
  77. 77.
    Serra MC, Calzetti F, Ceska M et al (1994) Effect of substance P on superoxide anion and IL-8 production by human PMNL. Immunology 82:63–69PubMedGoogle Scholar
  78. 78.
    Sterner-Kock A, Braun RK, van der Vliet A et al (1999) Substance P primes the formation of hydrogen peroxide and nitric oxide in human neutrophils. J Leukoc Biol 65:834–840PubMedGoogle Scholar
  79. 79.
    Tanabe T, Otani H, Bao L et al (1996) Intracellular signaling pathway of substance P-induced superoxide production in human neutrophils. Eur J Pharmacol 299:187–195PubMedCrossRefGoogle Scholar
  80. 80.
    Dianzani C, Parrini M, Ferrara C et al (1996) Effect of 4-hydroxynonenal on superoxide anion production from primed human neutrophils. Cell Biochem Funct 14:193–200PubMedCrossRefGoogle Scholar
  81. 81.
    Hartung HP, Toyka KV (1983) Activation of macrophages by substance P: induction of oxidative burst and thromboxane release. Eur J Pharmacol 89:301–305PubMedCrossRefGoogle Scholar
  82. 82.
    Caterina MJ, Schumacher MA, Tominaga M et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  83. 83.
    Trevisani M, Gazzieri D, Benvenuti F et al (2004) Ethanol causes inflammation in the airways by a neurogenic and TRPV1-dependent mechanism. J Pharmacol Exp Ther 309:1167–1173PubMedCrossRefGoogle Scholar
  84. 84.
    Nilius B, Owsianik G, Voets T et al (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217PubMedCrossRefGoogle Scholar
  85. 85.
    Geppetti P, Nassini R, Materazzi S et al (2008) The concept of neurogenic inflammation. BJU Int 101(Suppl 3):2–6PubMedCrossRefGoogle Scholar
  86. 86.
    Maher M, Ao H, Banke T et al (2008) Activation of TRPA1 by farnesyl thiosalicylic acid. Mol Pharmacol 73:1225–1234PubMedCrossRefGoogle Scholar
  87. 87.
    Andersson DA, Gentry C, Moss S et al (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494PubMedCrossRefGoogle Scholar
  88. 88.
    Trevisani M, Siemens J, Materazzi S et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524PubMedCrossRefGoogle Scholar
  89. 89.
    Bandell M, Story GM, Hwang SW et al (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857PubMedCrossRefGoogle Scholar
  90. 90.
    Bautista DM, Movahed P, Hinman A et al (2005) Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci U S A 102:12248–12252PubMedCrossRefGoogle Scholar
  91. 91.
    Bautista DM, Jordt SE, Nikai T et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282PubMedCrossRefGoogle Scholar
  92. 92.
    Macpherson LJ, Dubin AE, Evans MJ et al (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445:541–545PubMedCrossRefGoogle Scholar
  93. 93.
    Dai Y, Wang S, Tominaga M et al (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987PubMedCrossRefGoogle Scholar
  94. 94.
    Wang S, Dai Y, Fukuoka T et al (2008) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131:1241–1251PubMedCrossRefGoogle Scholar
  95. 95.
    Kwan KY, Allchorne AJ, Vollrath MA et al (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289PubMedCrossRefGoogle Scholar
  96. 96.
    Schuligoi R (1998) Effect of colchicine on nerve growth factor-induced leukocyte accumulation and thermal hyperalgesia in the rat. Naunyn Schmiedebergs Arch Pharmacol 358:264–269PubMedCrossRefGoogle Scholar
  97. 97.
    Puntambekar P, Mukherjea D, Jajoo S et al (2005) Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem 95:1689–1703PubMedCrossRefGoogle Scholar
  98. 98.
    Pabbidi RM, Cao DS, Parihar A et al (2008) Direct role of streptozotocin in inducing thermal hyperalgesia by enhanced expression of transient receptor potential vanilloid 1 in sensory neurons. Mol Pharmacol 73:995–1004PubMedCrossRefGoogle Scholar
  99. 99.
    Kitahara T, Li HS, Balaban CD (2005) Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144PubMedCrossRefGoogle Scholar
  100. 100.
    Starr A, Graepel R, Keeble J et al (2008) A reactive oxygen species-mediated component in neurogenic vasodilatation. Cardiovasc Res 78:139–147PubMedCrossRefGoogle Scholar
  101. 101.
    Wang L, Wang DH (2005) TRPV1 gene knockout impairs postischemic recovery in isolated perfused heart in mice. Circulation 112:3617–3623PubMedCrossRefGoogle Scholar
  102. 102.
    Ligresti A, Moriello AS, Starowicz K et al (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318:1375–1387PubMedCrossRefGoogle Scholar
  103. 103.
    Keeble J, Russell F, Curtis B et al (2005) Involvement of transient receptor potential vanilloid 1 in the vascular and hyperalgesic components of joint inflammation. Arthritis Rheum 52:3248–3256PubMedCrossRefGoogle Scholar
  104. 104.
    Hu F, Sun WW, Zhao XT et al (2008) TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization. Biochem Biophys Res Commun 369:989–993PubMedCrossRefGoogle Scholar
  105. 105.
    Hinman A, Chuang HH, Bautista DM et al (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA 103:19564–19568PubMedCrossRefGoogle Scholar
  106. 106.
    Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347PubMedCrossRefGoogle Scholar
  107. 107.
    Bessac BF, Sivula M, von Hehn CA et al (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118:1899–1910PubMedCrossRefGoogle Scholar
  108. 108.
    Sawada Y, Hosokawa H, Matsumura K et al (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142PubMedCrossRefGoogle Scholar
  109. 109.
    Hill K, Schaefer M (2008) Ultraviolet light and photosensitising agents activate TRPA1 via generation of oxidative stress. Cell Calcium:Google Scholar
  110. 110.
    Taylor-Clark TE, McAlexander MA, Nassenstein C et al (2008) Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol 586:3447–3459PubMedCrossRefGoogle Scholar
  111. 111.
    Simon SA, Liedtke W (2008) How irritating: the role of TRPA1 in sensing cigarette smoke and aerogenic oxidants in the airways. J Clin Invest 118:2383–2386PubMedGoogle Scholar
  112. 112.
    Taylor-Clark TE, Undem BJ, Macglashan DW Jr et al (2008) Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol 73:274–281PubMedCrossRefGoogle Scholar
  113. 113.
    Graepel R, Andersson DA, Bevan S et al. (2008) 4-ONE, a product of lipid peroxidation, induces mechanical hyperalgesia and oedema formation. Joint European Neuropeptide Club and European Opioid Conference, Ferrara.Google Scholar
  114. 114.
    Kai H, Mori T, Tokuda K et al (2006) Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res 29:711–718PubMedCrossRefGoogle Scholar
  115. 115.
    Zhong B, Wang DHN- (2008) Oleoyldopamine, a novel endogenous capsaicin-like lipid, protects the heart against ischemia-reperfusion injury via activation of TRPV1. Am J Physiol Heart Circ Physiol 295:H728–H735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rabea Graepel
    • 1
  • Jennifer Victoria Bodkin
    • 1
  • Susan Diana Brain
    • 1
  1. 1.Cardiovascular DivisionKing’s College London BHF Centre of ExcellenceLondonUK

Personalised recommendations