Advertisement

Redox-Related Genetic Markers of Cardiovascular Diseases

  • Christian Delles
  • Anna F. Dominiczak
Chapter
Part of the Oxidative Stress in Applied Basic Research and Clinical Practice book series (OXISTRESS)

Abstract

Multiple factors contribute to the development of cardiovascular diseases, with oxidative stress being one of the most important pathogenetic mechanisms. Redox-related genes are therefore attractive candidate genes for cardiovascular diseases. There is compelling evidence that polymorphisms of genes that are related to production of and defences against reactive oxygen species are associated with levels of free radicals and intermediate cardiovascular phenotypes. Less robust data are available for the relationship between variants of redox-related genes and advanced cardiovascular diseases such as coronary artery disease. Reasons for these negative findings are the complexity of the disease and insufficient characterisation of the phenotype and environmental factors. Large-scale genome-wide association studies are expected to deliver results on the role of redox-related genes in the pathogenesis of cardiovascular diseases, but future strategies will also involve more systematic and integrative approaches, including transcriptomic, proteomic, and metabolomic strategies.

Keywords

Single nucleotide polymorphisms Redox signalling genes Candidate genes Genome-wide association studies Free radicals and intermediate cardiac phenotypes 

References

  1. 1.
    Padmanabhan S, Melander O, Hastie C, Menni C, Delles C, Connell JM, Dominiczak AF (2008) Hypertension and genome-wide association studies: combining high fidelity phenotyping and hypercontrols. J Hypertens 26:1275–1281PubMedCrossRefGoogle Scholar
  2. 2.
    Staessen JA, Wang J, Bianchi G, Birkenhager WH (2003) Essential hypertension. Lancet 361:1629–1641PubMedCrossRefGoogle Scholar
  3. 3.
    Mongeau JG, Biron P, Sing CF (1986) The influence of genetics and household environment upon the variability of normal blood pressure: the Montreal Adoption Survey. Clin Exp Hypertens A 8:653–660PubMedCrossRefGoogle Scholar
  4. 4.
    Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO, Kannel WB, Rosenman R, Schwartz JT, Wagner JO (1977) The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol 106:284–285PubMedGoogle Scholar
  5. 5.
    Dzau V, Braunwald E (1991) Resolved and unresolved issues in the prevention and treatment of coronary artery disease: a workshop consensus statement. Am Heart J 121:1244–1263PubMedCrossRefGoogle Scholar
  6. 6.
    Delles C, Moreno MU, Padmanabhan S, Graham D, McBride MW, Dominiczak AF (2007) Functional genomics of the oxidative stress pathway. Curr Hypertens Rev 3:156–165CrossRefGoogle Scholar
  7. 7.
    Delles C, Dominiczak AF (2006) Vascular failure or sick vessel syndrome: The cardiovascular continuum is a useful concept for clinical research. J Hypertens 24:2147–2148PubMedCrossRefGoogle Scholar
  8. 8.
    Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, Sáez GT (2003) Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension 41:1096–1101PubMedCrossRefGoogle Scholar
  9. 9.
    Taddei S, Virdis A, Ghiadoni L, Magagna A, Salvetti A (1998) Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation 97:2222–2229PubMedCrossRefGoogle Scholar
  10. 10.
    Delles C, Zimmerli LU, McGrane DJ, Koh-Tan CH, Pathi VL, McKay AJ, Steedman T, Dargie HJ, Hamilton CA, Dominiczak AF (2008) Vascular stiffness is related to superoxide generation in the vessel wall. J Hypertens 26:946–955PubMedCrossRefGoogle Scholar
  11. 11.
    Wilkinson IB, Megson IL, MacCallum H, Sogo N, Cockcroft JR, Webb DJ (1999) Oral vitamin C reduces arterial stiffness and platelet aggregation in humans. J Cardiovasc Pharmacol 34:690–693PubMedCrossRefGoogle Scholar
  12. 12.
    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T (2001) Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 104:2673–2678PubMedCrossRefGoogle Scholar
  13. 13.
    Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 12:70–88PubMedCrossRefGoogle Scholar
  14. 14.
    McBride MW, Graham D, Delles C, Dominiczak AF (2006) Functional genomics in hypertension. Curr Opin Nephrol Hypertens 15:145–151PubMedCrossRefGoogle Scholar
  15. 15.
    Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM (2002) The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62:1524–1538PubMedCrossRefGoogle Scholar
  16. 16.
    Antoniades C, Shirodaria C, Van Assche T, Cunnington C, Tegeder I, Lötsch J, Guzik TJ, Leeson P, Diesch J, Tousoulis D, Stefanadis C, Costigan M, Woolf CJ, Alp NJ, Channon KM (2008) GCH1 haplotype determines vascular and plasma biopterin availability in coronary artery disease effects on vascular superoxide production and endothelial function. J Am Coll Cardiol 52:158–165PubMedCrossRefGoogle Scholar
  17. 17.
    Guzik TJ, Sadowski J, Guzik B, Jopek A, Kapelak B, Przybylowski P, Wierzbicki K, Korbut R, Harrison DG, Channon KM (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26:333–339PubMedCrossRefGoogle Scholar
  18. 18.
    Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R, Channon KM (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22phox gene on vascular superoxide production in atherosclerosis. Circulation 102:1744–7174PubMedCrossRefGoogle Scholar
  19. 19.
    San José G, Moreno MU, Oliván S, Beloqui O, Fortuño A, Díez J, Zalba G (2004) Functional effect of the p22phox -930A/G polymorphism on p22phox expression and NADPH oxidase activity in hypertension. Hypertension 44:163–169PubMedCrossRefGoogle Scholar
  20. 20.
    Wyche KE, Wang SS, Griendling KK, Dikalov SI, Austin H, Rao S, Fink B, Harrison DG, Zafari AM (2004) C242T CYBA polymorphism of the NADPH oxidase is associated with reduced respiratory burst in human neutrophils. Hypertension 43:1246–1251PubMedCrossRefGoogle Scholar
  21. 21.
    Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M, Benjamin N, Webster J, Ratcliffe P, O’Shea S, Papp J, Taylor E, Dobson R, Knight J, Newhouse S, Hooper J, Lee W, Brain N, Clayton D, Lathrop GM, Farrall M, Connell J; MRC (2003) British Genetics of Hypertension Study. Genome-wide mapping of human loci for essential hypertension. Lancet 361:2118–2123PubMedCrossRefGoogle Scholar
  22. 22.
    Bianchi G (2005) Genetic variations of tubular sodium reabsorption leading to ‘primary’ hypertension: from gene polymorphism to clinical symptoms. Am J Physiol Regul Integr Comp Physiol 289:R1536–R1549PubMedCrossRefGoogle Scholar
  23. 23.
    NCI-NHGRI Working Group on Replication in Association Studies (2007) Replicating genotype-phenotype associations. Nature 447:655–660CrossRefGoogle Scholar
  24. 24.
    Bokoch GM, Knaus UG (2003) NADPH oxidases: not just for leukocytes anymore! Trends Biochem Sci 28:502–508PubMedCrossRefGoogle Scholar
  25. 25.
    San José G, Fortuño A, Beloqui O, Díez J, Zalba G (2008) NADPH oxidase CYBA polymorphisms, oxidative stress and cardiovascular diseases. Clin Sci 114:173–182PubMedCrossRefGoogle Scholar
  26. 26.
    Hamilton CA, Brosnan MJ, Al-Benna S, Berg G, Dominiczak AF (2002) NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hypertension 40:755–762PubMedCrossRefGoogle Scholar
  27. 27.
    Hamilton CA, Miller WH, Al-Benna S, Brosnan MJ, Drummond RD, McBride MW, Dominiczak AF (2004) Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci 106:219–234PubMedCrossRefGoogle Scholar
  28. 28.
    Mueller CF, Laude K, McNally JS, Harrison DG (2005) ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25:274–278PubMedCrossRefGoogle Scholar
  29. 29.
    Dinauer MC, Pierce EA, Bruns GA, Curnutte JT, Orkin SH (1990) Human neutrophil cytochrome b light chain (p22-phox). Gene structure, chromosomal location, and mutations in cytochrome-negative autosomal recessive chronic granulomatous disease. J Clin Invest 86:1729–1737PubMedCrossRefGoogle Scholar
  30. 30.
    Moreno MU, San José G, Fortuño A, Beloqui O, Díez J, Zalba G (2006) The C242T CYBA polymorphism of NADPH oxidase is associated with essential hypertension. J Hypertension 24:1299–1306CrossRefGoogle Scholar
  31. 31.
    Schächinger V, Britten MB, Dimmeler S, Zeiher AM (2001) NADH/NADPH oxidase p22 phox gene polymorphism is associated with improved coronary endothelial vasodilator function. Eur Heart J 22:96–101PubMedCrossRefGoogle Scholar
  32. 32.
    Shimokata K, Yamada Y, Kondo T, Ichihara S, Izawa H, Nagata K, Murohara T, Ohno M, Yokota M (2004) Association of gene polymorphisms with coronary artery disease in individuals with or without nonfamilial hypercholesterolemia. Atherosclerosis 172:167–173PubMedCrossRefGoogle Scholar
  33. 33.
    Inoue N, Kawashima S, Kanazawa K, Yamada S, Akita H, Yokoyama M (1998) Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease. Circulation 97:135–137PubMedCrossRefGoogle Scholar
  34. 34.
    Schneider MP, Hilgers KF, Huang Y, Delles C, John S, Oehmer S, Schmieder RE (2003) The C242T p22phox polymorphism and endothelium-dependent vasodilation in subjects with hypercholesterolaemia. Clin Sci 105:97–103PubMedCrossRefGoogle Scholar
  35. 35.
    Li A, Prasad A, Mincemoyer R, Satorius C, Epstein N, Finkel T, Quyyumi AA (1999) Relationship of the C242T p22phox gene polymorphism to angiographic coronary artery disease and endothelial function. Am J Med Genet 86:57–61PubMedCrossRefGoogle Scholar
  36. 36.
    Cahilly C, Ballantyne CM, Lim DS, Gotto A, Marian AJ (2000) A variant of p22(phox), involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ Res 86:391–395PubMedCrossRefGoogle Scholar
  37. 37.
    Cai H, Duarte N, Wilcken DE, Wang XL (1999) NADH/NADPH oxidase p22 phox C242T polymorphism and coronary artery disease in the Australian population. Eur J Clin Invest 29:744–874PubMedCrossRefGoogle Scholar
  38. 38.
    Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678CrossRefGoogle Scholar
  39. 39.
    Ito D, Murata M, Watanabe K, Yoshida T, Saito I, Tanahashi N, Fukuuchi Y (2000) C242T polymorphism of NADPH oxidase p22 PHOX gene and ischemic cerebrovascular disease in the Japanese population. Stroke 31:936–939PubMedCrossRefGoogle Scholar
  40. 40.
    Matsunaga-Irie S, Maruyama T, Yamamoto Y, Motohashi Y, Hirose H, Shimada A, Murata M, Saruta T (2004) Relation between development of nephropathy and the p22phox C242T and receptor for advanced glycation end product G1704T gene polymorphisms in type 2 diabetic patients. Diabetes Care 27:303–307PubMedCrossRefGoogle Scholar
  41. 41.
    Perianayagam MC, Liangos O, Kolyada AY, Wald R, MacKinnon RW, Li L, Rao M, Balakrishnan VS, Bonventre JV, Pereira BJ, Jaber BL (2007) NADPH oxidase p22phox and catalase gene variants are associated with biomarkers of oxidative stress and adverse outcomes in acute renal failure. J Am Soc Nephrol 18:255–263PubMedCrossRefGoogle Scholar
  42. 42.
    Gardemann A, Mages P, Katz N, Tillmanns H, Haberbosch W (1999) The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals. Atherosclerosis 145:315–323PubMedCrossRefGoogle Scholar
  43. 43.
    Fennell JP, Brosnan MJ, Frater AJ, Hamilton CA, Alexander MY, Nicklin SA, Heistad DD, Baker AH, Dominiczak AF (2002) Adenovirus-mediated overexpression of extracellular superoxide dismutase improves endothelial dysfunction in a rat model of hypertension. Gene Ther 9:110–117PubMedCrossRefGoogle Scholar
  44. 44.
    Alexander MY, Brosnan MJ, Hamilton CA, Fennell JP, Beattie EC, Jardine E, Heistad DD, Dominiczak AF (2000) Gene transfer of endothelial nitric oxide synthase but not Cu/Zn superoxide dismutase restores nitric oxide availability in the SHRSP. Cardiovasc Res 47:609–617PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, Gu CC, Tang H, Rao DC, Risch N, Weder A (2005) Admixture mapping for hypertension loci with genome-scan markers. Nat Genet 37:177–181PubMedCrossRefGoogle Scholar
  46. 46.
    Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y (1996) Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226:561–565PubMedCrossRefGoogle Scholar
  47. 47.
    Fujimoto H, Taguchi J, Imai Y, Ayabe S, Hashimoto H, Kobayashi H, Ogasawara K, Aizawa T, Yamakado M, Nagai R, Ohno M (2008) Manganese superoxide dismutase polymorphism affects the oxidized low-density lipoprotein-induced apoptosis of macrophages and coronary artery disease. Eur Heart J 29:1267–1274PubMedCrossRefGoogle Scholar
  48. 48.
    Kakko S, Päivänsalo M, Koistinen P, Kesäniemi YA, Kinnula VL, Savolainen MJ (2003) The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis 168:147–152PubMedCrossRefGoogle Scholar
  49. 49.
    Shao J, Chen L, Marrs B, Lee L, Huang H, Manton KG, Martin GM, Oshima J (2007) SOD2 polymorphisms: unmasking the effect of polymorphism on splicing. BMC Med Genet 8:7PubMedCrossRefGoogle Scholar
  50. 50.
    Naganuma T, Nakayama T, Sato N, Fu Z, Soma M, Aoi N, Usami R (2008) A haplotype-based case-control study examining human extracellular superoxide dismutase gene and essential hypertension. Hypertens Res 31:1533–1540PubMedCrossRefGoogle Scholar
  51. 51.
    Samoila OC, Carter AM, Futers ST, Otiman G, Anghel A, Tamas L, Seclaman E (2008) Polymorphic variants of extracellular superoxide dismutase gene in a Romanian population with atheroma. Biochem Genet 46:634–643PubMedCrossRefGoogle Scholar
  52. 52.
    Sandström J, Nilsson P, Karlsson K, Marklund SL (1994) Ten-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J Biol Chem 269:19163–19166PubMedGoogle Scholar
  53. 53.
    Adachi T, Yamada H, Yamada Y, Morihara N, Yamazaki N, Murakami T, Futenma A, Kato K, Hirano K (1996) Substitution of glycine for arginine-213 in extracellular-superoxide dismutase impairs affinity for heparin and endothelial cell surface. Biochem J 313:235–239PubMedGoogle Scholar
  54. 54.
    Juul K, Tybjaerg-Hansen A, Marklund S, Heegaard NH, Steffensen R, Sillesen H, Jensen G, Nordestgaard BG (2004) Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation 109:59–65PubMedCrossRefGoogle Scholar
  55. 55.
    Yamada H, Yamada Y, Adachi T, Fukatsu A, Sakuma M, Futenma A, Kakumu S (2000) Protective role of extracellular superoxide dismutase in hemodialysis patients. Nephron 84:218–223PubMedCrossRefGoogle Scholar
  56. 56.
    Chu Y, Alwahdani A, Iida S, Lund DD, Faraci FM, Heistad DD (2005) Vascular effects of the human extracellular superoxide dismutase R213G variant. Circulation 112:1047–1053PubMedCrossRefGoogle Scholar
  57. 57.
    Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ (2003) AtheroGene Investigators. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349:1605–1613PubMedCrossRefGoogle Scholar
  58. 58.
    Hamanishi T, Furuta H, Kato H, Doi A, Tamai M, Shimomura H, Sakagashira S, Nishi M, Sasaki H, Sanke T, Nanjo K (2004) Functional variants in the glutathione peroxidase-1 (GPx-1) gene are associated with increased intima-media thickness of carotid arteries and risk of macrovascular diseases in Japanese type 2 diabetic patients. Diabetes 53:2455–2460PubMedCrossRefGoogle Scholar
  59. 59.
    Tang NP, Wang LS, Yang L, Gu HJ, Sun QM, Cong RH, Zhou B, Zhu HJ, Wang B (2008) Genetic variant in glutathione peroxidase 1 gene is associated with an increased risk of coronary artery disease in a Chinese population. Clin Chim Acta 395:89–93PubMedCrossRefGoogle Scholar
  60. 60.
    Winter JP, Gong Y, Grant PJ, Wild CP (2003) Glutathione peroxidase 1 genotype is associated with an increased risk of coronary artery disease. Coron Artery Dis 14:149–153PubMedCrossRefGoogle Scholar
  61. 61.
    Nemoto M, Nishimura R, Sasaki T, Hiki Y, Miyashita Y, Nishioka M, Fujimoto K, Sakuma T, Ohashi T, Fukuda K, Eto Y, Tajima N (2007) Genetic association of glutathione peroxidase-1 with coronary artery calcification in type 2 diabetes: a case control study with multi-slice computed tomography. Cardiovasc Diabetol 6:23PubMedCrossRefGoogle Scholar
  62. 62.
    Oguri M, Kato K, Hibino T, Yokoi K, Segawa T, Matsuo H, Watanabe S, Nozawa Y, Murohara T, Yamada Y (2007) Genetic risk for restenosis after coronary stenting. Atherosclerosis 194:e172–e178PubMedCrossRefGoogle Scholar
  63. 63.
    Kato K, Oguri M, Kato N, Hibino T, Yajima K, Yoshida T, Metoki N, Yoshida H, Satoh K, Watanabe S, Yokoi K, Murohara T, Yamada Y (2008) Assessment of genetic risk factors for thoracic aortic aneurysm in hypertensive patients. Am J Hypertens 21:1023–1027PubMedCrossRefGoogle Scholar
  64. 64.
    Forsberg L, de Faire U, Marklund SL, Andersson PM, Stegmayr B, Morgenstern R (2000) Phenotype determination of a common Pro-Leu polymorphism in human glutathione peroxidase 1. Blood Cells Mol Dis 26:423–426PubMedCrossRefGoogle Scholar
  65. 65.
    Jiang Z, Akey JM, Shi J, Xiong M, Wang Y, Shen Y, Xu X, Chen H, Wu H, Xiao J, Lu D, Huang W, Jin L (2001) A polymorphism in the promoter region of catalase is associated with blood pressure levels. Hum Genet 109:95–98PubMedCrossRefGoogle Scholar
  66. 66.
    Ng CJ, Shih DM, Hama SY, Villa N, Navab M, Reddy ST (2005) The paraoxonase gene family and atherosclerosis. Free Radic Biol Med 38:153–163PubMedCrossRefGoogle Scholar
  67. 67.
    Delles C, McBride MW, Padmanabhan S, Dominiczak AF (2008) The genetics of cardiovascular disease. Trends Endocrinol Metab 199:309–316Google Scholar
  68. 68.
    Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvák Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40:516–522PubMedCrossRefGoogle Scholar
  69. 69.
    Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Ver 80:135–172Google Scholar
  70. 70.
    Dominiczak AF, Devlin AM, Lee WK, Anderson NH, Bohr DF, Reid JL (1996) Vascular smooth muscle polyploidy and cardiac hypertrophy in genetic hypertension. Hypertension 27:752–759PubMedCrossRefGoogle Scholar
  71. 71.
    Jeffs B, Clark JS, Anderson NH, Gratton J, Brosnan MJ, Gauguier D, Reid JL, Macrae IM, Dominiczak AF (1997) Sensitivity to cerebral ischaemic insult in a rat model of stroke is determined by a single genetic locus. Nat Genet 16:364–367PubMedCrossRefGoogle Scholar
  72. 72.
    Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33:1353–1358PubMedCrossRefGoogle Scholar
  73. 73.
    Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF (2001) Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 37:529–534PubMedCrossRefGoogle Scholar
  74. 74.
    Clark JS, Jeffs B, Davidson AO, Lee WK, Anderson NH, Bihoreau MT, Brosnan MJ, Devlin AM, Kelman AW, Lindpaintner K, Dominiczak AF (1996) Quantitative trait loci in genetically hypertensive rats. Possible sex specificity. Hypertension 28:898–906PubMedCrossRefGoogle Scholar
  75. 75.
    Jeffs B, Negrin CD, Graham D, Clark JS, Anderson NH, Gauguier D, Dominiczak AF (2000) Applicability of a “speed” congenic strategy to dissect blood pressure quantitative trait loci on rat chromosome 2. Hypertension 35:179–187PubMedCrossRefGoogle Scholar
  76. 76.
    McBride MW, Carr FJ, Graham D, Anderson NH, Clark JS, Lee WK, Charchar FJ, Brosnan MJ, Dominiczak AF (2003) Microarray analysis of rat chromosome 2 congenic strains. Hypertension 41:847–853PubMedCrossRefGoogle Scholar
  77. 77.
    Hayes JD, Strange RC (2000) Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 61:154–166PubMedCrossRefGoogle Scholar
  78. 78.
    Friese RS, Mahboubi P, Mahapatra NR, Mahata SK, Schork NJ, Schmid-Schönbein GW, O’Connor DT (2005) Common genetic mechanisms of blood pressure elevation in two independent rodent models of human essential hypertension. Am J Hypertens 18:633–652PubMedCrossRefGoogle Scholar
  79. 79.
    Hübner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Müller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253PubMedCrossRefGoogle Scholar
  80. 80.
    McBride MW, Brosnan MJ, Mathers J, McLellan LI, Miller WH, Graham D, Hanlon N, Hamilton CA, Polke JM, Lee WK, Dominiczak AF (2005) Reduction of Gstm1 expression in the stroke-prone spontaneously hypertension rat contributes to increased oxidative stress. Hypertension 45:786–792PubMedCrossRefGoogle Scholar
  81. 81.
    Gronau S, Koenig-Greger D, Jerg M, Riechelmann H (2003) Gene polymorphisms in detoxification enzymes as susceptibility factor for head and neck cancer? Otolaryngol Head Neck Surg 128:674–680PubMedCrossRefGoogle Scholar
  82. 82.
    Canbay E, Dokmetas S, Canbay EI, Sen M, Bardakci F (2003) Higher glutathione transferase GSTM1 0/0 genotype frequency in young thyroid carcinoma patients. Curr Med Res Opin 19:102–106PubMedCrossRefGoogle Scholar
  83. 83.
    Sierra-Torres CH, Au WW, Arrastia CD, Cajas-Salazar N, Robazetti SC, Payne DA, Tyring SK (2003) Polymorphisms for chemical metabolizing genes and risk for cervical neoplasia. Environ Mol Mutagen 41:69–76PubMedCrossRefGoogle Scholar
  84. 84.
    Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK (1993) Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14:1821–1824PubMedCrossRefGoogle Scholar
  85. 85.
    Liloglou T, Walters M, Maloney P, Youngson J, Field JK (2002) A T2517C polymorphism in the GSTM4 gene is associated with risk of developing lung cancer. Lung Cancer 37:143–146PubMedCrossRefGoogle Scholar
  86. 86.
    Balta G, Yuksek N, Ozyurek E, Ertem U, Hicsonmez G, Altay C, Gurgey A (2003) Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 73:154–160PubMedCrossRefGoogle Scholar
  87. 87.
    Bardakci F, Canbay E, Degerli N, Coban L, Canbay EI (2003) Relationship of tobacco smoking with GSTM1 gene polymorphism in laringeal cancer. J Cell Mol Med 7:307–312PubMedCrossRefGoogle Scholar
  88. 88.
    Lee KM, Park SK, Kim SU, Doll MA, Yoo KY, Ahn SH, Noh DY, Hirvonen A, Hein DW, Kang D (2003) N-acetyltransferase (NAT1, NAT2) and glutathione S-transferase (GSTM1, GSTT1) polymorphisms in breast cancer. Cancer Lett 196:179–186PubMedCrossRefGoogle Scholar
  89. 89.
    Saadat M, Ansari-Lari M (2007) Genetic polymorphism of glutathione S-transferase T1, M1 and asthma, a meta-analysis of the literature. Pak J Biol Sci 10:4183–4189PubMedCrossRefGoogle Scholar
  90. 90.
    Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D (2004) Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 363:119–125PubMedCrossRefGoogle Scholar
  91. 91.
    Oniki K, Hori M, Takata K, Yokoyama T, Mihara S, Marubayashi T, Nakagawa K (2008) Association between glutathione S-transferase A1, M1 and T1 polymorphisms and hypertension. Pharmacogenet Genomics 18:275–277PubMedCrossRefGoogle Scholar
  92. 92.
    Marinho C, Alho I, Arduíno D, Falcão LM, Brás-Nogueira J, Bicho M (2007) GST M1/T1 and MTHFR polymorphisms as risk factors for hypertension. Biochem Biophys Res Commun 353:344–350PubMedCrossRefGoogle Scholar
  93. 93.
    Abu-Amero KK, Al-Boudari OM, Mohamed GH, Dzimiri N (2006) T null and M null genotypes of the glutathione S-transferase gene are risk factor for CAD independent of smoking. BMC Med Genet 7:38PubMedCrossRefGoogle Scholar
  94. 94.
    Wilson MH, Grant PJ, Hardie LJ, Wild CP (2000) Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction. FASEB J 14:791–796PubMedGoogle Scholar
  95. 95.
    Delles C, Padmanabhan S, Lee WK, Miller WH, McBride MW, McClure JD, Brain NJ, Wallace C, Marçano AC, Schmieder RE, Brown MJ, Caulfield MJ, Munroe PB, Farrall M, Webster J, Connell JM, Dominiczak AF (2008) Glutathione S-transferase variants and hypertension. J Hypertens 26:1343–1352PubMedCrossRefGoogle Scholar
  96. 96.
    Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H (2007) WTCCC and the Cardiogenics Consortium. Genomewide association analysis of coronary artery disease. N Engl J Med 357:443–453PubMedCrossRefGoogle Scholar
  97. 97.
    Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473PubMedCrossRefGoogle Scholar
  98. 98.
    Delles C, Miller WH, Dominiczak AF (2008) Targeting reactive oxygen species in hypertension. Antioxid Redox Signal 10:1061–1077PubMedCrossRefGoogle Scholar
  99. 99.
    Espinosa O, Jimenez-Almazan J, Chaves FJ, Tormos MC, Clapes S, Iradi A, Salvador A, Fandos M, Redón J, Sáez GT (2007) Urinary 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dG), a reliable oxidative stress marker in hypertension. Free Radic Res 1:546–554CrossRefGoogle Scholar
  100. 100.
    Graham D, Spiers A, Beattie E, Taylor K, Murphy MP, Hamilton C, Miller WH, Dominiczak AF (2007) Mitochondrial-targeted antioxidant treatment improves cardiovascular function. J Hypertens 25(Suppl 2):S145; (abstract)Google Scholar
  101. 101.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465PubMedCrossRefGoogle Scholar
  102. 102.
    Delles C (2007) Mitochondria, maternal transmission and hypertension. J Hypertens 25:2001–2003PubMedCrossRefGoogle Scholar
  103. 103.
    Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG (1996) Not all Shc’s roads lead to Ras. Trends Biochem Sci 21:257–261PubMedGoogle Scholar
  104. 104.
    Huebner K, Kastury K, Druck T, Salcini AE, Lanfrancone L, Pelicci G, Lowenstein E, Li W, Park SH, Cannizzaro L, Pelicci PG, Schlessinger J (1994) Chromosome locations of genes encoding human signal transduction adapter proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2. Genomics 22:281–287PubMedCrossRefGoogle Scholar
  105. 105.
    Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313PubMedCrossRefGoogle Scholar
  106. 106.
    Francia P, Delli Gatti C, Bachschmid M, Martin-Padura I, Savoia C, Migliaccio E, Pelicci PG, Schiavoni M, Lüscher TF, Volpe M, Cosentino F (2004) Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation 110:2889–2895PubMedCrossRefGoogle Scholar
  107. 107.
    Kamei H, Adati N, Arai Y, Yamamura K, Takayama M, Nakazawa S, Ebihara Y, Gondo Y, Akechi M, Noguchi T, Hirose N, Sakaki Y, Kojima T (2003) Association analysis of the SHC1 gene locus with longevity in the Japanese population. J Mol Med 81:724–728PubMedCrossRefGoogle Scholar
  108. 108.
    Mooijaart SP, van Heemst D, Schreuder J, van Gerwen S, Beekman M, Brandt BW, Eline Slagboom P, Westendorp RG (2004) ‘Long Life’ Study Group. Variation in the SHC1 gene and longevity in humans. Exp Gerontol 39:263–268PubMedCrossRefGoogle Scholar
  109. 109.
    Almind K, Ahlgren MG, Hansen T, Urhammer SA, Clausen JO, Pedersen O (1999) Discovery of a Met300Val variant in Shc and studies of its relationship to birth weight and length, impaired insulin secretion, insulin resistance, and type 2 diabetes mellitus. J Clin Endocrinol Metab 84:2241–2244PubMedCrossRefGoogle Scholar
  110. 110.
    Sentinelli F, Romeo S, Barbetti F, Berni A, Filippi E, Fanelli M, Fallarino M, Baroni MG (2006) Search for genetic variants in the p66Shc longevity gene by PCR-single strand conformational polymorphism in patients with early-onset cardiovascular disease. BMC Genet 7:14PubMedCrossRefGoogle Scholar
  111. 111.
    Finsterer J (2007) Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 116:1–14PubMedCrossRefGoogle Scholar
  112. 112.
    Sakuta R, Honzawa S, Murakami N, Goto Y, Nagai T (2002) Atypical MELAS associated with mitochondrial tRNA(Lys) gene A8296G mutation. Pediatr Neurol 27:397–400PubMedCrossRefGoogle Scholar
  113. 113.
    Remes AM, Kärppä M, Moilanen JS, Rusanen H, Hassinen IE, Majamaa K, Uimonen S, Sorri M, Salmela PI, Karvonen SL, Karvonen SL (2003) Epidemiology of the mitochondrial DNA 8344A>G mutation for the myoclonus epilepsy and ragged red fibres (MERRF) syndrome. J Neurol Neurosurg Psychiatr 74:1158–1159PubMedCrossRefGoogle Scholar
  114. 114.
    Remes AM, Hassinen IE, Ikäheimo MJ, Herva R, Hirvonen J, Peuhkurinen KJ (1994) Mitochondrial DNA deletions in dilated cardiomyopathy: a clinical study employing endomyocardial sampling. J Am Coll Cardiol 23:935–942PubMedCrossRefGoogle Scholar
  115. 115.
    Ruppert V, Nolte D, Aschenbrenner T, Pankuweit S, Funck R, Maisch B (2004) Novel point mutations in the mitochondrial DNA detected in patients with dilated cardiomyopathy by screening the whole mitochondrial genome. Biochem Biophys Res Commun 318:535–543PubMedCrossRefGoogle Scholar
  116. 116.
    Grasso M, Diegoli M, Brega A, Campana C, Tavazzi L, Arbustini E (2001) The mitochondrial DNA mutation T12297C affects a highly conserved nucleotide of tRNA(Leu(CUN)) and is associated with dilated cardiomyopathy. Eur J Hum Genet 9:311–315PubMedCrossRefGoogle Scholar
  117. 117.
    Shin WS, Tanaka M, Suzuki J, Hemmi C, Toyo-oka T (2000) A novel homoplasmic mutation in mtDNA with a single evolutionary origin as a risk factor for cardiomyopathy. Am J Hum Genet 67:1617–1620PubMedCrossRefGoogle Scholar
  118. 118.
    Arbustini E, Diegoli M, Fasani R, Grasso M, Morbini P, Banchieri N, Bellini O, Dal Bello B, Pilotto A, Magrini G, Campana C, Fortina P, Gavazzi A, Narula J, Viganò M (1998) Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 153:1501–1510PubMedCrossRefGoogle Scholar
  119. 119.
    Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360:23–33CrossRefGoogle Scholar
  120. 120.
    Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160PubMedCrossRefGoogle Scholar
  121. 121.
    Alexander BT (2006) Fetal programming of hypertension. Am J Physiol Regul Integr Comp Physiol 290:R1–R10PubMedCrossRefGoogle Scholar
  122. 122.
    Napoli C, Witztum JL, Calara F, de Nigris F, Palinski W (2000) Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circ Res 87:946–952PubMedCrossRefGoogle Scholar
  123. 123.
    Probst-Hensch NM, Imboden M, Felber Dietrich D, Barthélemy JC, Ackermann-Liebrich U, Berger W, Gaspoz JM, Schwartz J (2008) Glutathione S-transferase polymorphisms, passive smoking, obesity, and heart rate variability in nonsmokers. Environ Health Perspect 116:1494–1499PubMedCrossRefGoogle Scholar
  124. 124.
    Wang LS, Tang JJ, Tang NP, Wang MW, Yan JJ, Wang QM, Yang ZJ, Wang B (2008) Association of GSTM1 and GSTT1 gene polymorphisms with coronary artery disease in relation to tobacco smoking. Clin Chem Lab Med 46:1720–1725PubMedGoogle Scholar
  125. 125.
    Melén E, Nyberg F, Lindgren CM, Berglind N, Zucchelli M, Nordling E, Hallberg J, Svartengren M, Morgenstern R, Kere J, Bellander T, Wickman M, Pershagen G (2008) Interactions between glutathione S-transferase P1, tumor necrosis factor, and traffic-related air pollution for development of childhood allergic disease. Environ Health Perspect 116:1077–1084PubMedCrossRefGoogle Scholar
  126. 126.
    Chahine T, Baccarelli A, Litonjua A, Wright RO, Suh H, Gold DR, Sparrow D, Vokonas P, Schwartz J (2007) Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ Health Perspect 115:1617–1622PubMedCrossRefGoogle Scholar
  127. 127.
    Medeiros R, Pereira D, Afonso N, Palmeira C, Faleiro C, Afonso-Lopes C, Freitas-Silva M, Vasconcelos A, Costa S, Osório T, Lopes C (2003) Platinum/paclitaxel-based chemotherapy in advanced ovarian carcinoma: glutathione S-transferase genetic polymorphisms as predictive biomarkers of disease outcome. Int J Clin Oncol 8:156–161PubMedCrossRefGoogle Scholar
  128. 128.
    Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS 2nd, Lachno DR, Salazar D, Winters KJ (2007) Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5:2429–2436PubMedCrossRefGoogle Scholar
  129. 129.
    Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, Aiach M, Lechat P, Gaussem P (2006) Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108:2244–2247PubMedCrossRefGoogle Scholar
  130. 130.
    Simon T, Verstuyft C, Mary-Krause M, Quteineh L, Drouet E, Méneveau N, Steg PG, Ferrières J, Danchin N, Becquemont L (2009) the French Registry of Acute ST-Elevation and Non–ST-Elevation Myocardial Infarction (FAST-MI) Investigators. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med 360(4):363–375PubMedCrossRefGoogle Scholar
  131. 131.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, Sabatine MS (2009) Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med 360(4):354–362PubMedCrossRefGoogle Scholar
  132. 132.
    Keeney DS, Skinner C, Travers JB, Capdevila JH, Nanney LB, King LE Jr, Waterman MR (1998) Differentiating keratinocytes express a novel cytochrome P450 enzyme, CYP2B19, having arachidonate monooxygenase activity. J Biol Chem 273:32071–32079PubMedCrossRefGoogle Scholar
  133. 133.
    Padmanabhan S, Wallace C, Munroe PB, Dobson R, Brown M, Samani N, Clayton D, Farrall M, Webster J, Lathrop M, Caulfield M, Dominiczak AF, Connell JM (2006) Chromosome 2p shows significant linkage to antihypertensive response in the British Genetics of Hypertension Study. Hypertension 47:603–608PubMedCrossRefGoogle Scholar
  134. 134.
    SEARCH Collaborative Group; Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F, Gut I, Lathrop M, Collins R (2008) SLCO1B1 variants and statin-induced myopathy–a genomewide study. N Engl J Med 359:789–799PubMedCrossRefGoogle Scholar
  135. 135.
    Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974PubMedCrossRefGoogle Scholar
  136. 136.
    Nagai F, Kato E, Tamura HO (2004) Oxidative stress induces GSTP1 and CYP3A4 expression in the human erythroleukemia cell line, K562. Biol Pharm Bull 27:492–495PubMedCrossRefGoogle Scholar
  137. 137.
    Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435:745–746PubMedCrossRefGoogle Scholar
  138. 138.
    Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400PubMedCrossRefGoogle Scholar
  139. 139.
    Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  140. 140.
    Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.BHF Glasgow Cardiovascular Research Centre, University of GlasgowGlasgowScotlandUK

Personalised recommendations