Mechanisms of Redox Signaling in Cardiovascular Disease

  • Rebecca L. Charles
  • Joseph R. Burgoyne
  • Philip Eaton
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Arrays of chemical oxidants are produced in healthy cells, where they function as important signaling molecules that are crucial in homeostatic regulation and cellular adaptation. The molecular basis of “redox signaling” is a series of oxido-reductive chemical reactions in which oxidants or reductants post-translationally alter the structure of proteins. These modifications equate to signal sensing events, in which an alteration in protein redox status may couple to a change in its function. This coupling of sensing to function is a true transduction event, allowing conversion of the cellular redox state into altered enzymatic activities. Here we review redox signaling in the cardiovascular system, considering the variety of post-translational oxidative modifications that explain redox sensing and signal transduction by proteins at the molecular level.


Cardiovascular disease Redox signaling Oxidant stress Cysteine Thiol Post-translational oxidative modification 


  1. 1.
    Graham I, Atar D, Borch-Johnsen K, Boysen G et al (2007) European guidelines on cardiovascular disease prevention in clinical practice: full text. Fourth Joint Task Force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts). Eur J Cardiovasc Prev Rehabil 14(Suppl 2):S1–S113CrossRefPubMedGoogle Scholar
  2. 2.
    Stephens JW, Khanolkar MP, Bain SC (2008) The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease. Atherosclerosis 202(2):321–329CrossRefPubMedGoogle Scholar
  3. 3.
    Kostis JB, Davis BR, Cutler J, Grimm RH Jr et al (1997) Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. J Am Med Assoc 278:212–216CrossRefGoogle Scholar
  4. 4.
    Barnoya J, Glantz SA (2005) Cardiovascular effects of secondhand smoke: nearly as large as smoking. Circulation 111:2684–2698CrossRefPubMedGoogle Scholar
  5. 5.
    Le NA (2006) Hyperlipidaemia and cardiovascular disease: oxidative damage and atherosclerosis. Curr Opin Lipidol 17:92–94CrossRefPubMedGoogle Scholar
  6. 6.
    Schulz E, Jansen T, Wenzel P, Daiber A, Munzel T (2008) Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal 10:1115–1126CrossRefPubMedGoogle Scholar
  7. 7.
    Vanden Hoek TL, Li C, Shao Z, Schumacker PT, Becker LB (1997) Significant levels of oxidants are generated by isolated cardiomyocytes during ischemia prior to reperfusion. J Mol Cell Cardiol 29:2571–2583CrossRefPubMedGoogle Scholar
  8. 8.
    Hearse DJ (1990) Ischemia, reperfusion, and the determinants of tissue injury. Cardiovasc Drugs Ther 4(Suppl 4):767–776CrossRefPubMedGoogle Scholar
  9. 9.
    Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93:903–907CrossRefPubMedGoogle Scholar
  10. 10.
    Hearse DJ (1998) Myocardial protection during ischemia and reperfusion. Mol Cell Biochem 186:177–184CrossRefPubMedGoogle Scholar
  11. 11.
    Hausenloy DJ, Yellon DM (2007) Preconditioning and postconditioning: united at reperfusion. Pharmacol Ther 116:173–191CrossRefPubMedGoogle Scholar
  12. 12.
    Venardos KM, Perkins A, Headrick J, Kaye DM (2007) Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem 14:1539–1549CrossRefPubMedGoogle Scholar
  13. 13.
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916CrossRefPubMedGoogle Scholar
  14. 14.
    Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33Google Scholar
  15. 15.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P, Vitamin E (2000) supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160CrossRefPubMedGoogle Scholar
  16. 16.
    Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716CrossRefPubMedGoogle Scholar
  17. 17.
    Ido Y, Kilo C, Williamson JR (1997) Cytosolic NADH/NAD+, free radicals, and vascular dysfunction in early diabetes mellitus. Diabetologia 40(Suppl 2):S115–S117CrossRefPubMedGoogle Scholar
  18. 18.
    Kannurpatti SS, Joshi NB (1999) Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia. Metab Brain Dis 14:33–43CrossRefPubMedGoogle Scholar
  19. 19.
    Rajasekaran NS, Connell P, Christians ES, Yan LJ et al (2007) Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice. Cell 130:427–439CrossRefPubMedGoogle Scholar
  20. 20.
    Tanaka M, Fujiwara H, Yamasaki K, Sasayama S (1994) Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size limitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res 28:980–986CrossRefPubMedGoogle Scholar
  21. 21.
    Sies H, Dafre AL, Ji Y, Akerboom TP (1998) Protein S-thiolation and redox regulation of membrane-bound glutathione transferase. Chem Biol Interact 111–112:177–185CrossRefPubMedGoogle Scholar
  22. 22.
    Robin E, Guzy RD, Loor G, Iwase H et al (2007) Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J Biol Chem 282:19133–19143CrossRefPubMedGoogle Scholar
  23. 23.
    Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186CrossRefPubMedGoogle Scholar
  24. 24.
    Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67CrossRefPubMedGoogle Scholar
  25. 25.
    Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS, Protein S- (2005) Nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166CrossRefPubMedGoogle Scholar
  26. 26.
    Akhter S, Vignini A, Wen Z, English A et al (2002) Evidence for S-nitrosothiol-dependent changes in fibrinogen that do not involve transnitrosation or thiolation. Proc Natl Acad Sci U S A 99:9172–9177CrossRefPubMedGoogle Scholar
  27. 27.
    Pagliaro P, Mancardi D, Rastaldo R, Penna C et al (2003) Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med 34:33–43CrossRefPubMedGoogle Scholar
  28. 28.
    O’Donnell VB, Eiserich JP, Bloodsworth A, Chumley PH et al (1999) Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods Enzymol 301:454–470CrossRefPubMedGoogle Scholar
  29. 29.
    Gonzalez FM, Shiva S, Vincent PS, Ringwood LA et al (2008) Nitrite anion provides potent cytoprotective and antiapoptotic effects as adjunctive therapy to reperfusion for acute myocardial infarction. Circulation 117:2986–2994CrossRefPubMedGoogle Scholar
  30. 30.
    Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J et al (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A 105:10256–10261CrossRefPubMedGoogle Scholar
  31. 31.
    Burley DS, Ferdinandy P, Baxter GF, Cyclic GMP (2007) Protein kinase-G in myocardial ischaemia-reperfusion: opportunities and obstacles for survival signaling. Br J Pharmacol 152:855–869CrossRefPubMedGoogle Scholar
  32. 32.
    Webb AJ, Patel N, Loukogeorgakis S, Okorie M et al (2008) Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension 51:784–790CrossRefPubMedGoogle Scholar
  33. 33.
    Li JM, Shah AM (2003) Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit. J Biol Chem 278:12094–12100CrossRefPubMedGoogle Scholar
  34. 34.
    Hashimoto M, Sibata T, Wasada H, Toyokuni S, Uchida K (2003) Structural basis of protein-bound endogenous aldehydes. Chemical and immunochemical characterizations of configurational isomers of a 4-hydroxy-2-nonenal-histidine adduct. J Biol Chem 278:5044–5051CrossRefPubMedGoogle Scholar
  35. 35.
    Mallis RJ, Buss JE, Thomas JA (2001) Oxidative modification of H-ras: S-thiolation and S-nitrosylation of reactive cysteines. Biochem J 355:145–153CrossRefPubMedGoogle Scholar
  36. 36.
    Barrett WC, DeGnore JP, Keng YF, Zhang ZY et al (1999) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274:34543–34546CrossRefPubMedGoogle Scholar
  37. 37.
    Barrett WC, DeGnore JP, Konig S, Fales HM et al (1999) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–6705CrossRefPubMedGoogle Scholar
  38. 38.
    Humphries KM, Juliano C, Taylor SS (2002) Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem 277:43505–43511CrossRefPubMedGoogle Scholar
  39. 39.
    Sadidi M, Geddes TJ, Kuhn DM (2005) S-thiolation of tyrosine hydroxylase by reactive nitrogen species in the presence of cysteine or glutathione. Antioxid Redox Signal 7:863–869CrossRefPubMedGoogle Scholar
  40. 40.
    Davis DA, Dorsey K, Wingfield PT, Stahl SJ et al (1996) Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 35:2482–2488CrossRefPubMedGoogle Scholar
  41. 41.
    Adachi T, Weisbrod RM, Pimentel DR, Ying J et al (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207CrossRefPubMedGoogle Scholar
  42. 42.
    Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984CrossRefPubMedGoogle Scholar
  43. 43.
    Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600CrossRefPubMedGoogle Scholar
  44. 44.
    Salmeen A, Andersen JN, Myers MP, Meng TC et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773CrossRefPubMedGoogle Scholar
  45. 45.
    Groen A, Lemeer S, van der Wijk T, Overvoorde J et al (2005) Differential oxidation of protein-tyrosine phosphatases. J Biol Chem 280:10298–10304CrossRefPubMedGoogle Scholar
  46. 46.
    Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683CrossRefPubMedGoogle Scholar
  47. 47.
    Hogg N, Broniowska KA, Novalija J, Kettenhofen NJ, Novalija E (2007) Role of S-nitrosothiol transport in the cardioprotective effects of S-nitrosocysteine in rat hearts. Free Radic Biol Med 43:1086–1094CrossRefPubMedGoogle Scholar
  48. 48.
    Greco TM, Hodara R, Parastatidis I, Heijnen HF et al (2006) Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci USA 103:7420–7425CrossRefPubMedGoogle Scholar
  49. 49.
    Gonzalez DR, Beigi F, Treuer AV, Hare JM (2007) Deficient ryanodine receptor S-nitrosylation increases sarcoplasmic reticulum calcium leak and arrhythmogenesis in cardiomyocytes. Proc Natl Acad Sci USA 104:20612–20617CrossRefPubMedGoogle Scholar
  50. 50.
    Gonzalez DR, Fernandez IC, Ordenes PP, Treuer AV et al (2008) Differential role of S-nitrosylation and the NO-cGMP-PKG pathway in cardiac contractility. Nitric Oxide 18:157–167CrossRefPubMedGoogle Scholar
  51. 51.
    Sawa T, Zaki MH, Okamoto T, Akuta T et al (2007) Protein S-guanylation by the biological signal 8-nitroguanosine 3ʹ,5ʹ-cyclic monophosphate. Nat Chem Biol 3:727–735CrossRefPubMedGoogle Scholar
  52. 52.
    Sayed N, Baskaran P, Ma X, van den Akker F, Beuve A (2007) Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci USA 104:12312–12317CrossRefPubMedGoogle Scholar
  53. 53.
    Sayed N, Kim DD, Fioramonti X, Iwahashi T et al (2008) Nitroglycerin-induced S-nitrosylation and desensitization of soluble guanylyl cyclase contribute to nitrate tolerance. Circ Res 103:606–614CrossRefPubMedGoogle Scholar
  54. 54.
    Brennan JP, Wait R, Begum S, Bell JR et al (2004) Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem 279:41352–41360CrossRefPubMedGoogle Scholar
  55. 55.
    Linke K, Jakob U (2003) Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5:425–434CrossRefPubMedGoogle Scholar
  56. 56.
    Gitler C, Zarmi B, Kalef E (1997) General method to identify and enrich vicinal thiol proteins present in intact cells in the oxidized, disulfide state. Anal Biochem 252:48–55CrossRefPubMedGoogle Scholar
  57. 57.
    Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:307–326CrossRefPubMedGoogle Scholar
  58. 58.
    Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316CrossRefPubMedGoogle Scholar
  59. 59.
    Irie Y, Saeki M, Kamisaki Y, Martin E, Murad F (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 100:5634–5639CrossRefPubMedGoogle Scholar
  60. 60.
    Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054CrossRefPubMedGoogle Scholar
  61. 61.
    Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105CrossRefPubMedGoogle Scholar
  62. 62.
    Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11CrossRefPubMedGoogle Scholar
  63. 63.
    Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93:15036–15040CrossRefPubMedGoogle Scholar
  64. 64.
    Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Aspects Med 24:149–159CrossRefPubMedGoogle Scholar
  65. 65.
    Ceaser EK, Moellering DR, Shiva S, Ramachandran A et al (2004) Mechanisms of signal transduction mediated by oxidized lipids: the role of the electrophile-responsive proteome. Biochem Soc Trans 32:151–155CrossRefPubMedGoogle Scholar
  66. 66.
    Levonen AL, Landar A, Ramachandran A, Ceaser EK et al (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382CrossRefPubMedGoogle Scholar
  67. 67.
    Sanchez-Gomez FJ, Cernuda-Morollon E, Stamatakis K, Perez-Sala D (2004) Protein thiol modification by 15-deoxy-Delta12,14-prostaglandin J2 addition in mesangial cells: role in the inhibition of pro-inflammatory genes. Mol Pharmacol 66:1349–1358CrossRefPubMedGoogle Scholar
  68. 68.
    Yang G, Wu L, Jiang B, Yang W et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590CrossRefPubMedGoogle Scholar
  69. 69.
    Brennan JP, Miller JI, Fuller W, Wait R et al (2006) The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation. Mol Cell Proteomics 5:215–225PubMedGoogle Scholar
  70. 70.
    Schroder E, Brennan JP, Eaton P (2008) Cardiac peroxiredoxins undergo complex modifications during cardiac oxidant stress. Am J Physiol Heart Circ Physiol 295:H425–H433CrossRefPubMedGoogle Scholar
  71. 71.
    Soderling AS, Hultman L, Delbro D, Hojrup P, Caidahl K (2007) Reduction of the nitro group during sample preparation may cause underestimation of the nitration level in 3-nitrotyrosine immunoblotting. J Chromatogr B Analyt Technol Biomed Life Sci 851:277–286CrossRefPubMedGoogle Scholar
  72. 72.
    Charles RL, Schroder E, May G, Free P et al (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6:1473–1484CrossRefPubMedGoogle Scholar
  73. 73.
    Eaton P, Hearse DJ, Shattock MJ (2001) Lipid hydroperoxide modification of proteins during myocardial ischaemia. Cardiovasc Res 51:294–303CrossRefPubMedGoogle Scholar
  74. 74.
    Ellis HR, Poole LB (1997) Novel application of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole to identify cysteine sulfenic acid in the AhpC component of alkyl hydroperoxide reductase. Biochemistry 36:15013–15018CrossRefPubMedGoogle Scholar
  75. 75.
    Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347CrossRefPubMedGoogle Scholar
  76. 76.
    Poole LB, Zeng BB, Knaggs SA, Yakubu M, King SB (2005) Synthesis of chemical probes to map sulfenic acid modifications on proteins. Bioconjug Chem 16:1624–1628CrossRefPubMedGoogle Scholar
  77. 77.
    Saurin AT, Neubert H, Brennan JP, Eaton P (2004) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci USA 101:17982–17987CrossRefPubMedGoogle Scholar
  78. 78.
    Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001:L1CrossRefGoogle Scholar
  79. 79.
    Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins: TNF-alpha induces protein glutathiolation. Biochemistry 39:11121–11128CrossRefPubMedGoogle Scholar
  80. 80.
    Sommer A, Traut RR (1974) Diagonal polyacrylamide-dodecyl sulfate gel electrophoresis for the identification of ribosomal proteins crosslinked with methyl-4-mercaptobutyrimidate. Proc Natl Acad Sci USA 71:3946–3950CrossRefPubMedGoogle Scholar
  81. 81.
    Martinez-Ruiz A, Lamas S (2004) Detection and proteomic identification of S-nitrosylated proteins in endothelial cells. Arch Biochem Biophys 423:192–199CrossRefPubMedGoogle Scholar
  82. 82.
    Eaton P, Byers HL, Leeds N, Ward MA, Shattock MJ (2002) Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 277:9806–9811CrossRefPubMedGoogle Scholar
  83. 83.
    Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163CrossRefPubMedGoogle Scholar
  84. 84.
    Canton M, Neverova I, Menabo R, Van Eyk J, Di Lisa F (2004) Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts. Am J Physiol Heart Circ Physiol 286:H870–H877CrossRefPubMedGoogle Scholar
  85. 85.
    Reinartz M, Ding Z, Flogel U, Godecke A, Schrader J (2008) Nitrosative stress leads to protein glutathiolation, increased s-nitrosation, and up-regulation of peroxiredoxins in the heart. J Biol Chem 283:17440–17449CrossRefPubMedGoogle Scholar
  86. 86.
    Han B, Stevens JF, Maier CS (2007) Design, synthesis, and application of a hydrazide-functionalized isotope-coded affinity tag for the quantification of oxylipid-protein conjugates. Anal Chem 79:3342–3354CrossRefPubMedGoogle Scholar
  87. 87.
    Galeva NA, Esch SW, Williams TD, Markille LM, Squier TC (2005) Rapid method for quantifying the extent of methionine oxidation in intact calmodulin. J Am Soc Mass Spectrom 16:1470–1480CrossRefPubMedGoogle Scholar
  88. 88.
    Sethuraman M, McComb ME, Huang H, Huang S et al (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3:1228–1233CrossRefPubMedGoogle Scholar
  89. 89.
    Musatov A, Carroll CA, Liu YC, Henderson GI et al (2002) Identification of bovine heart cytochrome c oxidase subunits modified by the lipid peroxidation product 4-hydroxy-2-nonenal. Biochemistry 41:8212–8220CrossRefPubMedGoogle Scholar
  90. 90.
    Wolzt M, MacAllister RJ, Davis D, Feelisch M et al (1999) Biochemical characterization of S-nitrosohemoglobin. Mechanisms underlying synthesis, no release, and biological activity. J Biol Chem 274:28983–28990CrossRefPubMedGoogle Scholar
  91. 91.
    Rayner BS, Wu BJ, Raftery M, Stocker R, Witting PK, Human S- (2005) Nitroso oxymyoglobin is a store of vasoactive nitric oxide. J Biol Chem 280:9985–9993CrossRefPubMedGoogle Scholar
  92. 92.
    Humphries KM, Pennypacker JK, Taylor SS (2007) Redox regulation of cAMP-dependent protein kinase signaling: kinase versus phosphatase inactivation. J Biol Chem 282:22072–22079CrossRefPubMedGoogle Scholar
  93. 93.
    Burgoyne JR, Madhani M, Cuello F, Charles RL et al (2007) Cysteine redox sensor in PKGIa enables oxidant-induced activation. Science 317:1393–1397CrossRefPubMedGoogle Scholar
  94. 94.
    Brennan JP, Bardswell SC, Burgoyne JR, Fuller W et al (2006) Oxidant-induced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281:21827–21836CrossRefPubMedGoogle Scholar
  95. 95.
    Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361CrossRefPubMedGoogle Scholar
  96. 96.
    Chu F, Chen LH, O’Brian CA (2004) Cellular protein kinase C isozyme regulation by exogenously delivered physiological disulfides – implications of oxidative protein kinase C regulation to cancer prevention. Carcinogenesis 25:585–596CrossRefPubMedGoogle Scholar
  97. 97.
    Chu F, Ward NE, O’Brian CA (2001) Potent inactivation of representative members of each PKC isozyme subfamily and PKD via S-thiolation by the tumor-promotion/progression antagonist glutathione but not by its precursor cysteine. Carcinogenesis 22:1221–1229CrossRefPubMedGoogle Scholar
  98. 98.
    Chu F, Ward NE, O’Brian CA (2003) PKC isozyme S-cysteinylation by cystine stimulates the pro-apoptotic isozyme PKC delta and inactivates the oncogenic isozyme PKC epsilon. Carcinogenesis 24:317–325CrossRefPubMedGoogle Scholar
  99. 99.
    Ward NE, Chu F, O’Brian CA (2002) Regulation of protein kinase C isozyme activity by S-glutathiolation. Methods Enzymol 353:89–100CrossRefPubMedGoogle Scholar
  100. 100.
    Ward NE, Pierce DS, Chung SE, Gravitt KR, O’Brian CA (1998) Irreversible inactivation of protein kinase C by glutathione. J Biol Chem 273:12558–12566CrossRefPubMedGoogle Scholar
  101. 101.
    Ward NE, Stewart JR, Ioannides CG, O’Brian CA, Oxidant-induced S- (2000) Glutathiolation inactivates protein kinase C-alpha (PKC-alpha): a potential mechanism of PKC isozyme regulation. Biochemistry 39:10319–10329CrossRefPubMedGoogle Scholar
  102. 102.
    Santacruz-Toloza L, Ottolia M, Nicoll DA, Philipson KD (2000) Functional analysis of a disulfide bond in the cardiac Na(+)-Ca(2+) exchanger. J Biol Chem 275:182–188CrossRefPubMedGoogle Scholar
  103. 103.
    Aghdasi B, Reid MB, Hamilton SL (1997) Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. J Biol Chem 272:25462–25467CrossRefPubMedGoogle Scholar
  104. 104.
    Boraso A, Williams AJ (1994) Modification of the gating of the cardiac sarcoplasmic reticulum Ca(2+)-release channel by H2O2 and dithiothreitol. Am J Physiol 267:H1010–H1016PubMedGoogle Scholar
  105. 105.
    Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 98:11158–11162CrossRefPubMedGoogle Scholar
  106. 106.
    Xie H, Zhu PH (2006) Biphasic modulation of ryanodine receptors by sulfhydryl oxidation in rat ventricular myocytes. Biophys J 91:2882–2891CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rebecca L. Charles
    • 1
  • Joseph R. Burgoyne
    • 1
  • Philip Eaton
    • 1
  1. 1.Cardiovascular DivisionKing’s College London BHF Centre of Excellence, The Rayne Institute, St Thomas’ HospitalLondonUK

Personalised recommendations