Skip to main content

Developmental Exposure to Endocrine Disrupting Chemicals: Is There a Connection with Birth and Childhood Weights?

  • Chapter
  • First Online:
Endocrine Disruptors and Puberty

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Childhood obesity has increased dramatically over the last several decades in developed countries, and more recently in developing countries. Most research on causes of obesity has focused on various aspects of diet and lack of physical activity as the primary risk factors. Clearly, a balance between energy intake and energy expenditure is critical to maintain a healthy body weight, but other factors have also been linked to the obesity epidemic. One area of concern is increasing exposure to endocrine disrupting chemicals (EDCs), especially during the prenatal period. Animal studies have suggested that fetal exposure to certain EDCs may cause systemic alterations in aspects of ‘fetal programming’ related to adipocyte differentiation and function, appetite regulation, and other body systems involved in weight homeostasis. One plausible pathway between prenatal exposures to EDCs and obesity might be through effects on fetal growth, since both growth retardation and high birth weight have been associated with later obesity. Some studies have found associations between several classes of EDCs, including PCBs, organochlorine pesticides such as DDT and hexachlorobenzene (HCB), phenols, and PFCs and fetal growth retardation. Although animal data have suggested that EDCs can affect offspring obesity, thus far, data from human epidemiological studies that have directly examined prenatal EDC exposure in relation to childhood growth are not sufficient to draw conclusions. Several methodologic challenges exist in conducting these studies, including timing of measurement of EDCs in gestation, accounting for potential confounders occurring during pregnancy and childhood, and accurately measuring adiposity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogden CL, Carroll MD, Flegal KM. Epidemiologic trends in overweight and obesity. Endocrinol Metab Clin North Am. 2003;32(4):741–60. vii.

    PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM. Prevalence of high body mass index in US children and adolescents, 2007–2008. JAMA. 2010;303(3):242–9.

    PubMed  CAS  Google Scholar 

  3. Lee JM, Pilli S, Gebremariam A, Keirns CC, Davis MM, Vijan S, Freed GL, Herman WH, Gurney JG. Getting heavier, younger: trajectories of obesity over the life course. Int J Obes (Lond). 2010;34(4):614–23.

    CAS  Google Scholar 

  4. Ebbeling CB, Pawlak DB, Ludwig DS. Childhood obesity: public-health crisis, common sense cure. Lancet. 2002;360(9331):473–82.

    PubMed  Google Scholar 

  5. Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362(6):485–93.

    PubMed  CAS  Google Scholar 

  6. Must A, Strauss RS. Risks and consequences of childhood and adolescent obesity. Int J Obes Relat Metab Disord. 1999;23(Suppl 2):S2–S11.

    PubMed  Google Scholar 

  7. Heindel JJ, vom Saal FS. Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity. Mol Cell Endocrinol. 2009;304(1–2):90–6.

    PubMed  CAS  Google Scholar 

  8. Keith SW, Redden DT, Katzmarzyk PT, Boggiano MM, Hanlon EC, Benca RM, Ruden D, Pietrobelli A, Barger JL, Fontaine KR, Wang C, Aronne LJ, Wright SM, Baskin M, Dhurandhar NV, Lijoi MC, Grilo CM, DeLuca M, Westfall AO, Allison DB. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int J Obes (Lond). 2006;30(11):1585–94.

    CAS  Google Scholar 

  9. McAllister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Barger J, Baskin M, Benca RM, Biggio J, Boggiano MM, Eisenmann JC, Elobeid M, Fontaine KR, Gluckman P, Hanlon EC, Katzmarzyk P, Pietrobelli A, Redden DT, Ruden DM, Wang C, Waterland RA, Wright SM, Allison DB. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr. 2009;49(10):868–913.

    PubMed  Google Scholar 

  10. Newbold RR, Padilla-Banks E, Jefferson WN, Heindel JJ. Effects of endocrine disruptors on obesity. Int J Androl. 2008;31(2):201–8.

    PubMed  CAS  Google Scholar 

  11. Newbold RR, Padilla-Banks E, Snyder RJ, Phillips TM, Jefferson WN. Developmental exposure to endocrine disruptors and the obesity epidemic. Reprod Toxicol. 2007;23(3):290–6.

    PubMed  CAS  Google Scholar 

  12. Heindel JJ. Animal models for probing the developmental basis of disease and dysfunction paradigm. Basic Clin Pharmacol Toxicol. 2008;102(2):76–81.

    PubMed  CAS  Google Scholar 

  13. Parsons TJ, Power C, Manor O. Fetal and early life growth and body mass index from birth to early adulthood in 1958 British cohort: longitudinal study. BMJ. 2001;323(7325):1331–5.

    PubMed  CAS  Google Scholar 

  14. Ong KK. Size at birth, postnatal growth and risk of obesity. Horm Res. 2006;65(Suppl 3):65–9.

    PubMed  CAS  Google Scholar 

  15. McMillen IC, Rattanatray L, Duffield JA, Morrison JL, MacLaughlin SM, Gentili S, Muhlhausler BS. The early origins of later obesity: pathways and mechanisms. Adv Exp Med Biol. 2009;646:71–81.

    PubMed  Google Scholar 

  16. Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, Wetmur J, Calafat AM. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7.

    PubMed  CAS  Google Scholar 

  17. Oken E, Gillman MW. Fetal origins of obesity. Obes Res. 2003;11(4):496–506.

    PubMed  Google Scholar 

  18. Wilcox AJ. Birth weight and fetal growth. Fertility and pregnancy: an epidemiologic perspective. New York: Oxford University Press; 2010.

    Google Scholar 

  19. Chakraborty S, Joseph DV, Bankart MJ, Petersen SA, Wailoo MP. Fetal growth restriction: relation to growth and obesity at the age of 9 years. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F479–83.

    PubMed  Google Scholar 

  20. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320(7240):967–71.

    PubMed  CAS  Google Scholar 

  21. Henriksen T. The macrosomic fetus: a challenge in current obstetrics. Acta Obstet Gynecol Scand. 2008;87(2):134–45.

    PubMed  Google Scholar 

  22. Sorensen HT, Sabroe S, Rothman KJ, Gillman M, Fischer P, Sorensen TI. Relation between weight and length at birth and body mass index in young adulthood: cohort study. BMJ. 1997;315(7116):1137.

    PubMed  CAS  Google Scholar 

  23. O’Callaghan MJ, Williams GM, Andersen MJ, Bor W, Najman JM. Prediction of obesity in children at 5 years: a cohort study. J Paediatr Child Health. 1997;33(4):311–6.

    PubMed  Google Scholar 

  24. Rugholm S, Baker JL, Olsen LW, Schack-Nielsen L, Bua J, Sorensen TI. Stability of the association between birth weight and childhood overweight during the development of the obesity epidemic. Obes Res. 2005;13(12):2187–94.

    PubMed  Google Scholar 

  25. Curhan GC, Chertow GM, Willett WC, Spiegelman D, Colditz GA, Manson JE, Speizer FE, Stampfer MJ. Birth weight and adult hypertension and obesity in women. Circulation. 1996;94(6):1310–5.

    PubMed  CAS  Google Scholar 

  26. Singhal A, Wells J, Cole TJ, Fewtrell M, Lucas A. Programming of lean body mass: a link between birth weight, obesity, and cardiovascular disease? Am J Clin Nutr. 2003;77(3):726–30.

    PubMed  CAS  Google Scholar 

  27. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94(12):3246–50.

    PubMed  CAS  Google Scholar 

  28. Byberg L, McKeigue PM, Zethelius B, Lithell HO. Birth weight and the insulin resistance syndrome: association of low birth weight with truncal obesity and raised plasminogen activator inhibitor-1 but not with abdominal obesity or plasma lipid disturbances. Diabetologia. 2000;43(1):54–60.

    PubMed  CAS  Google Scholar 

  29. Fall CHD. Developmental origins of cardiovascular disease, type 2 diabetes, and obesity in humans. In: Wintour EM, Owens J, editors. Early life origins of health and disease. Georgetown: Springer; 2006.

    Google Scholar 

  30. Barker M, Robinson S, Osmond C, Barker DJ. Birth weight and body fat distribution in adolescent girls. Arch Dis Child. 1997;77(5):381–3.

    PubMed  CAS  Google Scholar 

  31. Law CM, Barker DJ, Osmond C, Fall CH, Simmonds SJ. Early growth and abdominal fatness in adult life. J Epidemiol Community Health. 1992;46(3):184–6.

    PubMed  CAS  Google Scholar 

  32. Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M. Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr. 2005;82(5):980–7.

    PubMed  CAS  Google Scholar 

  33. Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C. Intrauterine programming of adult body composition. J Clin Endocrinol Metab. 2001;86(1):267–72.

    PubMed  CAS  Google Scholar 

  34. Ibanez L, Lopez-Bermejo A, Suarez L, Marcos MV, Diaz M, de Zegher F. Visceral adiposity without overweight in children born small for gestational age. J Clin Endocrinol Metab. 2008;93(6):2079–83.

    PubMed  CAS  Google Scholar 

  35. Barker DJ. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997;13(9):807–13.

    PubMed  CAS  Google Scholar 

  36. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    PubMed  CAS  Google Scholar 

  37. Stettler N, Tershakovec AM, Zemel BS, Leonard MB, Boston RC, Katz SH, Stallings VA. Early risk factors for increased adiposity: a cohort study of African American subjects followed from birth to young adulthood. Am J Clin Nutr. 2000;72(2):378–83.

    PubMed  CAS  Google Scholar 

  38. Monteiro PO, Victora CG. Rapid growth in infancy and childhood and obesity in later life–a systematic review. Obes Rev. 2005;6(2):143–54.

    PubMed  CAS  Google Scholar 

  39. Eriksson M, Tynelius P, Rasmussen F. Associations of birthweight and infant growth with body composition at age 15–the COMPASS study. Paediatr Perinat Epidemiol. 2008;22(4):379–88.

    PubMed  Google Scholar 

  40. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, Sachdev HS. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371(9609):340–57.

    PubMed  CAS  Google Scholar 

  41. Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics. 2003;111(3):e221–e6.

    PubMed  Google Scholar 

  42. Vohr BR, Boney CM. Gestational diabetes: the forerunner for the development of maternal and childhood obesity and metabolic syndrome? J Matern Fetal Neonatal Med. 2008;21(3):149–57.

    PubMed  CAS  Google Scholar 

  43. Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, Schmidt L, Damm P. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab. 2009;94(7):2464–70.

    PubMed  CAS  Google Scholar 

  44. Lawlor DA, Fraser A, Lindsay RS, Ness A, Dabelea D, Catalano P, Davey Smith G, Sattar N, Nelson SM. Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort. Diabetologia. 2010;53(1):89–97.

    PubMed  CAS  Google Scholar 

  45. Whitaker RC, Pepe MS, Seidel KD, Wright JA, Knopp RH. Gestational diabetes and the risk of offspring obesity. Pediatrics. 1998;101(2):E9.

    PubMed  CAS  Google Scholar 

  46. Huang JS, Lee TA, Lu MC. Prenatal programming of childhood overweight and obesity. Matern Child Health J. 2007;11(5):461–73.

    PubMed  Google Scholar 

  47. Malee MP, Verma A, Messerlian G, Tucker R, Vohr BR. Association between maternal and child leptin levels 9 years after pregnancy complicated by gestational diabetes. Horm Metab Res. 2002;34(4):212–6.

    PubMed  CAS  Google Scholar 

  48. Vohr BR, McGarvey ST, Tucker R. Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. Diabetes Care. 1999;22(8):1284–91.

    PubMed  CAS  Google Scholar 

  49. Boerschmann H, Pfluger M, Henneberger L, Ziegler AG, Hummel S. Prevalence and predictors of overweight and insulin resistance in offspring of mothers with gestational diabetes mellitus. Diabetes Care. 2010;33(8):1845–9.

    PubMed  Google Scholar 

  50. Ino T. Maternal smoking during pregnancy and offspring obesity: meta-analysis. Pediatr Int. 2010;52(1):94–9.

    PubMed  Google Scholar 

  51. Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond). 2008;32(2):201–10.

    CAS  Google Scholar 

  52. Nagel G, Wabitsch M, Galm C, Berg S, Brandstetter S, Fritz M, Klenk J, Peter R, Prokopchuk D, Steiner R, Stroth S, Wartha O, Weiland SK, Steinacker J. Determinants of obesity in the Ulm Research on Metabolism, Exercise and Lifestyle in Children (URMEL-ICE). Eur J Pediatr. 2009;168(10):1259–67.

    PubMed  Google Scholar 

  53. Power C, Jefferis BJ. Fetal environment and subsequent obesity: a study of maternal smoking. Int J Epidemiol. 2002;31(2):413–9.

    PubMed  Google Scholar 

  54. Chen A, Pennell ML, Klebanoff MA, Rogan WJ, Longnecker MP. Maternal smoking during pregnancy in relation to child overweight: follow-up to age 8 years. Int J Epidemiol. 2006;35(1):121–30.

    PubMed  Google Scholar 

  55. Syme C, Abrahamowicz M, Mahboubi A, Leonard GT, Perron M, Richer L, Veillette S, Gaudet D, Paus T, Pausova Z. Prenatal exposure to maternal cigarette smoking and accumulation of intra-abdominal fat during adolescence. Obesity (Silver Spring). 2010;18(5):1021–5.

    CAS  Google Scholar 

  56. Al Mamun A, Lawlor DA, Alati R, O’Callaghan MJ, Williams GM, Najman JM. Does maternal smoking during pregnancy have a direct effect on future offspring obesity? Evidence from a prospective birth cohort study. Am J Epidemiol. 2006;164(4):317–25.

    PubMed  Google Scholar 

  57. Environment CoHAAit. Hormonally active agents in the environment. Washington DC: National Academy Press; 1999.

    Google Scholar 

  58. Smith O. Diethylstilbesterol in the prevention and treatment of complications of pregnancy. Am J Obstet Gynecol. 1948;56:821–34.

    PubMed  CAS  Google Scholar 

  59. Dieckmann WJ, Davis ME, Rynkiewicz LM, Pottinger RE. Does the administration of diethylstilbestrol during pregnancy have therapeutic value? Am J Obstet Gynecol. 1953;66(5):1062–81.

    PubMed  CAS  Google Scholar 

  60. Ferguson JH. The importance of controls in a clinical experiment; stilbestrol therapy in pregnancy. Obstet Gynecol. 1954;3(4):452–7.

    PubMed  CAS  Google Scholar 

  61. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(15):878–81.

    PubMed  CAS  Google Scholar 

  62. Titus-Ernstoff L, Troisi R, Hatch EE, Hyer M, Wise LA, Palmer JR, Kaufman R, Adam E, Noller K, Herbst AL, Strohsnitter W, Cole BF, Hartge P, Hoover RN. Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology. 2008;19(2):251–7.

    PubMed  Google Scholar 

  63. Titus-Ernstoff L, Troisi R, Hatch EE, Wise LA, Palmer J, Hyer M, Kaufman R, Adam E, Strohsnitter W, Noller K, Herbst AL, Gibson-Chambers J, Hartge P, Hoover RN. Menstrual and reproductive characteristics of women whose mothers were exposed in utero to diethylstilbestrol (DES). Int J Epidemiol. 2006;35(4):862–8.

    PubMed  Google Scholar 

  64. Walker BE. Tumors of female offspring of mice exposed prenatally to diethylstilbestrol. J Natl Cancer Inst. 1984;73(1):133–40.

    PubMed  CAS  Google Scholar 

  65. Walker BE. Tumors in female offspring of control and diethylstilbestrol-exposed mice fed high-fat diets. J Natl Cancer Inst. 1990;82(1):50–4.

    PubMed  CAS  Google Scholar 

  66. Newbold RR. Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol. 2004;199(2):142–50.

    PubMed  CAS  Google Scholar 

  67. McLachlan JA, Newbold RR, Bullock BC. Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res. 1980;40(11):3988–99.

    PubMed  CAS  Google Scholar 

  68. McLachlan JA, Newbold RR, Shah HC, Hogan MD, Dixon RL. Reduced fertility in female mice exposed transplacentally to diethylstilbestrol (DES). Fertil Steril. 1982;38(3):364–71.

    PubMed  CAS  Google Scholar 

  69. Newbold RR, McLachlan JA. Vaginal adenosis and adenocarcinoma in mice exposed prenatally or neonatally to diethylstilbestrol. Cancer Res. 1982;42(5):2003–11.

    PubMed  CAS  Google Scholar 

  70. Newbold RR, Padilla-Banks E, Jefferson WN. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology. 2006;147(6 Suppl):S11–7.

    PubMed  CAS  Google Scholar 

  71. McLachlan JA, Burow M, Chiang TC, Li SF. Gene imprinting in developmental toxicology: a possible interface between physiology and pathology. Toxicol Lett. 2001;120(1–3):161–4.

    PubMed  CAS  Google Scholar 

  72. Nelson KG, Sakai Y, Eitzman B, Steed T, McLachlan J. Exposure to diethylstilbestrol during a critical developmental period of the mouse reproductive tract leads to persistent induction of two estrogen-regulated genes. Cell Growth Differ. 1994;5(6):595–606.

    PubMed  CAS  Google Scholar 

  73. Li S, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, McLachlan JA, Negishi M. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Res. 1997;57(19):4356–9.

    PubMed  CAS  Google Scholar 

  74. Falck L, Forsberg JG. Immunohistochemical studies on the expression and estrogen dependency of EGF and its receptor and C-fos proto-oncogene in the uterus and vagina of normal and neonatally estrogen-treated mice. Anat Rec. 1996;245(3):459–71.

    PubMed  CAS  Google Scholar 

  75. Okada A, Sato T, Ohta Y, Buchanan DL, Iguchi T. Effect of diethylstilbestrol on cell proliferation and expression of epidermal growth factor in the developing female rat reproductive tract. J Endocrinol. 2001;170(3):539–54.

    PubMed  CAS  Google Scholar 

  76. Block K, Kardana A, Igarashi P, Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system. FASEB J. 2000;14(9):1101–8.

    PubMed  CAS  Google Scholar 

  77. Ma L, Benson GV, Lim H, Dey SK, Maas RL. Abdominal B (AbdB) Hoxa genes: regulation in adult uterus by estrogen and progesterone and repression in mullerian duct by the synthetic estrogen diethylstilbestrol (DES). Dev Biol. 1998;197(2):141–54.

    PubMed  CAS  Google Scholar 

  78. Mericskay M, Carta L, Sassoon D. Diethylstilbestrol exposure in utero: a paradigm for mechanisms leading to adult disease. Birth Defects Res A Clin Mol Teratol. 2005;73(3):133–5.

    PubMed  CAS  Google Scholar 

  79. Yamashita S, Takayanagi A, Shimizu N. Effects of neonatal diethylstilbestrol exposure on c-fos and c-jun protooncogene expression in the mouse uterus. Histol Histopathol. 2001;16(1):131–40.

    PubMed  CAS  Google Scholar 

  80. Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. 2009;304(1–2):84–9.

    PubMed  CAS  Google Scholar 

  81. Wardell RE, Seegmiller RE, Bradshaw WS. Induction of prenatal toxicity in the rat by diethylstilbestrol, zeranol, 3,4,3’′,4’′,-tetrachlorobiphenyl, cadmium, and lead. Teratology. 1982;26(3):229–37.

    PubMed  CAS  Google Scholar 

  82. Brackbill Y, Berendes HW. Dangers of diethylstilboestrol: review of a 1953 paper. Lancet. 1978;2(8088):520.

    PubMed  CAS  Google Scholar 

  83. Hatch EE, Troisi R, Wise LA, Titus-Ernstoff L, Hyer M, Palmer JR, Strohsnitter WC, Robboy SJ, Anderson D, Kaufman R, Adam E, Hoover RN. Preterm birth, fetal growth, and age at menarche among women exposed prenatally to diethylstilbestrol (DES). Reprod Toxicol. 2011;31:151–7.

    PubMed  CAS  Google Scholar 

  84. Newbold RR, Padilla-Banks E, Snyder RJ, Jefferson WN. Perinatal exposure to environmental estrogens and the development of obesity. Mol Nutr Food Res. 2007;51(7):912–7.

    PubMed  CAS  Google Scholar 

  85. Ryan KK, Haller AM, Sorrell JE, Woods SC, Jandacek RJ, Seeley RJ. Perinatal exposure to bisphenol-a and the development of metabolic syndrome in CD-1 mice. Endocrinology. 2010;151(6):2603–12.

    PubMed  CAS  Google Scholar 

  86. Gustavson CR, Gustavson JC, Noller KL, O’Brien PC, Melton LJ, Pumariega AJ, Kaufman RH, Colton T. Increased risk of profound weight loss among women exposed to diethylstilbestrol in utero. Behav Neural Biol. 1991;55(3):307–12.

    PubMed  CAS  Google Scholar 

  87. Longnecker MP, Rogan WJ, Lucier G. The human health effects of DDT (dichlorodiphenyltrichloroethane) and PCBS (polychlorinated biphenyls) and an overview of organochlorines in public health. Annu Rev Public Health. 1997;18:211–44.

    PubMed  CAS  Google Scholar 

  88. Stillerman KP, Mattison DR, Giudice LC, Woodruff TJ. Environmental exposures and adverse pregnancy outcomes: a review of the science. Reprod Sci. 2008;15(7):631–50.

    PubMed  Google Scholar 

  89. Wigle DT, Arbuckle TE, Turner MC, Berube A, Yang Q, Liu S, Krewski D. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11(5–6):373–517.

    PubMed  CAS  Google Scholar 

  90. Guo YL, Lambert GH, Hsu CC. Growth abnormalities in the population exposed in utero and early postnatally to polychlorinated biphenyls and dibenzofurans. Environ Health Perspect. 1995;103(Suppl 6):117–22.

    PubMed  CAS  Google Scholar 

  91. Rogan WJ, Gladen BC, Hung KL, Koong SL, Shih LY, Taylor JS, Wu YC, Yang D, Ragan NB, Hsu CC. Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science. 1988;241(4863):334–6.

    PubMed  CAS  Google Scholar 

  92. Cooke PS, Sato T, Buchanan DL. Disruption of steroid hormone signaling by PCBs. In: Robertson LR, Hansen LG, editors. PCBs: recent advances in environmental toxicology and health effects. Lexington: University Press of Kentucky; 2001.

    Google Scholar 

  93. Nagata C, Iwasa S, Shiraki M, Shimizu H. Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol Biomarkers Prev. 2006;15(8):1469–72.

    PubMed  CAS  Google Scholar 

  94. Grun F, Blumberg B. Endocrine disrupters as obesogens. Mol Cell Endocrinol. 2009;304(1–2):19–29.

    PubMed  Google Scholar 

  95. Patandin S, Koopman-Esseboom C, de Ridder MA, Weisglas-Kuperus N, Sauer PJ. Effects of environmental exposure to polychlorinated biphenyls and dioxins on birth size and growth in Dutch children. Pediatr Res. 1998;44(4):538–45.

    PubMed  CAS  Google Scholar 

  96. Halldorsson TI, Meltzer HM, Thorsdottir I, Knudsen V, Olsen SF. Is high consumption of fatty fish during pregnancy a risk factor for fetal growth retardation? A study of 44,824 Danish pregnant women. Am J Epidemiol. 2007;166(6):687–96.

    PubMed  Google Scholar 

  97. Konishi K, Sasaki S, Kato S, Ban S, Washino N, Kajiwara J, Todaka T, Hirakawa H, Hori T, Yasutake D, Kishi R. Prenatal exposure to PCDDs/PCDFs and dioxin-like PCBs in relation to birth weight. Environ Res. 2009;109(7):906–13.

    PubMed  CAS  Google Scholar 

  98. Murphy LE, Gollenberg AL, Buck Louis GM, Kostyniak PJ, Sundaram R. Maternal serum preconception polychlorinated biphenyl concentrations and infant birth weight. Environ Health Perspect. 2010;118(2):297–302.

    PubMed  CAS  Google Scholar 

  99. Hertz-Picciotto I, Charles MJ, James RA, Keller JA, Willman E, Teplin S. In utero polychlorinated biphenyl exposures in relation to fetal and early childhood growth. Epidemiology. 2005;16(5):648–56.

    PubMed  Google Scholar 

  100. Rylander L, Stromberg U, Hagmar L. Dietary intake of fish contaminated with persistent organochlorine compounds in relation to low birthweight. Scand J Work Environ Health. 1996;22(4):260–6.

    PubMed  CAS  Google Scholar 

  101. Sonneborn D, Park HY, Petrik J, Kocan A, Palkovicova L, Trnovec T, Nguyen D, Hertz-Picciotto I. Prenatal polychlorinated biphenyl exposures in eastern Slovakia modify effects of social factors on birthweight. Paediatr Perinat Epidemiol. 2008;22(3):202–13.

    PubMed  Google Scholar 

  102. Sagiv SK, Tolbert PE, Altshul LM, Korrick SA. Organochlorine exposures during pregnancy and infant size at birth. Epidemiology. 2007;18(1):120–9.

    PubMed  Google Scholar 

  103. Grandjean P, Bjerve KS, Weihe P, Steuerwald U. Birthweight in a fishing community: significance of essential fatty acids and marine food contaminants. Int J Epidemiol. 2001;30(6):1272–8.

    PubMed  CAS  Google Scholar 

  104. Longnecker MP, Klebanoff MA, Brock JW, Guo X. Maternal levels of polychlorinated biphenyls in relation to preterm and small-for-gestational-age birth. Epidemiology. 2005;16(5):641–7.

    PubMed  Google Scholar 

  105. Weisskopf MG, Anderson HA, Hanrahan LP, Kanarek MS, Falk CM, Steenport DM, Draheim LA. Maternal exposure to Great Lakes sport-caught fish and dichlorodiphenyl dichloroethylene, but not polychlorinated biphenyls, is associated with reduced birth weight. Environ Res. 2005;97(2):149–62.

    PubMed  CAS  Google Scholar 

  106. Schack-Nielsen L, Michaelsen KF, Gamborg M, Mortensen EL, Sorensen TI. Gestational weight gain in relation to offspring body mass index and obesity from infancy through adulthood. Int J Obes (Lond). 2010;34(1):67–74.

    CAS  Google Scholar 

  107. Wrotniak BH, Shults J, Butts S, Stettler N. Gestational weight gain and risk of overweight in the offspring at age 7 y in a multicenter, multiethnic cohort study. Am J Clin Nutr. 2008;87(6):1818–24.

    PubMed  CAS  Google Scholar 

  108. Lackmann GM, Angerer J, Tollner U. Parental smoking and neonatal serum levels of polychlorinated biphenyls and hexachlorobenzene. Pediatr Res. 2000;47(5):598–601.

    PubMed  CAS  Google Scholar 

  109. Rogan WJ, Gladen BC, McKinney JD, Carreras N, Hardy P, Thullen J, Tingelstad J, Tully M. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation. Am J Public Health. 1986;76(2):172–7.

    PubMed  CAS  Google Scholar 

  110. Jacobson JL, Jacobson SW, Humphrey HE. Effects of exposure to PCBs and related compounds on growth and activity in children. Neurotoxicol Teratol. 1990;12(4):319–26.

    PubMed  CAS  Google Scholar 

  111. Verhulst SL, Nelen V, Hond ED, Koppen G, Beunckens C, Vael C, Schoeters G, Desager K. Intrauterine exposure to environmental pollutants and body mass index during the first 3 years of life. Environ Health Perspect. 2009;117(1):122–6.

    PubMed  CAS  Google Scholar 

  112. Smink A, Ribas-Fito N, Garcia R, Torrent M, Mendez MA, Grimalt JO, Sunyer J. Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in children aged 6 years. Acta Paediatr. 2008;97(10):1465–9.

    PubMed  CAS  Google Scholar 

  113. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J Pediatr. 2000;136(4):490–6.

    PubMed  CAS  Google Scholar 

  114. Lamb MR, Taylor S, Liu X, Wolff MS, Borrell L, Matte TD, Susser ES, Factor-Litvak P. Prenatal exposure to polychlorinated biphenyls and postnatal growth: a structural analysis. Environ Health Perspect. 2006;114(5):779–85.

    PubMed  CAS  Google Scholar 

  115. Rylander L, Stromberg U, Hagmar L. Weight and height at 4 and 7 years of age in children born to mothers with a high intake of fish contaminated with persistent organochlorine pollutants. Chemosphere. 2007;67(3):498–504.

    PubMed  CAS  Google Scholar 

  116. Blanck HM, Marcus M, Rubin C, Tolbert PE, Hertzberg VS, Henderson AK, Zhang RH. Growth in girls exposed in utero and postnatally to polybrominated biphenyls and polychlorinated biphenyls. Epidemiology. 2002;13(2):205–10.

    PubMed  Google Scholar 

  117. Pan IJ, Daniels JL, Herring AH, Rogan WJ, Siega-Riz AM, Goldman BD, Sjodin A. Lactational exposure to polychlorinated biphenyls, dichlorodiphenyltrichloroethane, and dichlorodiphenyldichloroethylene and infant growth: an analysis of the pregnancy, infection, and nutrition babies study. Paediatr Perinat Epidemiol. 2010;24(3):262–71.

    PubMed  Google Scholar 

  118. Burns JS, Williams PL, Sergeyev O, Korrick S, Lee MM, Revich B, Altshul L, Del Prato JT, Humblet O, Patterson Jr DG, Turner WE, Needham LL, Starovoytov M, Hauser R. Serum dioxins and polychlorinated biphenyls are associated with growth among Russian boys. Pediatrics. 2011;127(1):e59–e68.

    PubMed  Google Scholar 

  119. Longnecker MP. Invited commentary: why DDT matters now. Am J Epidemiol. 2005;162(8):726–8.

    PubMed  Google Scholar 

  120. Langer P. Persistent organochlorinated pollutants (PCB, DDE, HCB, dioxins, furans) and the thyroid–review 2008. Endocr Regul. 2008;42(2–3):79–104.

    PubMed  CAS  Google Scholar 

  121. Lelli SM, Ceballos NR, Mazzetti MB, Aldonatti CA, Martin S, de Viale LC. Hexachlorobenzene as hormonal disruptor–studies about glucocorticoids: their hepatic receptors, adrenal synthesis and plasma levels in relation to impaired gluconeogenesis. Biochem Pharmacol. 2007;73(6):873–9.

    PubMed  CAS  Google Scholar 

  122. Sargis RM, Johnson DN, Choudhury RA, Brady MJ. Environmental endocrine disruptors promote adipogenesis in the 3 T3-L1 cell line through glucocorticoid receptor activation. Obesity (Silver Spring). 2010;18(7):1283–8.

    CAS  Google Scholar 

  123. Farhang L, Weintraub JM, Petreas M, Eskenazi B, Bhatia R. Association of DDT and DDE with birth weight and length of gestation in the child health and development studies, 1959–1967. Am J Epidemiol. 2005;162(8):717–25.

    PubMed  Google Scholar 

  124. Longnecker MP, Klebanoff MA, Zhou H, Brock JW. Association between maternal serum concentration of the DDT metabolite DDE and preterm and small-for-gestational-age babies at birth. Lancet. 2001;358(9276):110–4.

    PubMed  CAS  Google Scholar 

  125. Fenster L, Eskenazi B, Anderson M, Bradman A, Harley K, Hernandez H, Hubbard A, Barr DB. Association of in utero organochlorine pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect. 2006;114(4):597–602.

    PubMed  CAS  Google Scholar 

  126. Eggesbo M, Stigum H, Longnecker MP, Polder A, Aldrin M, Basso O, Thomsen C, Skaare JU, Becher G, Magnus P. Levels of hexachlorobenzene (HCB) in breast milk in relation to birth weight in a Norwegian cohort. Environ Res. 2009;109(5):559–66.

    PubMed  Google Scholar 

  127. Karmaus W, Osuch JR, Eneli I, Mudd LM, Zhang J, Mikucki D, Haan P, Davis S. Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and body mass index in adult female offspring. Occup Environ Med. 2009;66(3):143–9.

    PubMed  CAS  Google Scholar 

  128. Mendez MA, Garcia-Esteban R, Guxens M, Vrijheid M, Kogevinas M, Goni F, Fochs S, Sunyer J. Prenatal organochlorine compound exposure, rapid weight gain, and overweight in infancy. Environ Health Perspect;119(2):272–8.

    Google Scholar 

  129. Gladen BC, Klebanoff MA, Hediger ML, Katz SH, Barr DB, Davis MD, Longnecker MP. Prenatal DDT exposure in relation to anthropometric and pubertal measures in adolescent males. Environ Health Perspect. 2004;112(17):1761–7.

    PubMed  CAS  Google Scholar 

  130. Cupul-Uicab LA, Hernandez-Avila M, Terrazas-Medina EA, Pennell ML, Longnecker MP. Prenatal exposure to the major DDT metabolite 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) and growth in boys from Mexico. Environ Res. 2010;110(6):595–603.

    PubMed  CAS  Google Scholar 

  131. Rogan WJ, Gladen BC, McKinney JD, Carreras N, Hardy P, Thullen J, Tingelstad J, Tully M. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects on growth, morbidity, and duration of lactation. Am J Public Health. 1987;77(10):1294–7.

    PubMed  CAS  Google Scholar 

  132. Ribas-Fito N, Gladen BC, Brock JW, Klebanoff MA, Longnecker MP. Prenatal exposure to 1,1-dichloro-2,2-bis (p-chlorophenyl)ethylene (p, p’-DDE) in relation to child growth. Int J Epidemiol. 2006;35(4):853–8.

    PubMed  Google Scholar 

  133. Jusko TA, Koepsell TD, Baker RJ, Greenfield TA, Willman EJ, Charles MJ, Teplin SW, Checkoway H, Hertz-Picciotto I. Maternal DDT exposures in relation to fetal and 5-year growth. Epidemiology. 2006;17(6):692–700.

    PubMed  Google Scholar 

  134. Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62(11):806–18.

    PubMed  CAS  Google Scholar 

  135. Swan SH, Main KM, Liu F, Stewart SL, Kruse RL, Calafat AM, Mao CS, Redmon JB, Ternand CL, Sullivan S, Teague JL. Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environ Health Perspect. 2005;113(8):1056–61.

    PubMed  CAS  Google Scholar 

  136. Carlsen SM, Jacobsen G, Romundstad P. Maternal testosterone levels during pregnancy are associated with offspring size at birth. Eur J Endocrinol. 2006;155(2):365–70.

    PubMed  CAS  Google Scholar 

  137. Smith AS, Birnie AK, French JA. Maternal androgen levels during pregnancy are associated with early-life growth in Geoffroy’s marmosets, Callithrix geoffroyi. Gen Comp Endocrinol. 2010;166(2):307–13.

    PubMed  CAS  Google Scholar 

  138. Hurst CH, Waxman DJ. Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci. 2003;74(2):297–308.

    PubMed  CAS  Google Scholar 

  139. Grun F, Blumberg B. Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Rev Endocr Metab Disord. 2007;8(2):161–71.

    PubMed  Google Scholar 

  140. Boas M, Frederiksen H, Feldt-Rasmussen U, Skakkebaek NE, Hegedus L, Hilsted L, Juul A, Main KM. Childhood exposure to phthalates – associations with thyroid function, insulin-like growth factor I (IGF-I) and growth. Environ Health Perspect. 2010;118:1458–64.

    PubMed  CAS  Google Scholar 

  141. Meeker JD. Human epidemiologic studies of exposure to endocrine-disrupting chemicals and altered hormone levels. In: Shaw I, editor. Endocrine-disrupting chemicals in food. Boca Raton: CRC press; 2009.

    Google Scholar 

  142. Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, Hernandez-Avila M, Loch-Caruso R, Tellez-Rojo MM. Urinary phthalate metabolites in relation to preterm birth in Mexico city. Environ Health Perspect. 2009;117(10):1587–92.

    PubMed  CAS  Google Scholar 

  143. Whyatt RM, Adibi JJ, Calafat AM, Camann DE, Rauh V, Bhat HK, Perera FP, Andrews H, Just AC, Hoepner L, Tang D, Hauser R. Prenatal di(2-ethylhexyl)phthalate exposure and length of gestation among an inner-city cohort. Pediatrics. 2009;124(6):e1213–e20.

    PubMed  Google Scholar 

  144. Latini G, De Felice C, Presta G, Del Vecchio A, Paris I, Ruggieri F, Mazzeo P. In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect. 2003;111(14):1783–5.

    PubMed  CAS  Google Scholar 

  145. Adibi JJ, Hauser R, Williams PL, Whyatt RM, Calafat AM, Nelson H, Herrick R, Swan SH. Maternal urinary metabolites of Di-(2-Ethylhexyl) phthalate in relation to the timing of labor in a US multicenter pregnancy cohort study. Am J Epidemiol. 2009;169(8):1015–24.

    PubMed  Google Scholar 

  146. Zhang Y, Lin L, Cao Y, Chen B, Zheng L, Ge RS. Phthalate levels and low birth weight: a nested case-control study of Chinese newborns. J Pediatr. 2009;155(4):500–4.

    PubMed  CAS  Google Scholar 

  147. Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA, Chelimo C, Godbold J, Biro F, Kushi LH, Pfeiffer CM, Calafat AM. Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect. 2007;115(1):116–21.

    PubMed  CAS  Google Scholar 

  148. Hatch EE, Nelson JW, Stahlhut RW, Webster TF. Association of endocrine disruptors and obesity: perspectives from epidemiological studies. Int J Androl. 2010;33(2):324–32.

    PubMed  CAS  Google Scholar 

  149. Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect. 2007;115(6):876–82.

    PubMed  CAS  Google Scholar 

  150. Calafat AM, Wong LY, Kuklenyik Z, Reidy JA, Needham LL. Polyfluoroalkyl chemicals in the U.S. population: data from the National Health and Nutrition Examination Survey (NHANES) 2003–2004 and comparisons with NHANES 1999–2000. Environ Health Perspect. 2007;115(11):1596–602.

    PubMed  CAS  Google Scholar 

  151. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99(2):366–94.

    PubMed  CAS  Google Scholar 

  152. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci. 2006;92(2):476–89.

    PubMed  CAS  Google Scholar 

  153. Hines EP, White SS, Stanko JP, Gibbs-Flournoy EA, Lau C, Fenton SE. Phenotypic dichotomy following developmental exposure to perfluorooctanoic acid (PFOA) in female CD-1 mice: Low doses induce elevated serum leptin and insulin, and overweight in mid-life. Mol Cell Endocrinol. 2009;304(1–2):97–105.

    PubMed  CAS  Google Scholar 

  154. Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118(2):197–202.

    PubMed  CAS  Google Scholar 

  155. Fei C, McLaughlin JK, Tarone RE, Olsen J. Fetal growth indicators and perfluorinated chemicals: a study in the Danish national birth cohort. Am J Epidemiol. 2008;168(1):66–72.

    PubMed  Google Scholar 

  156. Olsen GW, Gilliland FD, Burlew MM, Burris JM, Mandel JS, Mandel JH. An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid. J Occup Environ Med. 1998;40(7):614–22.

    PubMed  CAS  Google Scholar 

  157. Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, Goldman LR. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect. 2007;115(11):1670–6.

    PubMed  CAS  Google Scholar 

  158. Stein CR, Savitz DA, Dougan M. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol. 2009;170(7):837–46.

    PubMed  Google Scholar 

  159. Washino N, Saijo Y, Sasaki S, Kato S, Ban S, Konishi K, Ito R, Nakata A, Iwasaki Y, Saito K, Nakazawa H, Kishi R. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect. 2009;117(4):660–7.

    PubMed  CAS  Google Scholar 

  160. Andersen CS, Fei C, Gamborg M, Nohr EA, Sorensen TI, Olsen J. Prenatal exposures to perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol. 2010;172(11):1230–7.

    PubMed  Google Scholar 

  161. Rubin BS, Soto AM. Bisphenol A: perinatal exposure and body weight. Mol Cell Endocrinol. 2009;304(1–2):55–62.

    PubMed  CAS  Google Scholar 

  162. Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116(12):1642–7.

    PubMed  CAS  Google Scholar 

  163. Louis GM, Cooney MA, Lynch CD, Handal A. Periconception window: advising the pregnancy-planning couple. Fertil Steril. 2008;89(2 Suppl):e119–e21.

    PubMed  Google Scholar 

  164. Bloom MS, Buck-Louis GM, Schisterman EF, Kostyniak PJ, Vena JE. Changes in maternal serum chlorinated pesticide concentrations across critical windows of human reproduction and development. Environ Res. 2009;109(1):93–100.

    PubMed  CAS  Google Scholar 

  165. Gillman MW. A life-course approach to obesity. In: Kuh D, Ben-Shlomo Y, editors. A life course approach to chronic disease epidemiology. Oxford: Oxford University Press; 2004. p. 189–217.

    Google Scholar 

  166. Lillycrop KA, Burdge GC. Epigenetic changes in early life and future risk of obesity. Int J Obes (Lond). 2010 Jun 15. [Epub ahead of print].

    Google Scholar 

  167. Rothman KJ, Greenland S, Lash TL. Validity in epidemiologic studies. In: Rothman KJ, Greenland S, Lash TL, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins; 2008.

    Google Scholar 

  168. Longnecker MP. Pharmacokinetic variability and the miracle of modern analytical chemistry. Epidemiology. 2006;17(4):350–1.

    PubMed  Google Scholar 

  169. Webster TF. Pharmacokinetics of POPs: simple models with different implications for halflives and steady state levels. Organohalogen Comp. 2006;68:344–7.

    CAS  Google Scholar 

  170. Wolff MS, Anderson HA, Britton JA, Rothman N. Pharmacokinetic variability and modern epidemiology–the example of dichlorodiphenyltrichloroethane, body mass index, and birth cohort. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1925–30.

    PubMed  CAS  Google Scholar 

  171. Gerchman F, Tong J, Utzschneider KM, Zraika S, Udayasankar J, McNeely MJ, Carr DB, Leonetti DL, Young BA, de Boer IH, Boyko EJ, Fujimoto WY, Kahn SE. Body mass index is associated with increased creatinine clearance by a mechanism independent of body fat distribution. J Clin Endocrinol Metab. 2009;94(10):3781–8.

    PubMed  CAS  Google Scholar 

  172. Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect. 2004;112(17):1734–40.

    PubMed  CAS  Google Scholar 

  173. Schildkraut JM, Demark-Wahnefried W, DeVoto E, Hughes C, Laseter JL, Newman B. Environmental contaminants and body fat distribution. Cancer Epidemiol Biomarkers Prev. 1999;8(2):179–83.

    PubMed  CAS  Google Scholar 

  174. Faupel-Badger JM, Hsieh CC, Troisi R, Lagiou P, Potischman N. Plasma volume expansion in pregnancy: implications for biomarkers in population studies. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1720–3.

    PubMed  CAS  Google Scholar 

  175. Centers for Disease Control and Prevention (CDC) NCfHSN. Third national report on human exposure to environmental chemicals. Atlanta: CDC; 2005.

    Google Scholar 

  176. Longnecker MP, Ryan JJ, Gladen BC, Schecter AJ. Correlations among human plasma levels of dioxin-like compounds and polychlorinated biphenyls (PCBs) and implications for epidemiologic studies. Arch Environ Health. 2000;55(3):195–200.

    PubMed  CAS  Google Scholar 

  177. Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007;115(Suppl 1):98–105.

    PubMed  Google Scholar 

  178. Kortenkamp A. Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl. 2008;31(2):233–40.

    PubMed  CAS  Google Scholar 

  179. Ibarluzea Jm J, Fernandez MF, Santa-Marina L, Olea-Serrano MF, Rivas AM, Aurrekoetxea JJ, Exposito J, Lorenzo M, Torne P, Villalobos M, Pedraza V, Sasco AJ, Olea N. Breast cancer risk and the combined effect of environmental estrogens. Cancer Causes Control. 2004;15(6):591–600.

    PubMed  Google Scholar 

  180. Hauser R, Duty S, Godfrey-Bailey L, Calafat AM. Medications as a source of human exposure to phthalates. Environ Health Perspect. 2004;112(6):751–3.

    PubMed  Google Scholar 

  181. Hernandez-Diaz S, Mitchell AA, Kelley KE, Calafat AM, Hauser R. Medications as a potential source of exposure to phthalates in the U.S. population. Environ Health Perspect. 2009;117(2):185–9.

    PubMed  CAS  Google Scholar 

  182. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes (Lond). 2008;32(Suppl 3):S56–9.

    Google Scholar 

  183. Wang MC, Bachrach LK. Validity of the body mass index as an indicator of adiposity in an ethnically diverse population of youths. Am J Hum Biol. 1996;8:641–51.

    Google Scholar 

  184. Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, Gardiner DM, Kanno J, Iguchi T, Blumberg B. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20(9):2141–55.

    PubMed  CAS  Google Scholar 

  185. Gillman MW, Kleinman K. Antecedents of obesity - analysis, interpretation, and use of longitudinal data. Am J Epidemiol. 2007;166(1):14–6. author reply 17–8.

    PubMed  Google Scholar 

  186. Terry MB, Wei Y, Esserman D. Maternal, birth, and early-life influences on adult body size in women. Am J Epidemiol. 2007;166(1):5–13.

    PubMed  Google Scholar 

  187. Smith GD. Assessing intrauterine influences on offspring health outcomes: can epidemiological studies yield robust findings? Basic Clin Pharmacol Toxicol. 2008;102(2):245–56.

    PubMed  CAS  Google Scholar 

  188. Jones R, Golding J. Choosing the types of biological sample to collect in longitudinal birth cohort studies. Paediatr Perinat Epidemiol. 2009;23(Suppl 1):103–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth E. Hatch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hatch, E.E., Nelson, J.W., Troisi, R., Titus, L. (2012). Developmental Exposure to Endocrine Disrupting Chemicals: Is There a Connection with Birth and Childhood Weights?. In: Diamanti-Kandarakis, E., Gore, A. (eds) Endocrine Disruptors and Puberty. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60761-561-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-561-3_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-560-6

  • Online ISBN: 978-1-60761-561-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics