Skip to main content

Myeloablative Transplant (HCT)

  • Chapter
  • First Online:
  • 1579 Accesses

Part of the book series: Contemporary Hematology ((CH))

Abstract

Initial attempts to use allogeneic bone marrow to reconstitute hematopoiesis after myeloablative treatment for hematologic malignancies began in the late 1930s but were unsuccessful. Advance in the knowledge of histocompatibility, conditioning, prevention, and treatment of graft-versus-host disease and supportive care in the late 1960s and early 1970s enabled successful outcomes after allogeneic hematopoietic cell transplantation (HCT) for treatment of hematologic malignancies and certain nonmalignant diseases, such as immune deficiencies. Treatment with myeloablative or nonmyeloablative conditioning regimens followed by allogeneic HCT is now used routinely in the management of several hematologic malignancies, including acute and chronic leukemia and high-risk myelodysplastic syndrome (MDS).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Thomas E. A history of allogeneic hematopoietic cell transplantation. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, editors. Thomas’ hematopoietic cell transplantation. Oxford, England: Wiley-Blackwell Publishing; 2009. p. 3–7.

    Google Scholar 

  2. Barrett J. Essential biology of stem cell transplantation. In: Treleaven J, Barrett J, editors. Hematopoietic stem cell transplantation in clinical practice. 1st ed. Edinburgh: Churchill Livingstone; 2009. p. 9–21.

    Google Scholar 

  3. Gooley TA, Chien JW, Pergam SA, et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363(22):2091–101.

    Article  PubMed  CAS  Google Scholar 

  4. Bensinger WI. High-dose preparatory regimens. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, editors. Thomas’ hematopoietic cell transplantation. Oxford, England: Wiley-Blackwell Publishing; 2009. p. 316–31.

    Chapter  Google Scholar 

  5. Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: a randomized trial of two irradiation regimens. Blood. 1990;76(9):1867–71.

    PubMed  CAS  Google Scholar 

  6. Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation in patients with chronic myeloid leukemia in the chronic phase: a randomized trial of two irradiation regimens. Blood. 1991;77(8):1660–5.

    PubMed  CAS  Google Scholar 

  7. Pagel JM, Gooley TA, Rajendran J, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2009;114(27):5444–53.

    Article  PubMed  CAS  Google Scholar 

  8. McDonald GB, Slattery JT, Bouvier ME, et al. Cyclophosphamide metabolism, liver toxicity, and mortality following hematopoietic stem cell transplantation. Blood. 2003;101(5):2043–8.

    Article  PubMed  CAS  Google Scholar 

  9. McCune JS, Batchelder A, Guthrie KA, et al. Personalized dosing of cyclophosphamide in the total body irradiation-cyclophosphamide conditioning regimen: a phase II trial in patients with hematologic malignancy. Clin Pharmacol Ther. 2009;85(6):615–22.

    Article  PubMed  CAS  Google Scholar 

  10. Grochow LB. Busulfan disposition: the role of therapeutic monitoring in bone marrow transplantation induction regimens. Semin Oncol. 1993;20(4 Suppl 4):18–25; quiz 26.

    PubMed  CAS  Google Scholar 

  11. Radich JP, Gooley T, Bensinger W, et al. HLA-matched related hematopoietic cell transplantation for chronic-phase CML using a targeted busulfan and cyclophosphamide preparative regimen. Blood. 2003;102(1):31–5.

    Article  PubMed  CAS  Google Scholar 

  12. Kashyap A, Wingard J, Cagnoni P, et al. Intravenous versus oral busulfan as part of a busulfan/cyclophosphamide preparative regimen for allogeneic hematopoietic stem cell transplantation: decreased incidence of hepatic venoocclusive disease (HVOD), HVOD-related mortality, and overall 100-day mortality. Biol Blood Marrow Transplant. 2002;8(9):493–500.

    Article  PubMed  CAS  Google Scholar 

  13. McCune JS, Batchelder A, Deeg HJ, et al. Cyclophosphamide following targeted oral busulfan as conditioning for hematopoietic cell transplantation: pharmacokinetics, liver toxicity, and mortality. Biol Blood Marrow Transplant. 2007;13(7):853–62.

    Article  PubMed  CAS  Google Scholar 

  14. Rezvani AR, McCune JS, Batchelder A, Storer BE, McDonald GB, Deeg J. Low toxicity and mortality with reversed-order conditioning (cyclophosphamide followed by targeted intravenous busulfan) in allogeneic hematopoietic cell transplantation: preliminary results of a prospective clinical trial (Abstract #1175). Paper presented at: 51st American Society of Hematology (ASH) annual meeting 2009, New Orleans, 2009.

    Google Scholar 

  15. Cantoni N, Gerull S, Heim D, et al. Order of application and liver toxicity in patients given BU and CY containing conditioning regimens for allogeneic hematopoietic SCT. Bone Marrow Transplant. 2010;46(3):344–9.

    Article  PubMed  Google Scholar 

  16. de Lima M, Couriel D, Thall PF, et al. Once-daily intravenous busulfan and fludarabine: clinical and pharmacokinetic results of a myeloablative, reduced-toxicity conditioning regimen for allogeneic stem cell transplantation in AML and MDS. Blood. 2004;104(3):857–64.

    Article  PubMed  Google Scholar 

  17. Aversa F, Reisner Y, Martelli MF. Hematopoietic stem cell transplantation from alternative sources in adults with high-risk acute leukemia. Blood Cells Mol Dis. 2004;33(3):294–302.

    Article  PubMed  Google Scholar 

  18. Group SCTC. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: an individual patient data meta-analysis of nine randomized trials. J Clin Oncol. 2005;23(22):5074–87.

    Article  Google Scholar 

  19. Ringden O, Labopin M, Bacigalupo A, et al. Transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical siblings in adult patients with acute myeloid leukemia and acute lymphoblastic leukemia. J Clin Oncol. 2002;20(24):4655–64.

    Article  PubMed  CAS  Google Scholar 

  20. Rocha V, Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351(22):2276–85.

    Article  PubMed  CAS  Google Scholar 

  21. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91(12):4523–30.

    PubMed  CAS  Google Scholar 

  22. Christopherson 2nd KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305(5686):1000–3.

    Article  PubMed  CAS  Google Scholar 

  23. Mielcarek M, Storb R, Georges GE, Golubev L, Nikitine A, Hwang B, Nash RA, Torok-Storb B. Mesenchymal stromal cells fail to prevent acute graft-versus-host disease and graft rejection after dog leukocyte antigen-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2011;17(2):214–25. Epub 2010 Oct 30.

    Article  PubMed  Google Scholar 

  24. Deeg HJ. How I treat refractory acute GVHD. Blood. 2007;109(10):4119–26.

    Article  PubMed  CAS  Google Scholar 

  25. Mielcarek M, Martin PJ, Leisenring W, et al. Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation. Blood. 2003;102(2):756–62.

    Article  PubMed  CAS  Google Scholar 

  26. Cutler C, Antin J. Manifestation and treatment of acute graft-versus-host disease. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, editors. Thomas’ hematopoietic cell transplantation. Oxford, England: Wiley-Blackwell Publishing; 2009. p. 1287–303.

    Chapter  Google Scholar 

  27. Chao NJ, Sullivan KM. Pharmacologic prevention of acute graft-versus-host disease. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, editors. Thomas’ hematopoietic cell transplantation. Oxford, England: Wiley-Blackwell Publishing; 2009. p. 1257–74.

    Chapter  Google Scholar 

  28. Storb R, Deeg HJ, Fisher L, et al. Cyclosporine v methotrexate for graft-v-host disease prevention in patients given marrow grafts for leukemia: long-term follow-up of three controlled trials. Blood. 1988;71(2):293–8.

    PubMed  CAS  Google Scholar 

  29. Storb R, Deeg HJ, Pepe M, et al. Methotrexate and cyclosporine versus cyclosporine alone for prophylaxis of graft-versus-host disease in patients given HLA-identical marrow grafts for leukemia: long-term follow-up of a controlled trial. Blood. 1989;73(6):1729–34.

    PubMed  CAS  Google Scholar 

  30. Luznik L, Bolanos-Meade J, Zahurak M, et al. High-dose cyclophosphamide as single-agent, short-course prophylaxis of graft-versus-host disease. Blood. 2010;115(16):3224–30.

    Article  PubMed  CAS  Google Scholar 

  31. Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50.

    Article  PubMed  CAS  Google Scholar 

  32. O’Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8(7):377–86.

    Article  PubMed  Google Scholar 

  33. Wagner JE, Thompson JS, Carter SL, Kernan NA. Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial. Lancet. 2005;366(9487):733–41.

    Article  PubMed  CAS  Google Scholar 

  34. Anderson BE, McNiff J, Yan J, et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112(1):101–8.

    PubMed  CAS  Google Scholar 

  35. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L-memory T cells without graft-versus-host disease. Blood. 2004;103(4):1534–41.

    Article  PubMed  CAS  Google Scholar 

  36. Finke J, Bethge WA, Schmoor C, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009;10(9):855–64.

    Article  PubMed  CAS  Google Scholar 

  37. Van Lint MT, Uderzo C, Locasciulli A, et al. Early treatment of acute graft-versus-host disease with high- or low-dose 6-methylprednisolone: a multicenter randomized trial from the Italian Group for Bone Marrow Transplantation. Blood. 1998;92(7):2288–93.

    PubMed  Google Scholar 

  38. McDonald GB, Bouvier M, Hockenbery DM, et al. Oral beclomethasone dipropionate for treatment of intestinal graft-versus-host disease: a randomized, controlled trial. Gastroenterology. 1998;115(1):28–35.

    Article  PubMed  CAS  Google Scholar 

  39. Hockenbery DM, Cruickshank S, Rodell TC, et al. A randomized, placebo-controlled trial of oral beclomethasone dipropionate as a prednisone-sparing therapy for gastrointestinal graft-versus-host disease. Blood. 2007;109(10):4557–63.

    Article  PubMed  CAS  Google Scholar 

  40. Mielcarek M, Storer BE, Boeckh M, et al. Initial therapy of acute graft-versus-host disease with low-dose prednisone does not compromise patient outcomes. Blood. 2009;113(13):2888–94.

    Article  PubMed  CAS  Google Scholar 

  41. Deeg HJ, Flowers M. Acute graft-versus-host disease. In: Treleaven J, Barrett J, editors. Hematopoietic stem cell transplantation in clinical practice. Edinburgh: Churchill Livingstone; 2009. p. 387–400.

    Google Scholar 

  42. Goerner M, Gooley T, Flowers ME, et al. Morbidity and mortality of chronic GVHD after hematopoietic stem cell transplantation from HLA-identical siblings for patients with aplastic or refractory anemias. Biol Blood Marrow Transplant. 2002;8(1):47–56.

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan KM, Weiden PL, Storb R, et al. Influence of acute and chronic graft-versus-host disease on relapse and survival after bone marrow transplantation from HLA-identical siblings as treatment of acute and chronic leukemia. Blood. 1989;73(6):1720–8.

    PubMed  CAS  Google Scholar 

  44. Appelbaum FR. Allogeneic hematopoietic stem cell transplantation for acute leukemia. Semin Oncol. 1997;24(1):114–23.

    PubMed  CAS  Google Scholar 

  45. Clift RA, Buckner CD, Appelbaum FR, et al. Allogeneic marrow transplantation during untreated first relapse of acute myeloid leukemia. J Clin Oncol. 1992;10(11):1723–9.

    PubMed  CAS  Google Scholar 

  46. Deeg HJ, Storer B, Slattery JT, et al. Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood. 2002;100(4):1201–7.

    Article  PubMed  CAS  Google Scholar 

  47. de Witte T, Hermans J, Vossen J, et al. Haematopoietic stem cell transplantation for patients with myelo-dysplastic syndromes and secondary acute myeloid leukaemias: a report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol. 2000;110(3):620–30.

    Article  PubMed  Google Scholar 

  48. Walter RB, Pagel JM, Gooley TA, et al. Comparison of matched unrelated and matched related donor myeloablative hematopoietic cell transplantation for adults with acute myeloid leukemia in first remission. Leukemia. 2010;24(7):1276–82.

    Article  PubMed  CAS  Google Scholar 

  49. Frassoni F, Barrett AJ, Granena A, et al. Relapse after allogeneic bone marrow transplantation for acute leukaemia: a survey by the E.B.M.T. of 117 cases. Br J Haematol. 1988;70(3):317–20.

    Article  PubMed  CAS  Google Scholar 

  50. Mortimer J, Blinder MA, Schulman S, et al. Relapse of acute leukemia after marrow transplantation: natural history and results of subsequent therapy. J Clin Oncol. 1989;7(1):50–7.

    PubMed  CAS  Google Scholar 

  51. Elmaagacli AH, Beelen DW, Trenn G, Schmidt O, Nahler M, Schaefer UW. Induction of a graft-versus-leukemia reaction by cyclosporin A withdrawal as immunotherapy for leukemia relapsing after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1999;23(8):771–7.

    Article  PubMed  CAS  Google Scholar 

  52. Collins Jr RH, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15(2):433–44.

    PubMed  Google Scholar 

  53. Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood. 1995;86(5):2041–50.

    PubMed  CAS  Google Scholar 

  54. Choi SJ, Lee JH, Lee JH, et al. Treatment of relapsed acute myeloid leukemia after allogeneic bone marrow transplantation with chemotherapy followed by G-CSF-primed donor leukocyte infusion: a high incidence of isolated extramedullary relapse. Leukemia. 2004;18(11):1789–97.

    Article  PubMed  CAS  Google Scholar 

  55. Levine JE, Braun T, Penza SL, et al. Prospective trial of chemotherapy and donor leukocyte infusions for relapse of advanced myeloid malignancies after allogeneic stem-cell transplantation. J Clin Oncol. 2002;20(2):405–12.

    Article  PubMed  CAS  Google Scholar 

  56. Schmid C, Labopin M, Nagler A, et al. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT acute leukemia working party. J Clin Oncol. 2007;25(31):4938–45.

    Article  PubMed  CAS  Google Scholar 

  57. Bosi A, Laszlo D, Labopin M, et al. Second allogeneic bone marrow transplantation in acute leukemia: results of a survey by the European cooperative group for blood and marrow transplantation. J Clin Oncol. 2001;19(16):3675–84.

    PubMed  CAS  Google Scholar 

  58. Baron F, Storb R, Storer BE, et al. Factors associated with outcomes in allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning after failed myeloablative hematopoietic cell transplantation. J Clin Oncol. 2006;24(25):4150–7.

    Article  PubMed  Google Scholar 

  59. Mielcarek M, Storer BE, Flowers ME, Storb R, Sandmaier BM, Martin PJ. Outcomes among patients with recurrent high-risk hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2007;13(10):1160–8.

    Article  PubMed  Google Scholar 

  60. Warren EH, Fujii N, Akatsuka Y, et al. Therapy of relapsed leukemia after allogeneic hematopoietic cell transplantation with T cells specific for minor histocompatibility antigens. Blood. 2010;115(19):3869–78.

    Article  PubMed  CAS  Google Scholar 

  61. Yamagami T, Sugiyama H, Inoue K, et al. Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood. 1996;87(7):2878–84.

    PubMed  CAS  Google Scholar 

  62. Tsuboi A, Oka Y, Ogawa H, et al. Constitutive expression of the Wilms’ tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G- CSF). Leuk Res. 1999;23(5):499–505.

    Article  PubMed  CAS  Google Scholar 

  63. Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol. 2003;21(10):1988–95.

    Article  PubMed  CAS  Google Scholar 

  64. Menssen HD, Renkl HJ, Rodeck U, et al. Presence of Wilms’ tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia. 1995;9(6):1060–7.

    PubMed  CAS  Google Scholar 

  65. Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T- lymphocyte clone specific for WT1 peptide. Blood. 2000;95(1):286–93.

    PubMed  CAS  Google Scholar 

  66. Oka Y, Elisseeva OA, Tsuboi A, et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics. 2000;51(2):99–107.

    Article  PubMed  CAS  Google Scholar 

  67. Gao L, Bellantuono I, Elsasser A, et al. Selective elimination of leukemic CD34(+) progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood. 2000;95(7):2198–203.

    PubMed  CAS  Google Scholar 

  68. Oka Y, Udaka K, Tsuboi A, et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J Immunol. 2000;164(4):1873–80.

    PubMed  CAS  Google Scholar 

  69. Tsuboi A, Oka Y, Ogawa H, et al. Cytotoxic T-lymphocyte responses elicited to Wilms’ tumor gene WT1 product by DNA vaccination. J Clin Immunol. 2000;20(3):195–202.

    Article  PubMed  CAS  Google Scholar 

  70. Rezvani K, Brenchley JM, Price DA, et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res. 2005;11(24):8799–807.

    Article  PubMed  CAS  Google Scholar 

  71. Rezvani K, Grube M, Brenchley JM, et al. Functional leukemia-associated antigen-specific memory CD8+ T cells exist in healthy individuals and in patients with chronic myelogenous leukemia before and after stem cell transplantation. Blood. 2003;102(8):2892–900.

    Article  PubMed  CAS  Google Scholar 

  72. Rezvani K, Yong ASM, Savani BN, et al. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes following allogeneic stem cell transplantation for acute lymphoblastic leukemia (ALL). Blood. 2007;110(6):1924–32:blood-2007-2003-076844.

    Article  PubMed  CAS  Google Scholar 

  73. Scheibenbogen C, Letsch A, Thiel E, et al. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia. Blood. 2002;100(6):2132–7.

    Article  PubMed  CAS  Google Scholar 

  74. Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia. 2004;18(1):165–6.

    Article  PubMed  CAS  Google Scholar 

  75. Oka Y, Tsuboi A, Murakami M, et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int J Hematol. 2003;78(1):56–61.

    Article  PubMed  CAS  Google Scholar 

  76. Oka Y, Tsuboi A, Taguchi T, et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101(38):13885–90.

    Article  PubMed  CAS  Google Scholar 

  77. Maslak PG, Dao T, Krug LM, et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood. 2010;116(2):171–9.

    Article  PubMed  CAS  Google Scholar 

  78. Keilholz U, Letsch A, Busse A, et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541–8.

    Article  PubMed  CAS  Google Scholar 

  79. Zhou J, Shen X, Huang J, Hodes RJ, Rosenberg SA, Robbins PF. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. 2005;175(10):7046–52.

    PubMed  CAS  Google Scholar 

  80. Ragnarsson G, Nguyen H, Chaney C, Ho B, Greenberg P. Adoptive T cell therapy targeting WT1 in leukemia and MDS patients. J Immunol. 2009;182(1_MeetingAbstracts):41.34.

    Google Scholar 

  81. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22(1):745–63.

    Article  PubMed  CAS  Google Scholar 

  82. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294–305.

    Article  PubMed  CAS  Google Scholar 

  83. Berger C, Berger M, Hackman RC, et al. Safety and immunological effects of IL-15 administration in nonhuman primates. Blood. 2009;114:2417–26:blood-2008-2012-189266.

    Article  PubMed  CAS  Google Scholar 

  84. Klebanoff CA, Finkelstein SE, Surman DR, et al. IL-15 enhances the in vivo antitumor activity of tumor-reactive CD8+ T cells. Proc Natl Acad Sci USA. 2004;101(7):1969–74.

    Article  PubMed  CAS  Google Scholar 

  85. Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA. 2002;99(25):16168–73.

    Article  PubMed  CAS  Google Scholar 

  86. Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA. 2003;100(8):4712–7.

    Article  PubMed  CAS  Google Scholar 

  87. Brahmer JR, Topalian SL, Powderly J, et al. Phase II experience with MDX-1106 (Ono-4538), an anti-PD-1 monoclonal antibody, in patients with selected refractory or relapsed malignancies. J Clin Oncol. 2009;27(15S):3018 (Meeting Abstracts).

    Google Scholar 

  88. Sorror ML, Storer B, Storb RF. Validation of the hematopoietic cell transplantation-specific comorbidity index (HCT-CI) in single and multiple institutions: limitations and inferences. Biol Blood Marrow Transplant. 2009;15(6):757–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Bjarni Ragnarsson M.Sc., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ragnarsson, G.B., Martin, P.J. (2012). Myeloablative Transplant (HCT). In: Estey, E., Appelbaum, F. (eds) Leukemia and Related Disorders. Contemporary Hematology. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-565-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-565-1_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-564-4

  • Online ISBN: 978-1-60761-565-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics