Oxidative Stress in Cardiac Transplantation

  • Galen M. Pieper
  • Ashwani K. Khanna
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)


Early experimental studies which measured antioxidant defenses and accumulation of lipid peroxidation products suggested that oxidative stress plays a role in cardiac transplant rejection. This led to studies designed to test the efficacy of intervention with antioxidants in experimental and clinical cardiac transplantation. This chapter focuses on the critical evidence (both indirect and direct) for oxidative stress. The review considers how oxidative stress may be increased as a consequence of the various facets of transplantation. These include the contributions of organ preservation, ischemia-reperfusion injury, rejection, and the superimposition of immunosuppressant therapy. It is acknowledged that each of these components may combine to contribute to the overall concept of increased oxidative stress in cardiac transplant recipients.


Transplantation Rejection Organ preservation Immunosuppressant Apoptosis 



This research was supported, in part, by National Institutes of Health, Heart and Lung Institute Grant #HL078937.


  1. 1.
    Lehr HA, Messmer K (1996) Rationale for the use of antioxidant vitamins in clinical organ transplantation. Transplantation 62:1197–1199PubMedCrossRefGoogle Scholar
  2. 2.
    Boucek M, Waltz D, Edwards L et al (2006) Registry of the International Society for Heart and Lung Transplantation: Ninth official pediatric heart transplant report-2006. J Heart Lung Transplant 25:893–903PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor DO, Edwards LB, Aurora P et al (2008) Registry of the International Society for Heart and Lung Transplantation: Twenty-fifth official adult heart transplant report-2005. J Heart Lung Transplant 27:943–956PubMedCrossRefGoogle Scholar
  4. 4.
    Cristol JP, Vela C, Maggi MF et al (1998) Oxidative stress and lipid abnormalities in renal transplant recipients with or without chronic rejection. Transplantation 65:1322–1328PubMedCrossRefGoogle Scholar
  5. 5.
    De Lorgeril M, Richard MJ, Arnaud J et al (1993) Lipid peroxides and antioxidant defenses in accelerated transplantation-associated coronary arteriosclerosis. Am Heart J 125:974–980PubMedCrossRefGoogle Scholar
  6. 6.
    Heidland A, Šebeková K, Frangiosa A et al (2004) Paradox of circulating advanced glycation end product concentrations in patients with congestive heart failure and after heart transplantation. Heart J 11:1269–1274Google Scholar
  7. 7.
    Kucharská J, Gvozdjáková A, Mizera S et al (1998) Participation of coenzyme Q10 in the rejection development of the transplanted heart: a clinical study. Physiol Rev 47:399–404Google Scholar
  8. 8.
    Pechán I, Danová K, Olejarová I et al (2003) Oxidative stress and antioxidant defense systems in patients after heart transplantation. Wien Klin Wochenschr 115:648–651PubMedCrossRefGoogle Scholar
  9. 9.
    Pérez O, Castro P, Diaz-Araya G et al (2002) Persistence of oxidative stress after heart transplantation: a comparative study of patients with heart transplant versus chronic stable heart failure. Rev Esp Cardiol 55:831–837PubMedGoogle Scholar
  10. 10.
    Calò L, Semplicini A, Davis PA et al (2000) Cyclosporin-induced endothelial dysfunction and hypertension: are nitric oxide system abnormality and oxidative stress involved? Transpl Int 13(suppl 1):S413–S418PubMedCrossRefGoogle Scholar
  11. 11.
    Roberts LJII, Morrow JD (2000) Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radical Biol Med 28:505–513CrossRefGoogle Scholar
  12. 12.
    Burke A, FitzGerald GA, Lucey MR (2002) A prospective analysis of oxidative stress and liver transplantation. Transplantation 74:217–221PubMedCrossRefGoogle Scholar
  13. 13.
    Djamali A, Sadowski EA, Muehrer RJ et al (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Phyiol Renal Physiol 292:F513–F222CrossRefGoogle Scholar
  14. 14.
    Phillips M, Boehmer J, Cataneo R et al (2002) Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study). J Am Coll Cardiol 1:12–13Google Scholar
  15. 15.
    Phillips M, Boehmer J, Cataneo R et al (2004) Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study). J Heart Lung Transplant 23:701–704PubMedCrossRefGoogle Scholar
  16. 16.
    Phillips M, Boehmer J, Cataneo R et al (2004) Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am J Cardiol 94:1593–1594PubMedCrossRefGoogle Scholar
  17. 17.
    De Chiara B, Bigi R, Campolo J et al (2005) Blood glutathione as a marker of cardiac allograft vasculopathy in heart transplant recipients. Clin Transplant 19:367–371PubMedCrossRefGoogle Scholar
  18. 18.
    Holvoet P, Van Cleemput J, Collen D et al (2000) Oxidized low density lipoprotein is a prognostic marker of transplant-associated coronary artery disease. Arterioscler Thromb Vasc Biol 20:698–702PubMedCrossRefGoogle Scholar
  19. 19.
    Fang JC, Finlay S, Behrendt D et al (2002) Circulating autoantibodies to oxidized LDL correlated with impaired coronary endothelial function after cardiac transplantation. Arterioscler Thromb Vasc Biol 22:2044–2048PubMedCrossRefGoogle Scholar
  20. 20.
    Schimke I, Schikora M, Meyer R et al (2000) Oxidative stress in the human heart is associated with changes in the antioxidative defense as shown after heart transplantation. Mol Cell Biochem 204:89–96PubMedCrossRefGoogle Scholar
  21. 21.
    Nilakantan V, Halligan NLN, Nguyen TK et al (2005) Post-translational modification of manganese superoxide dismutase in acutely rejecting cardiac transplants: role of inducible nitric oxide synthase. J Heart Lung Transplant 24:1591–1599PubMedCrossRefGoogle Scholar
  22. 22.
    Roza AM, Pieper GM, Moore-Hilton G et al (1994) Free radicals in pancreatic and cardiac allograft rejection. Transplant Proc 26:544–545PubMedGoogle Scholar
  23. 23.
    Nguyen TK, Nilakantan V, Felix CC et al (2006) Beneficial effect of α-tocopheryl succinate in rat cardiac transplants. J Heart Lung Transplant 25:707–715PubMedCrossRefGoogle Scholar
  24. 24.
    Pieper GM, Nilakantan V, Nguyen NK et al (2008) Reactive oxygen and reactive nitrogen as signaling molecules for caspase 3 activation in acute cardiac transplant rejection. Antiox Redox Signal 10:1031–1039CrossRefGoogle Scholar
  25. 25.
    Slakey DP, Roza AM, Pieper GM et al (1993) Delayed cardiac allograft rejection due to combined cyclosporine and antioxidant therapy. Transplantation 56:1305–1309PubMedCrossRefGoogle Scholar
  26. 26.
    Pieper GM, Olds C, Hilton G et al (2001) Antioxidant treatment inhibits activation of myocardial nuclear factor κB and inhibits nitrosylation of myocardial heme protein in cardiac transplant rejection. Antioxid Redox Signal 3:81–88PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper M, Lindholm P, Pieper G et al (1998) Myocardial nuclear factor-κB activity and nitric oxide production in rejecting cardiac allografts. Transplantation 66:838–844PubMedCrossRefGoogle Scholar
  28. 28.
    Pieper GM, Nilakantan V, Hilton G et al (2002) Mechanisms of the protective action of diethyldithiocarbamate-iron complex on acute cardiac allograft rejection. Am J Physiol Heart Circ Physiol 284:H1542–H1551Google Scholar
  29. 29.
    Iwanaga K, Hasegawa T, Hultquist DE et al (2007) Riboflavin-mediated reduction of oxidant injury, rejection, and vaculopathy after cardiac allotransplantation. Transplantation 83:747–753PubMedCrossRefGoogle Scholar
  30. 30.
    Pieper GM, Nilakantan V, Zhou X et al (2005) Treatment with α-phenyl-N-tert-butylnitrone, a free radical-spin trapping agent, abrogates inflammatory cytokine gene expression during alloimmune activation in rat cardiac allografts. J Pharmacol Exp Thera 312:774–779CrossRefGoogle Scholar
  31. 31.
    Murata S, Miniati DN, Kown MH et al (2004) Superoxide dismutase mimetic M40401 reduces ischemia-reperfusion injury and graft coronary artery disease in rodent cardiac allografts. Transplantation 78:1166–1171PubMedCrossRefGoogle Scholar
  32. 32.
    Nilakantan V, Zhou X, Hilton G et al (2006) Antagonizing reactive oxygen by treatment with a manganese (III) metalloporphyrin-based superoxide dismutase mimetic in cardiac transplants. J Thorac Cardiovasc Surg 131:898–906PubMedCrossRefGoogle Scholar
  33. 33.
    Pieper GM, Nilakantan V, Chen M et al (2005) Protective mechanisms of a metalloporphyrinic peroxynitrite decomposition catalyst, WW85, in rat cardiac transplants. J Pharmacol Exp Thera 314:53–60CrossRefGoogle Scholar
  34. 34.
    Stanner SA, Hughes J, Kelly CNM et al (2003) A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr 7:407–422Google Scholar
  35. 35.
    HOPE and HOPE-TOO Trial Investigators (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized control trial. J Am Med Assoc 293:1338–1347CrossRefGoogle Scholar
  36. 36.
    Fang JC, Kinlay S, Beltrame J et al (2002) Effect of vitamin C and E on progression of transplant-associated arteriosclerosis: a randomized trial. Lancet 359:1108–1113PubMedCrossRefGoogle Scholar
  37. 37.
    Behrendt D, Beltrame J, Hikiti H et al (2006) Impact of coronary endothelial dysfunction on the progression of cardiac transplant-associated arteriosclerosis: effect of anti-oxidant vitamins C and E. J Heart Lung Transplant 25:426–433PubMedCrossRefGoogle Scholar
  38. 38.
    Berkenboom G, Preumont N, Pradier O et al (2006) Relation of coronary hypersensitivity to serotonin in cardiac transplant recipients to vessel wall morphology and effect of vitamin C. Am J Cardiol 97:561–566PubMedCrossRefGoogle Scholar
  39. 39.
    Lake KD, Aaronson KD, Gorman LE et al (2005) Effect of oral vitamin E and C therapy on calcineurin inhibitor levels in heart transplant recipients. J Heart Lung Transplant 24:990–994PubMedCrossRefGoogle Scholar
  40. 40.
    Blackhall ML, Fassett RG, Sharman JE et al (2005) Effects of antioxidant supplementation on blood cyclosporine A and glomerular filtration rate in renal transplant recipients. Nephrol Dial Transplant 20:1970–1975PubMedCrossRefGoogle Scholar
  41. 41.
    Chang T, Benet LZ, Hebert MF (1996) The effect of water-soluble vitamin E on cyclosporine pharmacokinetics in healthy volunteers. Clin Pharmacol Thera 59:297–303CrossRefGoogle Scholar
  42. 42.
    Wacher VJ, Silverman JA, Wong S et al (2002) Sirolimus oral absorption in rats is increased by ketoconazole but is not affected by D-α-tocopheryl poly(ethylene glycol 1000) succinate. J Pharmacol Exp Thera 303:308–313CrossRefGoogle Scholar
  43. 43.
    Roberts LJ II, Oates JA, Linton MF et al (2007) The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radical Biol Med 43:1388–1393CrossRefGoogle Scholar
  44. 44.
    Jahania MS, Sanchez JA, Narayan P et al (1999) Heart preservation for transplantation: principles and strategies. Ann Thorac Surg 68:1983–1987PubMedCrossRefGoogle Scholar
  45. 45.
    Maathuis MHJ, Leuvenink HGD, Ploeg RJ (2007) Perspectives in organ preservation. Transplantation 83:1289–1298PubMedCrossRefGoogle Scholar
  46. 46.
    Cargnoni A, Ceconi C, Bernocchi P et al (1999) Changes in oxidative stress and cellular redox potential during myocardial storage for transplantation: experimental studies. J Heart Lung Transplant 18:478–487PubMedCrossRefGoogle Scholar
  47. 47.
    Renner A, Sagstetter MR, Götz ME et al (2004) Heterotopic rat heart transplantation: severe loss of glutathione in 8-hour ischemic hearts. J Heart Lung Transplant 23:1093–1102PubMedCrossRefGoogle Scholar
  48. 48.
    Nakao A, Neto JS, Kanna S et al (2004) Protection against ischemia/reperfusion injury in cardiac and renal transplantation with carbon monoxide, biliverdin and both. Am J Transplant 5:282–291CrossRefGoogle Scholar
  49. 49.
    Renner A, Sagstetter MR, Harms H (2005) Formation of 4-hydroxy-2-nonenal protein adducts in the ischemic rat heart after transplantation. J Heart Lung Transplant 24:730–736PubMedCrossRefGoogle Scholar
  50. 50.
    Rabkin DG, Jia CX, Spotnitz HM (1999) Attenuation of reperfusion injury with probucol in the heterotopic rat cardiac isograft. J Heart Hung Transplant 18:775–780CrossRefGoogle Scholar
  51. 51.
    Rabkin DG, Weinberg AD, Spotnitz HM (2003) Optimizing probucol administration to preserve left ventricular compliance after reperfusion injury in the heterotopic rat heart isograft. J Heart Lung Transplant 22:959–966PubMedCrossRefGoogle Scholar
  52. 52.
    Abunasra H, Smolenski RT, Yap J et al (2006) Comparison of two gene transfer models for attenuation of myocardial ischemia-reperfusion injury following preservation for cardiac transplantation. Eur J Cardio-Thorac Surg 29:772–778CrossRefGoogle Scholar
  53. 53.
    Egi K, Conrad NE, Kwan J et al (2004) Inhibition of inducible nitric oxide synthase and superoxide production reduces matrix metalloproteinase-9 activity and restores coronary vasomotor function in rat cardiac allografts. Eur J Cardio-Thorac Surg 26:262–269CrossRefGoogle Scholar
  54. 54.
    Tanaka M, Mokhtari GK, Terry RD et al (2004) Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia-reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation 110(Suppl II):II-200–II-206Google Scholar
  55. 55.
    Zhao H, Joseph J, Fales HM et al (2005) Detection and characterization of the product of hydroethidine and intracellular superoxide by HPLC and limitations of fluorescence. Proc Natl Acad Sci USA 102:5727–5732PubMedCrossRefGoogle Scholar
  56. 56.
    Zhao H, Kalivendi S, Zhang H et al (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radical Biol Med 34:1359–1368CrossRefGoogle Scholar
  57. 57.
    Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2006) The confounding effects of light, sonication, and Mn(III)TBAP on quantitation of superoxide using hydroethidine. Free Radical Biol Med 41:1050–1057CrossRefGoogle Scholar
  58. 58.
    Laurindo FRM, Fernandes DC, Santos CXC (2008) Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Meth Enzymol 441:237–260PubMedCrossRefGoogle Scholar
  59. 59.
    Zielonka J, Vasquez-Vivar J, Kalyanaraman B (2008) Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine. Nature Protocols 3:8–21PubMedCrossRefGoogle Scholar
  60. 60.
    Bassenge E, Sommer O, Schwemmer M et al (2000) Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. Am J Physiol Heart Circ Physiol 279:H2431–H2438PubMedGoogle Scholar
  61. 61.
    Guo Z, Zia X, Jiang J et al (2007) Downregulation of NADPH oxidase, antioxidant enzymes, and inflammatory markers in the heart of streptozotocin-induce diabetic rats by N-aceyl-L-cysteine. Am J Physiol Heart Circ Physiol 292:H1728–H1736PubMedCrossRefGoogle Scholar
  62. 62.
    Wendt MC, Daiber A, Kleschyov AL et al (2005) Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4. Free Radical Biol Med 39(381–391):2005Google Scholar
  63. 63.
    Khadour FH, Panas D, Ferdinandy P et al (2002) Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol Heart Circ Physiol 283:H1108–H1115PubMedGoogle Scholar
  64. 64.
    Li JM, Gall NP, Grieve DJ et al (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484PubMedCrossRefGoogle Scholar
  65. 65.
    Vásquez-Vivar J, Hogg N, Pritchard KA Jr et al (1997) Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Let 403:127–130CrossRefGoogle Scholar
  66. 66.
    Janiszewksi M, Souza HP, Liu X et al (2002) Overestimation of NADH-driven vascular oxidase activity due to lucigenin artifacts. Free Radical Biol Med 32:446–453CrossRefGoogle Scholar
  67. 67.
    Tanaka M, Gunawan F, Terry RD et al (2005) Inhibition of heart transplant injury and graft coronary artery disease after prolonged organ ischemia by selective protein kinase C regulators. J Thorac Cardiovasc Surg 129:1160–1167PubMedCrossRefGoogle Scholar
  68. 68.
    Tanaka M, Mokhtari GK, Terry RD et al (2005) Prolonged cold ischemia in rat cardiac allografts promotes ischemia-reperfusion injury and the development of graft coronary artery disease in a linear fashion. J Heart Lung Transplant 24:1906–1914PubMedCrossRefGoogle Scholar
  69. 69.
    Bobko AA, Kirilyuk IA, Grigorév IA et al (2007) Reversible reduction of nitroxides to hydroxylamines: roles for ascorbate and glutathione. Free Radical Biol Med 42:404–412CrossRefGoogle Scholar
  70. 70.
    Trnka J, Blaikie FH, Smith RAJ et al (2008) A mitochondrial-targeted niroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radical Biol Med 44:1406–1419CrossRefGoogle Scholar
  71. 71.
    Dworakowski R, Anilkumar N, Zhang M et al (2006) Redox signaling involving NADPH oxidase-derived reactive oxygen species. Biochem Soc Trans 34:960–963PubMedCrossRefGoogle Scholar
  72. 72.
    Sirker A, Zhang M, Murdoch C et al (2007) Involvement of NAPDH oxidases in cardiac remodeling and heart failure. Am J Nephrol 27:649–660PubMedCrossRefGoogle Scholar
  73. 73.
    Vela C, Thomsen M, Delbosc S et al (2007) Lipid and oxidative stress disorders in a rat model of chronic rejection. Transplant Proc 39:2617–2619PubMedCrossRefGoogle Scholar
  74. 74.
    Gomez L, Chavanis N, Argaud L et al (2005) Fas-independent mitochondrial damage triggers cardiomyocyte death after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 289:H2153–H2158PubMedCrossRefGoogle Scholar
  75. 75.
    Szabolcs M, Michler RE, Yang W et al (1996) Apoptosis of cardiac myocytes during cardiac allograft rejection: Relation to induction of nitric oxide synthase. Circulation 94:1665–1673PubMedCrossRefGoogle Scholar
  76. 76.
    Szabolcs MJ, Ravalli S, Minanov O et al (1998) Apoptosis and increased expression of inducible nitric oxide synthase in human allograft rejection. Transplantation 65:804–812PubMedCrossRefGoogle Scholar
  77. 77.
    Koglin J, Granville DJ, Glysing-Jensen T et al (1999) Attenuated acute cardiac rejection in NOS2–/– recipients correlates with reduced apoptosis. Circulation 99:836–842PubMedCrossRefGoogle Scholar
  78. 78.
    Szabolcs MJ, Ninsheng M, Athan E et al (2001) Acute cardiac allograft rejection in nitric oxide synthase-2–/– and nitric oxide synthase-2+/+ mice: Effect of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation 103:2514–2520PubMedCrossRefGoogle Scholar
  79. 79.
    Rezzani R (2006) Exploring cyclosporine A side effects and the protective role played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol 21:302–316Google Scholar
  80. 80.
    López-Ongil S, Hernández-Perara O, Navarro-Antolín J et al (1998) Role of reactive oxygen species in signaling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells. Brit J Pharmacol 124:447–454CrossRefGoogle Scholar
  81. 81.
    Navarro-Antolín J, López-Muñoz MJ, Soria J et al (2002) Superoxide limits cyclosporine-induced formation of peroxynitrite in endothelial cells. Free Radical Biol Med 32:702–711CrossRefGoogle Scholar
  82. 82.
    Krauskopf A, Lhote P, Petermann O et al (2005) Cyclosporin A generates superoxide in smooth muscle cells. Free Radical Res 39:913–919CrossRefGoogle Scholar
  83. 83.
    Vetter M, Chen ZJ, Chang GD et al (2003) Cyclosporin A disrupts bradykinin signaling through superoxide. Hypertension 41:1136–1142PubMedCrossRefGoogle Scholar
  84. 84.
    Horáková K, Sovčíková A, Šeemannová Z et al (2001) Detection of drug-induced, superoxide-mediated cell damage and its prevention by antioxidants. Free Radical Biol Med 30:650–664CrossRefGoogle Scholar
  85. 85.
    Zhong Z, Connor HD, Yin M et al (2001) Viral delivery of superoxide dismutase gene reduces cyclosporine A-induced nephrotoxicity. Kidney Int 59:1397–1404PubMedCrossRefGoogle Scholar
  86. 86.
    Ahmed SS, Napoli KL, Strobel HW (1995) Oxygen radical formation during cytochrome P450-catalyzed cyclosporine metabolism in rat and human liver microsomes at varying hydrogen ion concentrations. Mol Cell Biochem 151:131–140PubMedCrossRefGoogle Scholar
  87. 87.
    Haberland A, Henk W, Grune T et al. (1997) Differential response of oxygen radical metabolism in rat heart, liver and kidney to cyclosporine A treatment. Inflamm Res 46:452–454PubMedCrossRefGoogle Scholar
  88. 88.
    Calò LA, Davis PA, Giacon B et al (2002) Oxidative stress in kidney transplant patients with calcineurin inhibitor-induced hypertension: effect of ramipril. J Cardiovasc Pharmacol 40:625–631PubMedCrossRefGoogle Scholar
  89. 89.
    Cave AC, Brewer AC, Narayanapanicker A et al (2006) Comprehensive invited review NADPH oxidases in cardiovascular health and disease. Antiox Redox Signal 8:691–728CrossRefGoogle Scholar
  90. 90.
    Khanna AK, Pieper GM (2007) NADPH oxidase subunits (NOX-1, p22phox, Rac-1) and tacrolimus-induced nephrotoxicity in a rat renal transplant model. Nephrol Dial Transplant 22:376–385PubMedCrossRefGoogle Scholar
  91. 91.
    Ramzy D, Rao V, Tumiati LC et al (2006) Role of endothelin-1 and nitric oxide bioavailability in transplant-related vascular injury. Comparative effects of rapamycin and cyclosporine. Circulation 114 (suppl I):I–214–I–219Google Scholar
  92. 92.
    Ghee JY, Han DH, Song HK et al (2008) The role of macrophage in the pathogensisis of chronic cyclosporine-induced nephropathy. Nephrol Dial Transplant. doi:10.1093/ndt/gfn388Google Scholar
  93. 93.
    Kanji VK, Wang C, Salahudeen AK (1999) Vitamin E suppresses cyclosporine A-induced increased in the urinary excretion of arachidonic acid metabolites including F2-isoprostanes in the rat model. Transplant Proc 21:1724–1728CrossRefGoogle Scholar
  94. 94.
    Lungu AO, Zin ZG, Yamawaki H et al (2004) Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae. J Biol Chem 279:48794–48800PubMedCrossRefGoogle Scholar
  95. 95.
    Yüce A, Ateşşahin A, Ceribaşı AO (2008) Amelioration of cyclosporine A-induced renal, hepatic and cardiac damages by ellagic acid in rats. Basic Clin Pharmacol Toxicol 103:186–191PubMedCrossRefGoogle Scholar
  96. 96.
    Rezzani R, Giugno L, Buffoli B et al (2005) The protective effect of caffeic acid phenethyl ester against cyclosporine A-induced cardiotoxicity in rats. Toxicology 212:155–164PubMedCrossRefGoogle Scholar
  97. 97.
    Chen HW, Chien CT, Yu SL et al (2002) Cyclosporine A regulate oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via ROS generation, iNOS and Hsp70. Brit J Pharmacol 137:771–781CrossRefGoogle Scholar
  98. 98.
    Florio S, Ciarcia R, Crispino L et al (2003) Hydrocortisone has a protective effect on cyclosporine A-induced cardiotoxicity. J Cell Physiol 195:21–26PubMedCrossRefGoogle Scholar
  99. 99.
    Suzuki H, Swei A, Zweifach BW et al (1995) In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats: hydroethidine microfluorography. Hypetension 25:1083–1089CrossRefGoogle Scholar
  100. 100.
    Iuchi T, Akaike M, Mitsui T et al (2003) Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ Res 92:81–87PubMedCrossRefGoogle Scholar
  101. 101.
    Miao Y, Zhang Y, Lim PS et al (2007) Folic acid prevents and partially reverses glucocorticoid-induced hypertension in the rat. Am J Hypertens 20:304–310PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang K, Fujii S, Igarashi J et al (2004) Effects of thiol antioxidants on reduced nicotinamide adenine dinucleotide phosphate oxidase in hypertensive Dahl salt-sensitive rats. Free Radical Biol Med 37:1813–1820CrossRefGoogle Scholar
  103. 103.
    Jabs A, Göbel S, Wenzel P et al (2008) Sirolimus-induced vascular dysfunction increased mitochondrial and nicotinamide adenosine-dinucleotide phosphate oxidase-dependent superoxide production and decreased vascular nitric oxide formation. J Am Coll Cardiol 51:2130–2138PubMedCrossRefGoogle Scholar
  104. 104.
    Speier E, Yu ZX, Takeda K et al (2000) Antioxidant effect of estrogen on cytomegalovirus-induced gene expression in coronary artery smooth muscle cells. Circulation 102:2990–2996CrossRefGoogle Scholar
  105. 105.
    Weis M, Kledal TN, Lin KY et al (2004) Cytomegalovirus infection impairs the nitric oxide synthase pathway: Role of asymmetric dimethylarginine in transplant arteriosclerosis. Circulation 109:500–505PubMedCrossRefGoogle Scholar
  106. 106.
    Dhaunsi GS, Kaur J, Turner RB (2003) Role of NADPH oxidase in cytomegalovirus-induced proliferation of human coronary artery smooth muscle cells. J Biomed Sci 10:505–509PubMedCrossRefGoogle Scholar
  107. 107.
    Mufti S, Wenzel S, Euler G et al (2008) Angiotensin II-dependent loss of cardiac function: mechanisms and pharmacological targets attenuating this effect. J Cell Physiol 217:242–249PubMedCrossRefGoogle Scholar
  108. 108.
    Crowley SD, Gurley SB, Herrera MJ et al (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA 103:17985–17990PubMedCrossRefGoogle Scholar
  109. 109.
    Johar S, Cave AC, Narayanapanicker A et al (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NAPDH oxidase. FASEB J 20:E846–E854CrossRefGoogle Scholar
  110. 110.
    Grishko V, Pastukh V, Solodushko V et al (2003) Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: role of DNA damage. Am J Physiol Heart Circ Physiol 285:H2364–H2372PubMedGoogle Scholar
  111. 111.
    Schröder D, Heger J, Piper HM et al (2006) Angiotensin II stimulates apoptosis via TGF-β1 signaling in ventricular cardiomyocytes of rat. J Mol Med 84:975–983PubMedCrossRefGoogle Scholar
  112. 112.
    Richter MHC, Richter HR, Olbrich HG et al (2003) Two good reasons for an angiotensin-II type 1 receptor blockade with losartan after cardiac transplantation: reduction of incidence and severity of transplant vasculopathy. Transplant Int 16:26–32CrossRefGoogle Scholar
  113. 113.
    Richter M, Skupin M, Grabs R et al (2000) New approach in the therapy of chronic rejection? ACE- and AT1-blocker reduce the development of chronic rejection after cardiac transplantation in a rat model. J Heart Lung Transplant 19:1047–1055PubMedCrossRefGoogle Scholar
  114. 114.
    Steinhauff S, Pehlivanli S, Bakovic-Alt R et al (2004) Beneficial effects of quinaprilat on coronary vasomotor function, endothelial oxidative stress, and endothelin activation after human heart transplantation. Transplantation 77:1859–1865PubMedCrossRefGoogle Scholar
  115. 115.
    Bae JH, Rihal CS, Edwards BS et al (2006) Association of angiotensin-converting enzyme inhibitors and serum lipids with plaque regression in cardiac allograft vasculopathy. Transplantation 82:1108–1111PubMedCrossRefGoogle Scholar
  116. 116.
    Aziz TM, Burgess MI, Haselton PS et al (2003) Transforming growth factor β and diastolic left ventricular dysfunction after heart transplantation: echocardiographic and histologic evaluation. J Heart Lung Transplant 22:663–673PubMedCrossRefGoogle Scholar
  117. 117.
    Aziz T, Saad RA, Burgess M et al (2003) Transforming growth factor beta and myocardial dysfunction following heart transplantation. Eur J Cardio-thorac Surg 20:177–186CrossRefGoogle Scholar
  118. 118.
    Khanna AK, Cairns VR, Becker CG et al (1999) Transforming growth factor (TGF)-β mimics and anti-TGF-β antibody abrogates the in vivo effects of cyclosporine. Transplantation 67:882–889PubMedCrossRefGoogle Scholar
  119. 119.
    Ling H, Li X, Jha S et al (2003) Therapeutic role of TGF-β-neutralizing antibody in mouse cyclosporine A nephropathy: morphologic improvement associated with functional preservation. J Am Soc Nephrol 14:377–388PubMedCrossRefGoogle Scholar
  120. 120.
    Khanna AK, Plummer MS, Hilton G et al (2004) Anti-transforming growth factor antibody at low but not high doses limits cyclosporine-mediated nephrotoxicity without altering rat cardiac allograft survival: Potential of therapeutic applications. Circulation 110:3822–3829PubMedCrossRefGoogle Scholar
  121. 121.
    Hertig I, Hassoun P, Zuleta J et al (1993) Mechanism of basal and transforming growth factor β1 stimulated H2O2 release by endothelial cells. Trans Assoc Am Phys 106:179–186PubMedGoogle Scholar
  122. 122.
    Junn E, Lee KN, Ju HR et al (2000) Requirement of hydrogen peroxide generation in TGF-β1 signal transduction in human lung fibroblast cells: involvement of hydrogen peroxide and Ca2+ in TGF-β1-induced IL-6 expression. J Immunol 165:2190–2197PubMedGoogle Scholar
  123. 123.
    Li PF, Dietz R, von Hardsorf R (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett 448:206–210PubMedCrossRefGoogle Scholar
  124. 124.
    Thannickal V, Day R, Klinz S et al (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-β. FASEB J 14:1741–1748PubMedCrossRefGoogle Scholar
  125. 125.
    Cucoranu I, Clempus R, Dikalova A et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-β1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907PubMedCrossRefGoogle Scholar
  126. 126.
    Khanna AK, Plummer M, Bromberek C et al (2002) Expression of TGF-β and fibrogenic genes in transplant recipients with tacrolimus and cyclosporine nephrotoxicity. Kidney Int 62:2257–2263PubMedCrossRefGoogle Scholar
  127. 127.
    Akool E-S, Doller A, Babelova A et al (2008) Molecular mechanisms of TGFβ receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporine A and FK506. J Immunol 181:2831–2845Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Transplant Surgery, Department of SurgeryMedical College of Wisconsin, Cardiovascular Research Center and the Free Radical Research CenterMilwaukeeUSA
  2. 2.Division of Cardiology, Department of MedicineUniversity of MarylandBaltimoreUSA

Personalised recommendations