Advertisement

Reactive Oxygen and Nitrogen Species in Cardiovascular Differentiation of Stem Cells

  • Heinrich Sauer
  • Maria Wartenberg
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Reactive oxygen species (ROS) and nitric oxide (NO) are involved in a variety of signalling events that regulate physiological and pathophysiological processes in the cardiovascular system. NO also undergoes reactions with oxygen, superoxide ions, and reducing agents to create products that themselves show distinctive reactivity toward particular targets, sometimes with the manifestation of toxic effects, such as nitrosative stress. During early embryogenesis, NADPH oxidases and nitric oxide synthases are already expressed in the growing embryo, suggesting that gradients of ROS and NO may exist in the developing organs and be involved in proper functioning of differentiation programs. During pathophysiological insults of the cardiovascular system, e.g., during hypertension, atherosclerosis, and cardiac infarction, high levels of ROS and NO are generated, thus creating an inflammatory microenvironment which on the one hand contributes to cell damage, apoptosis, and remodeling; but which on the other hand may activate repair processes that involve recruitment and differentiation of stem cells of the cardiovascular cell lineage. In this chapter the current knowledge about activation, recruitment, and differentiation of various cardiovascular stem cell populations by ROS and NO within inflamed tissues and the involved signal transduction cascades is reviewed. Furthermore, the specific microenvironmental requirements for proper stem cell engraftment and maintenance are outlined.

Keywords

Mesenchymal stem cells Embryonic stem cells Endothelial progenitor cells Reactive oxygen species Reactive nitrogen species Redox-regulated signaling pathways 

References

  1. 1.
    Allen RG, Balin AK (1989) Oxidative influence on development and differentiation: an overview of a free radical theory of development. Free Radic Biol Med 6:631–661PubMedCrossRefGoogle Scholar
  2. 2.
    Liaudet L, Vassalli G, Pacher P (2009) Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front Biosci 14:4809–4814PubMedCrossRefGoogle Scholar
  3. 3.
    Schneider H (2009) Tolerance of human placental tissue to severe hypoxia and its relevance for dual ex vivo perfusion. Placenta 30(Suppl A):S71–S76PubMedCrossRefGoogle Scholar
  4. 4.
    Webster WS, Abela D (2007) The effect of hypoxia in development. Birth Defects Res C Embryo Today 81:215–228PubMedCrossRefGoogle Scholar
  5. 5.
    Kovacic P, Somanathan R (2006) Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res C Embryo Today 78:308–325PubMedCrossRefGoogle Scholar
  6. 6.
    Gagioti S, Colepicolo P, Bevilacqua E (1995) Post-implantation mouse embryos have the capability to generate and release reactive oxygen species. Reprod Fertil Dev 7:1111–1116PubMedCrossRefGoogle Scholar
  7. 7.
    Raijmakers MT, Burton GJ, Jauniaux E et al (2006) Placental NAD(P)H oxidase mediated superoxide generation in early pregnancy. Placenta 27:158–163PubMedCrossRefGoogle Scholar
  8. 8.
    Roy S, Khanna S, Sen CK (2008) Redox regulation of the VEGF signaling path and tissue vascularization: hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med 44:180–192PubMedCrossRefGoogle Scholar
  9. 9.
    Lange S, Heger J, Euler G et al (2009) Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc Res 81:159–168PubMedCrossRefGoogle Scholar
  10. 10.
    Sauer H, Neukirchen W, Rahimi G et al (2004) Involvement of reactive oxygen species in cardiotrophin-1-induced proliferation of cardiomyocytes differentiated from murine embryonic stem cells. Exp Cell Res 294:313–324PubMedCrossRefGoogle Scholar
  11. 11.
    Suzukawa K, Miura K, Mitsushita J et al (2000) Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem 275:13175–13178PubMedCrossRefGoogle Scholar
  12. 12.
    Schwamborn JC, Fiore R, Bagnard D et al (2004) Semaphorin 3A stimulates neurite extension and regulates gene expression in PC12 cells. J Biol Chem 279:30923–30926PubMedCrossRefGoogle Scholar
  13. 13.
    Schnabel D, Salas-Vidal E, Narvaez V et al (2006) Expression and regulation of antioxidant enzymes in the developing limb support a function of ROS in interdigital cell death. Dev Biol 291:291–299PubMedCrossRefGoogle Scholar
  14. 14.
    Akki A, Zhang M, Murdoch C et al (2009) NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol 47:15–22PubMedCrossRefGoogle Scholar
  15. 15.
    Anilkumar N, Sirker A, Shah AM (2009) Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure. Front Biosci 14:3168–3187PubMedCrossRefGoogle Scholar
  16. 16.
    Hori M, Nishida K (2009) Oxidative stress and left ventricular remodelling after myocardial infarction. Cardiovasc Res 81:457–464PubMedCrossRefGoogle Scholar
  17. 17.
    Di Lisa F, Canton M, Menabo R et al (2007) Mitochondria and cardioprotection. Heart Fail Rev 12:249–260PubMedCrossRefGoogle Scholar
  18. 18.
    Webster KA, Graham RM, Thompson JW et al (2006) Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal 8:1667–1676PubMedCrossRefGoogle Scholar
  19. 19.
    Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111PubMedCrossRefGoogle Scholar
  20. 20.
    Czarkowska P, Przybylski J, Marciniak A et al (2004) Proteolytic enzymes activities in patients after myocardial infarction correlate with serum concentration of TGF-beta. Inflammation 28:279–284CrossRefGoogle Scholar
  21. 21.
    Ellmers LJ, Scott NJ, Medicherla S et al (2008) Transforming growth factor-beta blockade down-regulates the renin-angiotensin system and modifies cardiac remodeling after myocardial infarction. Endocrinology 149:5828–5834PubMedCrossRefGoogle Scholar
  22. 22.
    Behfar A, Zingman LV, Hodgson DM et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566PubMedCrossRefGoogle Scholar
  23. 23.
    Bergmann O, Bhardwaj RD, Bernard S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102PubMedCrossRefGoogle Scholar
  24. 24.
    Hsieh PC, Segers VF, Davis ME et al (2007) Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med 13:970–974PubMedCrossRefGoogle Scholar
  25. 25.
    Leone AM, Rutella S, Bonanno G et al (2005) Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. Eur Heart J 26:1196–1204PubMedCrossRefGoogle Scholar
  26. 26.
    Leone AM, Rutella S, Bonanno G et al (2006) Endogenous G-CSF and CD34+ cell mobilization after acute myocardial infarction. Int J Cardiol 111:202–208PubMedCrossRefGoogle Scholar
  27. 27.
    Wojakowski W, Tendera M, Kucia M et al (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53:1–9PubMedCrossRefGoogle Scholar
  28. 28.
    Wojakowski W, Tendera M, Zebzda A et al (2006) Mobilization of CD34(+), CD117(+), CXCR4(+), c-met(+) stem cells is correlated with left ventricular ejection fraction and plasma NT-proBNP levels in patients with acute myocardial infarction. Eur Heart J 27:283–289PubMedCrossRefGoogle Scholar
  29. 29.
    Cesselli D, Beltrami AP, Rigo S et al (2009) Multipotent progenitor cells are present in human peripheral blood. Circ Res 104:1225–1234PubMedCrossRefGoogle Scholar
  30. 30.
    Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942PubMedCrossRefGoogle Scholar
  31. 31.
    Hierlihy AM, Seale P, Lobe CG et al (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243PubMedCrossRefGoogle Scholar
  32. 32.
    Martin CM, Meeson AP, Robertson SM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275PubMedCrossRefGoogle Scholar
  33. 33.
    Pfister O, Mouquet F, Jain M et al (2005) CD31– but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61PubMedCrossRefGoogle Scholar
  34. 34.
    Mouquet F, Pfister O, Jain M et al (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97:1090–1092PubMedCrossRefGoogle Scholar
  35. 35.
    Tallini YN, Greene KS, Craven M et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci USA 106:1808–1813PubMedCrossRefGoogle Scholar
  36. 36.
    Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921PubMedCrossRefGoogle Scholar
  37. 37.
    Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653PubMedCrossRefGoogle Scholar
  38. 38.
    Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165PubMedCrossRefGoogle Scholar
  39. 39.
    Cai CL, Liang X, Shi Y et al (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889PubMedCrossRefGoogle Scholar
  40. 40.
    Lin L, Cui L, Zhou W et al (2007) Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA 104:9313–9318PubMedCrossRefGoogle Scholar
  41. 41.
    Sun J, Li SH, Liu SM et al (2009) Improvement in cardiac function after bone marrow cell thearpy is associated with an increase in myocardial inflammation. Am J Physiol Heart Circ Physiol 296:H43–H50PubMedCrossRefGoogle Scholar
  42. 42.
    Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850PubMedCrossRefGoogle Scholar
  43. 43.
    Tzahor E, Lassar AB (2001) Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 15:255–260PubMedCrossRefGoogle Scholar
  44. 44.
    Nakamura T, Sano M, Songyang Z et al (2003) A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci USA 100:5834–5839PubMedCrossRefGoogle Scholar
  45. 45.
    Liu Y, Asakura M, Inoue H et al (2007) Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc Natl Acad Sci USA 104:3859–3864PubMedCrossRefGoogle Scholar
  46. 46.
    Korswagen HC (2006) Regulation of the Wnt/beta-catenin pathway by redox signaling. Dev Cell 10:687–688PubMedCrossRefGoogle Scholar
  47. 47.
    Funato Y, Michiue T, Asashima M et al (2006) The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through dishevelled. Nat Cell Biol 8:501–508PubMedCrossRefGoogle Scholar
  48. 48.
    Shin SY, Kim CG, Jho EH et al (2004) Hydrogen peroxide negatively modulates Wnt signaling through downregulation of beta-catenin. Cancer Lett 212:225–231PubMedCrossRefGoogle Scholar
  49. 49.
    Tirosh-Finkel L, Elhanany H, Rinon A et al (2006) Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract. Development 133:1943–1953PubMedCrossRefGoogle Scholar
  50. 50.
    Liu W, Selever J, Wang D et al (2004) Bmp4 signaling is required for outflow-tract septation and branchial-arch artery remodeling. Proc Natl Acad Sci USA 101:4489–4494PubMedCrossRefGoogle Scholar
  51. 51.
    Ma L, Lu MF, Schwartz RJ et al (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611PubMedCrossRefGoogle Scholar
  52. 52.
    Csiszar A, Ahmad M, Smith KE et al (2006) Bone morphogenetic protein-2 induces proinflammatory endothelial phenotype. Am J Pathol 168:629–638PubMedCrossRefGoogle Scholar
  53. 53.
    Csiszar A, Labinskyy N, Jo H et al (2008) Differential proinflammatory and prooxidant effects of bone morphogenetic protein-4 in coronary and pulmonary arterial endothelial cells. Am J Physiol Heart Circ Physiol 295:H569–H577PubMedCrossRefGoogle Scholar
  54. 54.
    Sorescu GP, Song H, Tressel SL et al (2004) Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a Nox-1-based NADPH oxidase. Circ Res 95:773–779PubMedCrossRefGoogle Scholar
  55. 55.
    Ishizuya-Oka A, Hasebe T (2008) Sonic hedgehog and bone morphogenetic protein-4 signaling pathway involved in epithelial cell renewal along the radial axis of the intestine. Digestion 77(Suppl 1):42–47PubMedCrossRefGoogle Scholar
  56. 56.
    Detillieux KA, Sheikh F, Kardami E et al (2003) Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovasc Res 57:8–19PubMedCrossRefGoogle Scholar
  57. 57.
    Wojakowski W, Maslankiewicz K, Ochala A et al (2004) The pro- and anti-inflammatory markers in patients with acute myocardial infarction and chronic stable angina. Int J Mol Med 14:317–322PubMedGoogle Scholar
  58. 58.
    Zymek P, Bujak M, Chatila K et al (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323PubMedCrossRefGoogle Scholar
  59. 59.
    Lambert JM, Lopez EF, Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147–158PubMedCrossRefGoogle Scholar
  60. 60.
    Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047PubMedCrossRefGoogle Scholar
  61. 61.
    Lahteenvuo JE, Lahteenvuo MT, Kivela A et al (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119:845–856PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang J, Ding L, Zhao Y et al (2009) Collagen-targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 119:1776–1784PubMedCrossRefGoogle Scholar
  63. 63.
    Harada K, Grossman W, Friedman M et al (1994) Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 94:623–630PubMedCrossRefGoogle Scholar
  64. 64.
    Hsieh PC, MacGillivray C, Gannon J et al (2006) Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation 114:637–644PubMedCrossRefGoogle Scholar
  65. 65.
    Hsieh PC, Davis ME, Gannon J et al (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116:237–248PubMedCrossRefGoogle Scholar
  66. 66.
    House SL, Bolte C, Zhou M et al (2003) Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation 108:3140–3148PubMedCrossRefGoogle Scholar
  67. 67.
    Markel TA, Wang Y, Herrmann JL et al (2008) VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am J Physiol Heart Circ Physiol 295:H2308–H2314PubMedCrossRefGoogle Scholar
  68. 68.
    Wang Y, Crisostomo PR, Wang M et al (2008) TGF-alpha increases human mesenchymal stem cell-secreted VEGF by MEK- and PI3-K- but not JNK- or ERK-dependent mechanisms. Am J Physiol Regul Integr Comp Physiol 295:R1115–R1123PubMedCrossRefGoogle Scholar
  69. 69.
    Sen CK, Khanna S, Babior BM et al (2002) Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem 277:33284–33290PubMedCrossRefGoogle Scholar
  70. 70.
    Eyries M, Collins T, Khachigian LM (2004) Modulation of growth factor gene expression in vascular cells by oxidative stress. Endothelium 11:133–139PubMedCrossRefGoogle Scholar
  71. 71.
    Iwai-Kanai E, Hasegawa K, Fujita M et al (2002) Basic fibroblast growth factor protects cardiac myocytes from iNOS-mediated apoptosis. J Cell Physiol 190:54–62PubMedCrossRefGoogle Scholar
  72. 72.
    Li J, Brown LF, Hibberd MG et al (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270:H1803–H1811PubMedGoogle Scholar
  73. 73.
    Black SM, DeVol JM, Wedgwood S (2008) Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. Am J Physiol Cell Physiol 294:C345–C354PubMedCrossRefGoogle Scholar
  74. 74.
    Gonzalez-Pacheco FR, Deudero JJ, Castellanos MC et al (2006) Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol 291:H1395–H1401PubMedCrossRefGoogle Scholar
  75. 75.
    Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by H2O2 in rat heart endothelial cells. Free Radic Biol Med 25:891–897PubMedCrossRefGoogle Scholar
  76. 76.
    Luczak K, Balcerczyk A, Soszynski M et al (2004) Low concentration of oxidant and nitric oxide donors stimulate proliferation of human endothelial cells in vitro. Cell Biol Int 28:483–486PubMedCrossRefGoogle Scholar
  77. 77.
    Vepa S, Scribner WM, Parinandi NL et al (1999) Hydrogen peroxide stimulates tyrosine phosphorylation of focal adhesion kinase in vascular endothelial cells. Am J Physiol 277:L150–L158PubMedGoogle Scholar
  78. 78.
    Shono T, Ono M, Izumi H et al (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16:4231–4239PubMedGoogle Scholar
  79. 79.
    Thannickal VJ, Day RM, Klinz SG et al (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J 14:1741–1748PubMedCrossRefGoogle Scholar
  80. 80.
    Aicher A, Zeiher AM, Dimmeler S (2005) Mobilizing endothelial progenitor cells. Hypertension 45:321–325PubMedCrossRefGoogle Scholar
  81. 81.
    Kucia M, Jankowski K, Reca R et al (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245PubMedCrossRefGoogle Scholar
  82. 82.
    Heissig B, Hattori K, Dias S et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637PubMedCrossRefGoogle Scholar
  83. 83.
    Jin F, Zhai Q, Qiu L et al (2008) Degradation of BM SDF-1 by MMP-9: the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant 42:581–588PubMedCrossRefGoogle Scholar
  84. 84.
    Lee RL, Westendorf J, Gold MR (2007) Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and Akt by key receptors on B-lymphocytes: CD40, the B cell antigen receptor, and CXCR4. J Cell Commun Signal 1:33–43PubMedCrossRefGoogle Scholar
  85. 85.
    Schober A (2008) Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol 28:1950–1959PubMedCrossRefGoogle Scholar
  86. 86.
    Pillarisetti K, Gupta SK (2001) Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation 25:293–300PubMedCrossRefGoogle Scholar
  87. 87.
    Yamani MH, Ratliff NB, Cook DJ et al (2005) Peritransplant ischemic injury is associated with up-regulation of stromal cell-derived factor-1. J Am Coll Cardiol 46:1029–1035PubMedCrossRefGoogle Scholar
  88. 88.
    Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864PubMedCrossRefGoogle Scholar
  89. 89.
    Stellos K, Bigalke B, Langer H et al (2009) Expression of stromal-cell-derived factor-1 on circulating platelets is increased in patients with acute coronary syndrome and correlates with the number of CD34+ progenitor cells. Eur Heart J 30:584–593PubMedCrossRefGoogle Scholar
  90. 90.
    Li N, Lu X, Zhao X et al (2009) Endothelial nitric oxide synthase promotes bone marrow stromal cell migration to the ischemic myocardium via upregulation of stromal cell-derived factor-1alpha. Stem Cells 27:961–970PubMedCrossRefGoogle Scholar
  91. 91.
    Kaminski A, Ma N, Donndorf P et al (2008) Endothelial NOS is required for SDF-1alpha/CXCR4-mediated peripheral endothelial adhesion of c-kit+ bone marrow stem cells. Lab Invest 88:58–69PubMedCrossRefGoogle Scholar
  92. 92.
    Milovanova TN, Bhopale VM, Sorokina EM et al (2008) Lactate stimulates vasculogenic stem cells via the thioredoxin system and engages an autocrine activation loop involving hypoxia-inducible factor 1. Mol Cell Biol 28:6248–6261PubMedCrossRefGoogle Scholar
  93. 93.
    Mays RW, van’t Hof W, Ting AE et al (2007) Development of adult pluripotent stem cell therapies for ischemic injury and disease. Expert Opin Biol Ther 7:173–184PubMedCrossRefGoogle Scholar
  94. 94.
    Zhu QS, Xia L, Mills GB et al (2006) G-CSF induced reactive oxygen species involves Lyn-PI3-kinase-Akt and contributes to myeloid cell growth. Blood 107:1847–1856PubMedCrossRefGoogle Scholar
  95. 95.
    Dang PM, Stensballe A, Boussetta T et al (2006) A specific p47phox-serine phosphorylated by convergent MAPKs mediates neutrophil NADPH oxidase priming at inflammatory sites. J Clin Invest 116:2033–2043PubMedCrossRefGoogle Scholar
  96. 96.
    Sattler M, Winkler T, Verma S et al (1999) Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood 93:2928–2935PubMedGoogle Scholar
  97. 97.
    Pyatt DW, Stillman WS, Irons RD (1996) Reactive oxygen species mediate stem cell factor synergy with granulocyte/macrophage colony-stimulating factor in a subpopulation of primitive murine hematopoietic progenitor cells. Mol Pharmacol 49:1097–1103PubMedGoogle Scholar
  98. 98.
    Cella G, Marchetti M, Vignoli A et al (2006) Blood oxidative status and selectins plasma levels in healthy donors receiving granulocyte-colony stimulating factor. Leukemia 20:1430–1434PubMedCrossRefGoogle Scholar
  99. 99.
    Milovanova TN, Bhopale VM, Sorokina EM et al (2009) Hyperbaric oxygen stimulates vasculogenic stem cell growth and differentiation in vivo. J Appl Physiol 106:711–728PubMedCrossRefGoogle Scholar
  100. 100.
    Yun J, Rocic P, Pung YF et al (2009) Redox-Dependent Mechanisms in Coronary Collateral Growth: The Redox Window Hypothesis. Antioxid Redox Signal, in pressGoogle Scholar
  101. 101.
    Yoder MC, Ingram DA (2009) Endothelial progenitor cell: ongoing controversy for defining these cells and their role in neoangiogenesis in the murine system. Curr Opin Hematol 16:269–273PubMedCrossRefGoogle Scholar
  102. 102.
    Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  103. 103.
    Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRefGoogle Scholar
  104. 104.
    Huang L, Hou D, Thompson MA et al (2007) Acute myocardial infarction in swine rapidly and selectively releases highly proliferative endothelial colony forming cells (ECFCs) into circulation. Cell Transplant 16:887–897PubMedCrossRefGoogle Scholar
  105. 105.
    Prater DN, Case J, Ingram DA et al (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149PubMedCrossRefGoogle Scholar
  106. 106.
    Frisch BJ, Porter RL, Calvi LM (2008) Hematopoietic niche and bone meet. Curr Opin Support Palliat Care 2:211–217PubMedCrossRefGoogle Scholar
  107. 107.
    Besler C, Doerries C, Giannotti G et al (2008) Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther 6:1071–1082PubMedCrossRefGoogle Scholar
  108. 108.
    Aicher A, Kollet O, Heeschen C et al (2008) The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 103:796–803PubMedCrossRefGoogle Scholar
  109. 109.
    Pitchford SC, Furze RC, Jones CP et al (2009) Differential mobilization of subsets of progenitor cells from the bone marrow. Cell Stem Cell 4:62–72PubMedCrossRefGoogle Scholar
  110. 110.
    Hiasa K, Ishibashi M, Ohtani K et al (2004) Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation 109:2454–2461PubMedCrossRefGoogle Scholar
  111. 111.
    Li X, Tjwa M, Moons L et al (2005) Revascularization of ischemic tissues by PDGF-CC via effects on endothelial cells and their progenitors. J Clin Invest 115:118–127PubMedGoogle Scholar
  112. 112.
    Kermani P, Rafii D, Jin DK et al (2005) Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest 115:653–663PubMedGoogle Scholar
  113. 113.
    Li B, Sharpe EE, Maupin AB et al (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497PubMedCrossRefGoogle Scholar
  114. 114.
    Iwakura A, Luedemann C, Shastry S et al (2003) Estrogen-mediated, endothelial nitric oxide synthase-dependent mobilization of bone marrow-derived endothelial progenitor cells contributes to reendothelialization after arterial injury. Circulation 108:3115–3121PubMedCrossRefGoogle Scholar
  115. 115.
    Heeschen C, Aicher A, Lehmann R et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346PubMedCrossRefGoogle Scholar
  116. 116.
    Aicher A, Heeschen C, Mildner-Rihm C et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376PubMedCrossRefGoogle Scholar
  117. 117.
    Becchi C, Pillozzi S, Fabbri LP et al (2008) The increase of endothelial progenitor cells in the peripheral blood: a new parameter for detecting onset and severity of sepsis. Int J Immunopathol Pharmacol 21:697–705PubMedGoogle Scholar
  118. 118.
    Lee DY, Cho TJ, Kim JA et al (2008) Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 42:932–941PubMedCrossRefGoogle Scholar
  119. 119.
    Massa M, Rosti V, Ferrario M et al (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105:199–206PubMedCrossRefGoogle Scholar
  120. 120.
    Laufs U, Werner N, Link A et al (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109:220–226PubMedCrossRefGoogle Scholar
  121. 121.
    Laufs U, Urhausen A, Werner N et al (2005) Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil 12:407–414PubMedCrossRefGoogle Scholar
  122. 122.
    Steiner S, Niessner A, Ziegler S et al (2005) Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis 181:305–310PubMedCrossRefGoogle Scholar
  123. 123.
    Paul JD, Powell TM, Thompson M et al (2007) Endothelial progenitor cell mobilization and increased intravascular nitric oxide in patients undergoing cardiac rehabilitation. J Cardiopulm Rehabil Prev 27:65–73PubMedGoogle Scholar
  124. 124.
    Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276PubMedCrossRefGoogle Scholar
  125. 125.
    Muller P, Kazakov A, Semenov A et al (2008) Pressure-induced cardiac overload induces upregulation of endothelial and myocardial progenitor cells. Cardiovasc Res 77:151–159PubMedCrossRefGoogle Scholar
  126. 126.
    Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 106:8665–8670PubMedCrossRefGoogle Scholar
  127. 127.
    Tousoulis D, Andreou I, Antoniades C et al (2008) Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis 201:236–247PubMedCrossRefGoogle Scholar
  128. 128.
    Andreou I, Tousoulis D, Tentolouris C et al (2006) Potential role of endothelial progenitor cells in the pathophysiology of heart failure: clinical implications and perspectives. Atherosclerosis 189:247–254PubMedCrossRefGoogle Scholar
  129. 129.
    Urao N, Inomata H, Razvi M et al (2008) Role of Nox-2-based NADPH oxidase in bone marrow and progenitor cell function involved in neovascularization induced by hindlimb ischemia. Circ Res 103:212–220PubMedCrossRefGoogle Scholar
  130. 130.
    Thum T, Fraccarollo D, Galuppo P et al (2006) Bone marrow molecular alterations after myocardial infarction: impact on endothelial progenitor cells. Cardiovasc Res 70:50–60PubMedCrossRefGoogle Scholar
  131. 131.
    Salguero G, Akin E, Templin C et al (2008) Renovascular hypertension by two-kidney one-clip enhances endothelial progenitor cell mobilization in a p47phox-dependent manner. J Hypertens 26:257–268PubMedCrossRefGoogle Scholar
  132. 132.
    Wang JY, Lee YT, Chang PF et al (2009) Hemin promotes proliferation and differentiation of endothelial progenitor cells via activation of AKT and ERK. J Cell Physiol 219:617–625PubMedCrossRefGoogle Scholar
  133. 133.
    Yao EH, Yu Y, Fukuda N (2006) Oxidative stress on progenitor and stem cells in cardiovascular diseases. Curr Pharm Biotechnol 7:101–108PubMedCrossRefGoogle Scholar
  134. 134.
    Ingram DA, Krier TR, Mead LE et al (2007) Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells 25:297–304PubMedCrossRefGoogle Scholar
  135. 135.
    Yao EH, Fukuda N, Matsumoto T et al (2008) Effects of the antioxidative beta-blocker celiprolol on endothelial progenitor cells in hypertensive rats. Am J Hypertens 21:1062–1068PubMedCrossRefGoogle Scholar
  136. 136.
    Yao EH, Fukuda N, Matsumoto T et al (2007) Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res 30:1119–1128PubMedCrossRefGoogle Scholar
  137. 137.
    Thum T, Tsikas D, Stein S et al (2005) Suppression of endothelial progenitor cells in human coronary artery disease by the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine. J Am Coll Cardiol 46:1693–1701PubMedCrossRefGoogle Scholar
  138. 138.
    Stoll LL, McCormick ML, Denning GM et al (2005) Antioxidant effects of statins. Timely Top Med Cardiovasc Dis 9:E1PubMedGoogle Scholar
  139. 139.
    Williams HC, Griendling KK (2007) NADPH oxidase inhibitors: new antihypertensive agents? J Cardiovasc Pharmacol 50:9–16PubMedCrossRefGoogle Scholar
  140. 140.
    Wang N, Xie K, Huo S et al (2007) Suppressing phosphatidylcholine-specific phospholipase C and elevating ROS level, NADPH oxidase activity and Rb level induced neuronal differentiation in mesenchymal stem cells. J Cell Biochem 100:1548–1557PubMedCrossRefGoogle Scholar
  141. 141.
    Wang FS, Yang KD, Wang CJ et al (2004) Shockwave stimulates oxygen radical-mediated osteogenesis of the mesenchymal cells from human umbilical cord blood. J Bone Miner Res 19:973–982PubMedCrossRefGoogle Scholar
  142. 142.
    Piccoli C, D’Aprile A, Ripoli M et al (2007) Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species. Biochem Biophys Res Commun 353:965–972PubMedCrossRefGoogle Scholar
  143. 143.
    Piccoli C, D’Aprile A, Scrima R et al (2007) Role of reactive oxygen species as signal molecules in the pre-commitment phase of adult stem cells. Ital J Biochem 56:295–301PubMedGoogle Scholar
  144. 144.
    Sato K, Ozaki K, Oh I et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109:228–234PubMedCrossRefGoogle Scholar
  145. 145.
    Klinz FJ, Schmidt A, Schinkothe T et al (2005) Phospho-eNOS Ser-114 in human mesenchymal stem cells: constitutive phosphorylation, nuclear localization and upregulation during mitosis. Eur J Cell Biol 84:809–818PubMedCrossRefGoogle Scholar
  146. 146.
    North TE, Goessling W, Peeters M et al (2009) Hematopoietic stem cell development is dependent on blood flow. Cell 137:736–748PubMedCrossRefGoogle Scholar
  147. 147.
    Loomans CJ, Wan H, de Crom R et al (2006) Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial NO synthase expression. Arterioscler Thromb Vasc Biol 26:1760–1767PubMedCrossRefGoogle Scholar
  148. 148.
    Yin T, Ma X, Zhao L et al (2008) Angiotensin II promotes NO production, inhibits apoptosis and enhances adhesion potential of bone marrow-derived endothelial progenitor cells. Cell Res 18:792–799PubMedCrossRefGoogle Scholar
  149. 149.
    Rebelatto CK, Aguiar AM, Senegaglia AC et al (2009) Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents. Biochem Biophys Res Commun 378:456–461PubMedCrossRefGoogle Scholar
  150. 150.
    Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104PubMedCrossRefGoogle Scholar
  151. 151.
    Saretzki G, Armstrong L, Leake A et al (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22:962–971PubMedCrossRefGoogle Scholar
  152. 152.
    Buggisch M, Ateghang B, Ruhe C et al (2007) Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J Cell Sci 120:885–894PubMedCrossRefGoogle Scholar
  153. 153.
    Hannig M, Figulla HR, Sauer H et al (2010) Control of leukocyte differentiation from embryonic stem cells upon vasculogenesis and confrontation with tumour tissue. J Cell Mol Med 14:303–312CrossRefGoogle Scholar
  154. 154.
    Sauer H, Rahimi G, Hescheler J et al (1999) Effects of electrical fields on cardiomyocyte differentiation of embryonic stem cells. J Cell Biochem 75:710–723PubMedCrossRefGoogle Scholar
  155. 155.
    Sauer H, Rahimi G, Hescheler J et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223PubMedCrossRefGoogle Scholar
  156. 156.
    Sauer H, Bekhite MM, Hescheler J et al (2005) Redox control of angiogenic factors and CD31-positive vessel-like structures in mouse embryonic stem cells after direct current electrical field stimulation. Exp Cell Res 304:380–390PubMedCrossRefGoogle Scholar
  157. 157.
    Schmelter M, Ateghang B, Helmig S et al (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182–1184PubMedCrossRefGoogle Scholar
  158. 158.
    Sharifpanah F, Wartenberg M, Hannig M et al (2008) Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells 26:64–71PubMedCrossRefGoogle Scholar
  159. 159.
    Li J, Stouffs M, Serrander L et al (2006) The NADPH oxidase Nox-4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988PubMedCrossRefGoogle Scholar
  160. 160.
    Calabro P, Limongelli G, Riegler L et al (2009) Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J Mol Cell Cardiol 46:142–148PubMedCrossRefGoogle Scholar
  161. 161.
    Freed DH, Moon MC, Borowiec AM et al (2003) Cardiotrophin-1: expression in experimental myocardial infarction and potential role in post-MI wound healing. Mol Cell Biochem 254:247–256PubMedCrossRefGoogle Scholar
  162. 162.
    Lopez B, Gonzalez A, Querejeta R et al (2009) Association of plasma cardiotrophin-1 with stage C heart failure in hypertensive patients: potential diagnostic implications. J Hypertens 27:418–424PubMedCrossRefGoogle Scholar
  163. 163.
    Mohri T, Fujio Y, Obana M et al (2009) Signals through glycoprotein 130 regulate the endothelial differentiation of cardiac stem cells. Arterioscler Thromb Vasc Biol 29:754–760PubMedCrossRefGoogle Scholar
  164. 164.
    Xinyun C, Zhi Z, Bin Z et al (2009) Effects of cardiotrophin-1 on differentiation and maturation of rat bone marrow mesenchymal stem cells induced with 5-azacytidine in vitro. Int J Cardiol, in pressGoogle Scholar
  165. 165.
    Saretzki G, Walter T, Atkinson S et al (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cell. Stem Cells 26:455–464PubMedCrossRefGoogle Scholar
  166. 166.
    Mujoo K, Krumenacker JS, Wada Y et al (2006) Differential expression of nitric oxide signaling components in undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev 15:779–787PubMedCrossRefGoogle Scholar
  167. 167.
    Mujoo K, Sharin VG, Bryan NS et al (2008) Role of nitric oxide signaling components in differentiation of embryonic stem cells into myocardial cells. Proc Natl Acad Sci USA 105:18924–18929PubMedCrossRefGoogle Scholar
  168. 168.
    Kanno S, Kim PK, Sallam K et al (2004) Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc Natl Acad Sci USA 101:12277–12281PubMedCrossRefGoogle Scholar
  169. 169.
    Bloch W, Fleischmann BK, Lorke DE et al (1999) Nitric oxide synthase expression and role during cardiomyogenesis. Cardiovasc Res 43:675–684PubMedCrossRefGoogle Scholar
  170. 170.
    Gassanov N, Jankowski M, Danalache B et al (2007) Arginine vasopressin-mediated cardiac differentiation: insights into the role of its receptors and nitric oxide signaling. J Biol Chem 282:11255–11265PubMedCrossRefGoogle Scholar
  171. 171.
    Linnane AW, Kios M, Vitetta L (2007) The essential requirement for superoxide radical and nitric oxide formation for normal physiological function and healthy aging. Mitochondrion 7:1–5PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysiologyJustus Liebig University GiessenGiessenGermany
  2. 2.Cardiology Division, Department of Internal Medicine IFriedrich Schiller University JenaJenaGermany

Personalised recommendations