Advertisement

NADPH Oxidases and Blood-Brain Barrier Dysfunction in Stroke

  • Timo Kahles
  • Sabine Heumüller
  • Ralf P. Brandes
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

The opening of the blood-brain barrier, brain edema, intracerebral hemorrhage, and loss of neuronal tissue are consequences of ischemic stroke. The phase of ischemia is often followed by reperfusion, either occurring spontaneously or as a result of recanalization therapies such as thrombolysis or mechanical devices. An increased formation of reactive oxygen species (ROS) occurs during ischemia/hypoxia, but most importantly during reperfusion/reoxygenation, and contributes to tissue injury. Although mitochondria have long been considered the primary source of ROS during ischemic stroke and reperfusion, recently NADPH oxidases have been shown to be of great importance for the process, too. All cells in the brain express functional NADPH oxidases, and genetic deletion of p47phox or Nox2 reduces the brain infarct size in mice. The opening of the blood-brain barrier (BBB) within minutes after reperfusion is an early sign of vascular dysfunction after stroke. The initial phase of this process, which involves contraction of endothelial cells, is mediated by NADPH oxidases, and genetic deletion or pharmacological inhibition of the oxidases prevents the BBB opening. In this chapter, the contribution of ROS and the NADPH oxidase in particular for tissue injury and BBB dysfunction in ischemic stroke will be reviewed.

Keywords

Stroke Reactive oxygen species Ischemia Reperfusion Hypoxia Reoxygenation Brain Endothelium 

References

  1. 1.
    D’Autreaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8:813–824PubMedGoogle Scholar
  2. 2.
    Fisher M (2008) Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis 5(Suppl 1):S4–S11PubMedGoogle Scholar
  3. 3.
    Traystman RJ, Kirsch JR, Koehler RC (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71:1185–1195PubMedGoogle Scholar
  4. 4.
    Cai H, Griendling KK, Harrison DG (2003) The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci 24:471–478PubMedGoogle Scholar
  5. 5.
    Chrissobolis S, Faraci FM (2008) The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol Med 14:495–502PubMedGoogle Scholar
  6. 6.
    Block ML (2008) NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 9(Suppl 2):S8PubMedGoogle Scholar
  7. 7.
    Wu DC, Re DB, Nagai M, Ischiropoulos H, Przedborski S (2006) The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice. Proc Natl Acad Sci USA 103:12132–12137PubMedGoogle Scholar
  8. 8.
    Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150PubMedGoogle Scholar
  9. 9.
    Zheng JS, Zhan RY, Zheng SS, Zhou YQ, Tong Y, Wan S (2005) Inhibition of NADPH oxidase attenuates vasospasm after experimental subarachnoid hemorrhage in rats. Stroke 36:1059–1064PubMedGoogle Scholar
  10. 10.
    Tang J, Liu J, Zhou C, Ostanin D, Grisham MB, Neil GD, Zhang JH (2005) Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem 94:1342–1350PubMedGoogle Scholar
  11. 11.
    Paravicini TM, Drummond GR, Sobey CG (2004) Reactive oxygen species in the cerebral circulation: physiological roles and therapeutic implications for hypertension and stroke. Drugs 64:2143–2157PubMedGoogle Scholar
  12. 12.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von KR, Wahlgren N, Toni D (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359:1317–1329PubMedGoogle Scholar
  13. 13.
    Margaill I, Plotkine M, Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39:429–443PubMedGoogle Scholar
  14. 14.
    Uemura Y, Miller JM, Matson WR, Beal MF (1991) Neurochemical analysis of focal ischemia in rats. Stroke 22:1548–1553PubMedGoogle Scholar
  15. 15.
    Serteser M, Ozben T, Gumuslu S, Balkan S, Balkan E (2002) Lipid peroxidation in rat brain during focal cerebral ischemia: prevention of malondialdehyde and lipid conjugated diene production by a novel antiepileptic, lamotrigine. Neurotoxicology 23:111–119PubMedGoogle Scholar
  16. 16.
    Lancelot E, Callebert J, Revaud ML, Boulu RG, Plotkine M (1995) Detection of hydroxyl radicals in rat striatum during transient focal cerebral ischemia: possible implication in tissue damage. Neurosci Lett 197:85–88PubMedGoogle Scholar
  17. 17.
    Kato N, Yanaka K, Nagase S, Hirayama A, Nose T (2003) The antioxidant EPC-K1 ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischaemia. Acta Neurochir (Wien) 145:489–493Google Scholar
  18. 18.
    Mizui T, Kinouchi H, Chan PH (1992) Depletion of brain glutathione by buthionine sulfoximine enhances cerebral ischemic injury in rats. Am J Physiol 262:H313–H317PubMedGoogle Scholar
  19. 19.
    Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH, Jeon SE, Choe MA, Park KC (2004) Temporal changes in cerebral antioxidant enzyme activities after ischemia and reperfusion in a rat focal brain ischemia model: effect of dietary fish oil. Brain Res Dev Brain Res 152:11–18PubMedGoogle Scholar
  20. 20.
    Alexandrova M, Bochev P, Markova V, Bechev B, Popova M, Danovska M, Simeonova V (2004) Dynamics of free radical processes in acute ischemic stroke: influence on neurological status and outcome. J Clin Neurosci 11:501–506PubMedGoogle Scholar
  21. 21.
    Demirkaya S, Topcuoglu MA, Aydin A, Ulas UH, Isimer AI, Vural O (2001) Malondialdehyde, glutathione peroxidase and superoxide dismutase in peripheral blood erythrocytes of patients with acute cerebral ischemia. Eur J Neurol 8:43–51PubMedGoogle Scholar
  22. 22.
    Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304PubMedGoogle Scholar
  23. 23.
    Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14PubMedGoogle Scholar
  24. 24.
    Warner DS, Sheng H, Batinic-Haberle I (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207:3221–3231PubMedGoogle Scholar
  25. 25.
    Nogawa S, Zhang F, Ross ME, Iadecola C (1997) Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J Neurosci 17:2746–2755PubMedGoogle Scholar
  26. 26.
    Betz AL, Randall J, Martz D (1991) Xanthine oxidase is not a major source of free radicals in focal cerebral ischemia. Am J Physiol 260:H563–H568PubMedGoogle Scholar
  27. 27.
    Beray-Berthat V, Croci N, Plotkine M, Margaill I (2003) Polymorphonuclear neutrophils contribute to infarction and oxidative stress in the cortex but not in the striatum after ischemia-reperfusion in rats. Brain Res 987:32–38PubMedGoogle Scholar
  28. 28.
    Fabian RH, Kent TA (1999) Superoxide anion production during reperfusion is reduced by an antineutrophil antibody after prolonged cerebral ischemia. Free Radic Biol Med 26:355–361PubMedGoogle Scholar
  29. 29.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedGoogle Scholar
  30. 30.
    Lambeth JDNOX (2004) enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189PubMedGoogle Scholar
  31. 31.
    Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E (2003) NADPH oxidase immunoreactivity in the mouse brain. Brain Res 988:193–198PubMedGoogle Scholar
  32. 32.
    Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F (1999) Beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 274:15493–15499PubMedGoogle Scholar
  33. 33.
    Green SP, Cairns B, Rae J, Errett-Baroncini C, Hongo JA, Erickson RW, Curnutte JT (2001) Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 21:374–384PubMedGoogle Scholar
  34. 34.
    Mayorov DN (2007) Brain superoxide as a key regulator of the cardiovascular response to emotional stress in rabbits. Exp Physiol 92:471–479PubMedGoogle Scholar
  35. 35.
    Peterson JR, Sharma RV, Davisson RL (2006) Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep 8:232–241PubMedGoogle Scholar
  36. 36.
    Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238PubMedGoogle Scholar
  37. 37.
    Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109PubMedGoogle Scholar
  38. 38.
    de la Monte SM, Wands JR (2006) Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J Alzheimers Dis 9:167–181PubMedGoogle Scholar
  39. 39.
    Banfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause KH (2004) NOX3, a superoxide-generating NADPH oxidase of the inner ear. J Biol Chem 279:46065–46072PubMedGoogle Scholar
  40. 40.
    Infanger DW, Sharma RV, Davisson RL (2006) NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal 8:1583–1596PubMedGoogle Scholar
  41. 41.
    Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297PubMedGoogle Scholar
  42. 42.
    Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97:1055–1062PubMedGoogle Scholar
  43. 43.
    Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG (2004) Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 35:584–589PubMedGoogle Scholar
  44. 44.
    Ago T, Kitazono T, Kuroda J, Kumai Y, Kamouchi M, Ooboshi H, Wakisaka M, Kawahara T, Rokutan K, Ibayashi S, Iida M (2005) NAD(P)H oxidases in rat basilar arterial endothelial cells. Stroke 36:1040–1046PubMedGoogle Scholar
  45. 45.
    Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG (2007) Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke 38:2142–2149PubMedGoogle Scholar
  46. 46.
    Miller AA, Drummond GR, De Silva TM, Mast AE, Hickey H, Williams JP, Broughton BR, Sobey CG (2009) NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2. Am J Physiol Heart Circ Physiol 296:H220–H225PubMedGoogle Scholar
  47. 47.
    Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2365–2370Google Scholar
  48. 48.
    Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL (2001) H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury. J Biol Chem 276:29251–29256PubMedGoogle Scholar
  49. 49.
    Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16PubMedGoogle Scholar
  50. 50.
    Barnett ME, Madgwick DK, Takemoto DJ (2007) Protein kinase C as a stress sensor. Cell Signal 19:1820–1829PubMedGoogle Scholar
  51. 51.
    Schafer M, Schafer C, Ewald N, Piper HM, Noll T (2003) Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circ Res 92:1010–1015PubMedGoogle Scholar
  52. 52.
    Al-Mehdi AB, Zhao G, Dodia C, Tozawa K, Costa K, Muzykantov V, Ross C, Blecha F, Dinauer M, Fisher AB (1998) Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 83:730–737PubMedGoogle Scholar
  53. 53.
    Ozaki M, Deshpande SS, Angkeow P, Bellan J, Lowenstein CJ, Dinauer MC, Goldschmidt-Clermont PJ, Irani K (2000) Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo. FASEB J 14:418–429PubMedGoogle Scholar
  54. 54.
    Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138PubMedGoogle Scholar
  55. 55.
    Hong H, Zeng JS, Kreulen DL, Kaufman DI, Chen AF (2006) Atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in ischemic stroke. Am J Physiol Heart Circ Physiol 291:H2210–H2215PubMedGoogle Scholar
  56. 56.
    Suh SW, Shin BS, Ma H, Van HM, Brennan AM, Yenari MA, Swanson RA (2008) Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 64:654–663PubMedGoogle Scholar
  57. 57.
    Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38:3000–3006PubMedGoogle Scholar
  58. 58.
    Walder CE, Green SP, Darbonne WC, Mathias J, Rae J, Dinauer MC, Curnutte JT, Thomas GR (1997) Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke 28:2252–2258PubMedGoogle Scholar
  59. 59.
    Jackman KA, Miller AA, De Silva TM, Crack PJ, Drummond GR, Sobey CG (2009) Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice. Br J Pharmacol 156:680–688PubMedGoogle Scholar
  60. 60.
    Tang XN, Cairns B, Cairns N, Yenari MA (2008) Apocynin improves outcome in experimental stroke with a narrow dose range. Neuroscience 154:556–562PubMedGoogle Scholar
  61. 61.
    Tang LL, Ye K, Yang XF, Zheng JS (2007) Apocynin attenuates cerebral infarction after transient focal ischaemia in rats. J Int Med Res 35:517–522PubMedGoogle Scholar
  62. 62.
    Wang Q, Tompkins KD, Simonyi A, Korthuis RJ, Sun AY, Sun GY (2006) Apocynin protects against global cerebral ischemia-reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182–189PubMedGoogle Scholar
  63. 63.
    Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K, Brandes RP (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217PubMedGoogle Scholar
  64. 64.
    Lehoux S, Castier Y, Tedgui A (2006) Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med 259:381–392PubMedGoogle Scholar
  65. 65.
    Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038PubMedGoogle Scholar
  66. 66.
    Fisher M (2009) Pericyte signaling in the neurovascular unit. Stroke 40:S13–S15PubMedGoogle Scholar
  67. 67.
    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P (2009) Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 335:75–96PubMedGoogle Scholar
  68. 68.
    Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267PubMedGoogle Scholar
  69. 69.
    Gordon GR, Mulligan SJ, MacVicar BA (2007) Astrocyte control of the cerebrovasculature. Glia 55:1214–1221PubMedGoogle Scholar
  70. 70.
    Hamann GF, del Zoppo GJ, Von KR (1999) Hemorrhagic transformation of cerebral infarction–possible mechanisms. Thromb Haemost 82(Suppl 1):92–94PubMedGoogle Scholar
  71. 71.
    Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39:1121–1126PubMedGoogle Scholar
  72. 72.
    Amantea D, Nappi G, Bernardi G, Bagetta G, Corasaniti MT (2009) Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J 276:13–26PubMedGoogle Scholar
  73. 73.
    Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236PubMedGoogle Scholar
  74. 74.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397PubMedGoogle Scholar
  75. 75.
    Hackett PH (1999) High altitude cerebral edema and acute mountain sickness. A pathophysiology update. Adv Exp Med Biol 474:23–45PubMedGoogle Scholar
  76. 76.
    Zhao BQ, Tejima E, Lo EH (2007) Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke 38:748–752PubMedGoogle Scholar
  77. 77.
    Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ (1999) Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 19:624–633PubMedGoogle Scholar
  78. 78.
    Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29:12–17PubMedGoogle Scholar
  79. 79.
    Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, Yasuhara H (1999) Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis 9:112–118PubMedGoogle Scholar
  80. 80.
    Tirilazad International Steering Committee (2000) Tirilazad mesylate in acute ischemic stroke: A systematic review. Stroke 31:2257–2265Google Scholar
  81. 81.
    van der Worp HB, Kappelle LJ, Algra A, Bar PR, Orgogozo JM, Ringelstein EB, Bath PM, van GJ (2002) The effect of tirilazad mesylate on infarct volume of patients with acute ischemic stroke. Neurology 58:133–135PubMedGoogle Scholar
  82. 82.
    Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction (2003) Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc Dis 15:222–229Google Scholar
  83. 83.
    Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, Ibayashi S, Iida M (2004) Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci 221:11–17PubMedGoogle Scholar
  84. 84.
    Lees KR, Zivin JA, Ashwood T, Davalos A, Davis SM, Diener HC, Grotta J, Lyden P, Shuaib A, Hardemark HG, Wasiewski WW (2006) NXY-059 for acute ischemic stroke. N Engl J Med 354:588–600PubMedGoogle Scholar
  85. 85.
    Shuaib A, Lees KR, Lyden P, Grotta J, Davalos A, Davis SM, Diener HC, Ashwood T, Wasiewski WW, Emeribe U (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357:562–571PubMedGoogle Scholar
  86. 86.
    Savitz SI, Schabitz WRA (2008) Critique of SAINT II: wishful thinking, dashed hopes, and the future of neuroprotection for acute stroke. Stroke 39:1389–1391PubMedGoogle Scholar
  87. 87.
    Rosenberg GA, Yang Y (2007) Vasogenic edema due to tight junction disruption by matrix metalloproteinases in cerebral ischemia. Neurosurg Focus 22:E4PubMedGoogle Scholar
  88. 88.
    Baron JC (1999) Mapping the ischaemic penumbra with PET: implications for acute stroke treatment. Cerebrovasc Dis 9:193–201PubMedGoogle Scholar
  89. 89.
    Ayata C, Ropper AH (2002) Ischaemic brain oedema. J Clin Neurosci 9:113–124PubMedGoogle Scholar
  90. 90.
    Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 68:122–129PubMedGoogle Scholar
  91. 91.
    Wang X, Tsuji K, Lee SR, Ning M, Furie KL, Buchan AM, Lo EH (2004) Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke 35:2726–2730PubMedGoogle Scholar
  92. 92.
    Hamann GF, Okada Y, Fitridge R, del Zoppo GJ (1995) Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 26:2120–2126PubMedGoogle Scholar
  93. 93.
    Maier CM, Hsieh L, Crandall T, Narasimhan P, Chan PH (2006) Evaluating therapeutic targets for reperfusion-related brain hemorrhage. Ann Neurol 59:929–938PubMedGoogle Scholar
  94. 94.
    Liu S, Liu M, Peterson S, Miyake M, Vallyathan V, Liu KJ (2003) Hydroxyl radical formation is greater in striatal core than in penumbra in a rat model of ischemic stroke. J Neurosci Res 71:882–888PubMedGoogle Scholar
  95. 95.
    Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 39:51–70PubMedGoogle Scholar
  96. 96.
    Kato N, Yanaka K, Hyodo K, Homma K, Nagase S, Nose T (2003) Stable nitroxide Tempol ameliorates brain injury by inhibiting lipid peroxidation in a rat model of transient focal cerebral ischemia. Brain Res 979:188–193PubMedGoogle Scholar
  97. 97.
    Kim GW, Lewen A, Copin J, Watson BD, Chan PH (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 105:1007–1018PubMedGoogle Scholar
  98. 98.
    Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25:5–23PubMedGoogle Scholar
  99. 99.
    Diekmann D, Abo A, Johnston C, Segal AW, Hall A (1994) Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Science 265:531–533PubMedGoogle Scholar
  100. 100.
    Jin L, Ying Z, Webb RC (2004) Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol 287:H1495–H1500PubMedGoogle Scholar
  101. 101.
    Ushio-Fukai M (2007) VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 9:731–739PubMedGoogle Scholar
  102. 102.
    Gertzberg N, Neumann P, Rizzo V, Johnson A (2004) NAD(P)H oxidase mediates the endothelial barrier dysfunction induced by TNF-alpha. Am J Physiol Lung Cell Mol Physiol 286:L37–L48PubMedGoogle Scholar
  103. 103.
    Al-Shabrawey M, Rojas M, Sanders T, Behzadian A, El-Remessy A, Bartoli M, Parpia AK, Liou G, Caldwell RB (2008) Role of NADPH oxidase in retinal vascular inflammation. Invest Ophthalmol Vis Sci 49:3239–3244PubMedGoogle Scholar
  104. 104.
    Schreibelt G, Kooij G, Reijerkerk A, van DR, Gringhuis SI, van der PS, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, De Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676PubMedGoogle Scholar
  105. 105.
    Fischer S, Wiesnet M, Renz D, Schaper W (2005) H2O2 induces paracellular permeability of porcine brain-derived microvascular endothelial cells by activation of the p44/42 MAP kinase pathway. Eur J Cell Biol 84:687–697PubMedGoogle Scholar
  106. 106.
    Haorah J, Ramirez SH, Schall K, Smith D, Pandya R, Persidsky Y (2007) Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood-brain barrier dysfunction. J Neurochem 101:566–576PubMedGoogle Scholar
  107. 107.
    Woodcock SA, Rooney C, Liontos M, Connolly Y, Zoumpourlis V, Whetton AD, Gorgoulis VG, Malliri A (2009) SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1. Mol Cell 33:639–653PubMedGoogle Scholar
  108. 108.
    Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, Lambeth JD, Berk BC, Cyclophilin A (2000) is a secreted growth factor induced by oxidative stress. Circ Res 87:789–796PubMedGoogle Scholar
  109. 109.
    Pyne-Geithman GJ, Morgan CJ, Wagner K, Dulaney EM, Carrozzella J, Kanter DS, Zuccarello M, Clark JF (2005) Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:1070–1077PubMedGoogle Scholar
  110. 110.
    Kuhlmann CR, Tamaki R, Gamerdinger M, Lessmann V, Behl C, Kempski OS, Luhmann HJ (2007) Inhibition of the myosin light chain kinase prevents hypoxia-induced blood-brain barrier disruption. J Neurochem 102:501–507PubMedGoogle Scholar
  111. 111.
    Gasche Y, Copin JC, Sugawara T, Fujimura M, Chan PH (2001) Matrix metalloproteinase inhibition prevents oxidative stress-associated blood-brain barrier disruption after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:1393–1400PubMedGoogle Scholar
  112. 112.
    Liu W, Sood R, Chen Q, Sakoglu U, Hendren J, Cetin O, Miyake M, Liu KJ (2008) Normobaric hyperoxia inhibits NADPH oxidase-mediated matrix metalloproteinase-9 induction in cerebral microvessels in experimental stroke. J Neurochem 107:1196–1205PubMedGoogle Scholar
  113. 113.
    Amiry-Moghaddam M, Ottersen OP (2003) The molecular basis of water transport in the brain. Nat Rev Neurosci 4:991–1001PubMedGoogle Scholar
  114. 114.
    Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Timo Kahles
    • 1
  • Sabine Heumüller
    • 1
  • Ralf P. Brandes
    • 1
  1. 1.Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations