Skip to main content

Adipocytes as Target Cells for Endocrine Disruption

  • Chapter
  • First Online:
Endocrine Disruptors and Puberty

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Throughout the first two decades of human development, growth of adipose tissue primarily results from an increase in adipocyte number (hyperplasia). Once established, the number of fat cells remains relatively constant, and adipose tissue grows larger primarily by filling the resident cells with more fat (hypertrophy). Obese children exhibit an augmented rate of increase in adipocyte number, and correspondingly, obese adults possess more fat cells. Hence, childhood and adolescence appear to be critical periods in establishing the number of fat cells. Endocrine-disrupting chemicals (EDCs) can predispose a child to obesity by influencing all aspects of adipose tissue growth, starting from multipotent stromal cells (MSCs) and ending with mature adipocytes. EDC exposure can increase the number of preadipocytes, enhance the differentiation of preadipocytes into adipocytes, and augment the uptake of fat into existing adipocytes. Unlike genetic mechanisms, which require a mutation event, EDCs have the capacity to quantitatively alter gene expression by modulating cellular-signaling pathways and by introducing epigenetic changes that also alter gene expression. Therefore, EDC exposure could foster a swift change in the metabolic profile of a population, which might provide at least a partial explanation for the rapid rise in obesity. This review focuses on the developmental origins of the adipocyte and its connection to early-onset obesity with the aim of providing a foundation for formulating hypotheses regarding how EDCs can interfere with adipogenesis and contribute to the obesity epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christeson W, Taggart AD, Messner-Zidell S. Too fat to fight. Washington DC: Mission: Readiness; 2010.

    Google Scholar 

  2. Kiernan M, Eismeier T. 9 million young adults are too overweight to join the military. New report shows: Mission: Readiness; 2010.

    Google Scholar 

  3. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity. 2008;16(10):2323–30.

    Article  PubMed  Google Scholar 

  4. Guo SS, Roche AF, Chumlea WC, Gardner JD, Siervogel RM. The predictive value of childhood body mass index values for overweight at age 35 y. Am J Clin Nutr. 1994;59(4):810–9.

    PubMed  CAS  Google Scholar 

  5. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med. 1992;327(19):1350–5.

    Article  PubMed  CAS  Google Scholar 

  6. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337(13):869–73.

    Article  PubMed  CAS  Google Scholar 

  7. Guo SS, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr. 2002;76(3):653–8.

    PubMed  CAS  Google Scholar 

  8. Grundy SM, Brewer Jr HB, Cleeman JI, Smith Jr SC, Lenfant C. Definition of metabolic syndrome: report of the national heart, lung, and blood institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.

    Article  PubMed  Google Scholar 

  9. Sun SS, Liang R, Huang TT, et al. Childhood obesity predicts adult metabolic syndrome: the Fels longitudinal study. J Pediatr. 2008;152(2):191–200.

    Article  PubMed  CAS  Google Scholar 

  10. Knittle JL, Timmers K, Ginsberg-Fellner F, Brown RE, Katz DP. The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest. 1979;63(2):239–46.

    Article  PubMed  CAS  Google Scholar 

  11. Spalding KL, Arner E, Westermark PO, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453(7196):783–7.

    Article  PubMed  CAS  Google Scholar 

  12. Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr. 1994;59(5):955–9.

    PubMed  CAS  Google Scholar 

  13. Dietz WH. Periods of risk in childhood for the development of adult obesity–what do we need to learn? J Nutr. 1997;127(9):1884S–6S.

    PubMed  CAS  Google Scholar 

  14. Wishnow J. Jamie Oliver’s TED prize wish: teach every child about food. Long Beach. 2010.

    Google Scholar 

  15. Wardle J, Brodersen NH, Cole TJ, Jarvis MJ, Boniface DR. Development of adiposity in adolescence: five year longitudinal study of an ethnically and socioeconomically diverse sample of young people in Britain. BMJ. 2006;332(7550):1130–5.

    Article  PubMed  Google Scholar 

  16. Gluckman PD, Hanson MA, Beedle AS, Raubenheimer D. Fetal and neonatal pathways to obesity. Front Horm Res. 2008;36:61–72.

    Article  PubMed  Google Scholar 

  17. Janesick A, Blumberg B. The role of environmental obesogens in the obesity epidemic. In: Lustig RH, editor. Obesity before birth, vol. 30. New York: Springer; 2011. p. 383–399.

    Chapter  Google Scholar 

  18. Kirchner S, Kieu T, Chow C, Casey S, Blumberg B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol Endocrinol. 2010;24(3):526–39.

    Article  PubMed  CAS  Google Scholar 

  19. Hanson MA, Gluckman PD. Developmental origins of health and disease: new insights. Basic Clin Pharmacol Toxicol. 2008;102(2):90–3.

    Article  PubMed  CAS  Google Scholar 

  20. Kuzawa CW. Adipose tissue in human infancy and childhood: an evolutionary perspective. Am J Phys Anthropol. 1998;Suppl 27:177–209. Volume 107, Issue Supplement 27 (Supplement: Yearbook of Physical Anthropology).

    Google Scholar 

  21. Foley RA, Lee PC. Ecology and energetics of encephalization in hominid evolution. Philos Trans R Soc Lond B Biol Sci. 1991;334(1270):223–31; discussion 232.

    Article  PubMed  CAS  Google Scholar 

  22. Hager A, Sjostrm L, Arvidsson B, Bjorntorp P, Smith U. Body fat and adipose tissue cellularity in infants: a longitudinal study. Metabolism. 1977;26(6):607–14.

    Article  PubMed  CAS  Google Scholar 

  23. Rogol AD, Roemmich JN, Clark PA. Growth at puberty. J Adolesc Health. 2002;31(6 Suppl):192–200.

    Article  PubMed  Google Scholar 

  24. Lee JM, Kaciroti N, Appugliese D, Corwyn RF, Bradley RH, Lumeng JC. Body mass index and timing of pubertal initiation in boys. Arch Pediatr Adolesc Med. 2010;164(2):139–44.

    Article  PubMed  Google Scholar 

  25. Hirsch J, Knittle JL. Cellularity of obese and nonobese human adipose tissue. Fed Proc. 1970;29(4):1516–21.

    PubMed  CAS  Google Scholar 

  26. Knittle JL. Obesity in childhood: a problem in adipose tissue cellular development. J Pediatr. 1972;81(6):1048–59.

    Article  PubMed  CAS  Google Scholar 

  27. Salans LB, Cushman SW, Weismann RE. Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients. J Clin Invest. 1973;52(4):929–41.

    Article  PubMed  CAS  Google Scholar 

  28. Hager A, Sjorstrom L, Arvidsson B, Bjorntorp P, Smith U. Adipose tissue cellularity in obese school girls before and after dietary treatment. Am J Clin Nutr. 1978;31(1):68–75.

    PubMed  CAS  Google Scholar 

  29. Newburgh LH, Johnston MW. The nature of obesity. J Clin Invest. 1930;8(2):197–213.

    Article  PubMed  CAS  Google Scholar 

  30. Hetherington AW, Ranson SW. The spontaneous activity and food intake of rats with hypothalamic lesions. Am J Physiol. 1942;136(4):609–17.

    CAS  Google Scholar 

  31. Glucksman ML, Hirsch J. The response of obese patients to weight reduction I. A clinical evaluation of behavior. Psychosom Med. 1968;30(1):1–11.

    PubMed  CAS  Google Scholar 

  32. Glucksman ML, Hirsch J. The response of obese patients to weight reduction III. The perception of body size. Psychosom Med. 1969;31(1):1–7.

    PubMed  CAS  Google Scholar 

  33. Glucksman ML, Hirsch J, McCully RS, Barron BA, Knittle JL. The response of obese patients to weight reduction II. A quantitative evaluation of behavior. Psychosom Med. 1968;30(4):359–73.

    PubMed  CAS  Google Scholar 

  34. Sims EA, Horton ES. Endocrine and metabolic adaptation to obesity and starvation. Am J Clin Nutr. 1968;21(12):1455–70.

    PubMed  CAS  Google Scholar 

  35. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2):242–56.

    Article  PubMed  CAS  Google Scholar 

  36. Prins JB, O’Rahilly S. Regulation of adipose cell number in man. Clin Sci (Lond). 1997;92(1):3–11.

    CAS  Google Scholar 

  37. Singh R, Xiang Y, Wang Y, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009;119(11):3329–39.

    PubMed  CAS  Google Scholar 

  38. Joe AW, Yi L, Even Y, Vogl AW, Rossi FM. Depot-specific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells. 2009;27(10):2563–70.

    Article  PubMed  CAS  Google Scholar 

  39. Lau DC, Shillabeer G, Wong KL, Tough SC, Russell JC. Influence of paracrine factors on preadipocyte replication and differentiation. Int J Obes. 1990;14(Suppl 3):193–201.

    PubMed  Google Scholar 

  40. Marques BG, Hausman DB, Martin RJ. Association of fat cell size and paracrine growth factors in development of hyperplastic obesity. Am J Physiol. 1998;275(6 Pt 2):R1898–908.

    PubMed  CAS  Google Scholar 

  41. Shillabeer G, Forden JM, Lau DC. Induction of preadipocyte differentiation by mature fat cells in the rat. J Clin Invest. 1989;84(2):381–7.

    Article  PubMed  CAS  Google Scholar 

  42. Adams M, Montague CT, Prins JB, et al. Activators of peroxisome proliferator-activated receptor gamma have depot-specific effects on human preadipocyte differentiation. J Clin Invest. 1997;100(12):3149–53.

    Article  PubMed  CAS  Google Scholar 

  43. Lelliott C, Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes Relat Metab Disord. 2004;28(Suppl 4):S22–8.

    Article  PubMed  CAS  Google Scholar 

  44. Heilbronn L, Smith SR, Ravussin E. Failure of fat cell proliferation, mitochondrial function and fat oxidation results in ectopic fat storage, insulin resistance and type II diabetes mellitus. Int J Obes Relat Metab Disord. 2004;28(Suppl 4):S12–21.

    Article  PubMed  CAS  Google Scholar 

  45. Kim JY, van de Wall E, Laplante M, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621–37.

    Article  PubMed  CAS  Google Scholar 

  46. Virtue S, Vidal-Puig A. It’s not how fat you are, it’s what you do with it that counts. PLoS Biol. 2008;6(9):e237.

    Article  PubMed  CAS  Google Scholar 

  47. Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab. 2009 American Journal of Physiology, vol. 297, no. 5, pp. E999–E1003.

    Google Scholar 

  48. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43(12):1498–506.

    Article  PubMed  CAS  Google Scholar 

  49. Bays HE, Gonzalez-Campoy JM, Henry RR, et al. Is adiposopathy (sick fat) an endocrine disease? Int J Clin Pract. 2008;62(10):1474–83.

    Article  PubMed  CAS  Google Scholar 

  50. de Ferranti S, Mozaffarian D. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem. 2008;54(6):945–55.

    Article  PubMed  CAS  Google Scholar 

  51. Gregor MG, Hotamisligil GS. Adipocyte stress: the endoplasmic reticulum and metabolic disease. J Lipid Res. 2007;48:1905–14.

    Article  PubMed  CAS  Google Scholar 

  52. Medina-Gomez G, Gray SL, Yetukuri L, et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet. 2007;3(4):e64.

    Article  PubMed  CAS  Google Scholar 

  53. Lee JM, Pilli S, Gebremariam A, et al. Getting heavier, younger: trajectories of obesity over the life course. Int J Obes (Lond). 2010;34(4):614–23.

    Article  CAS  Google Scholar 

  54. Park KW, Halperin DS, Tontonoz P. Before they were fat: adipocyte progenitors. Cell Metab. 2008;8(6):454–7.

    Article  PubMed  CAS  Google Scholar 

  55. Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7.

    Article  PubMed  CAS  Google Scholar 

  56. Timmons JA, Wennmalm K, Larsson O, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA. 2007;104(11):4401–6.

    Article  PubMed  CAS  Google Scholar 

  57. Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr. 1994;14:99–129.

    Article  PubMed  CAS  Google Scholar 

  58. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(Pt 11):2204–13.

    Article  PubMed  CAS  Google Scholar 

  59. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.

    Article  PubMed  CAS  Google Scholar 

  60. da Silva ML, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26(9):2287–99.

    Article  Google Scholar 

  61. Tang W, Zeve D, Suh JM, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322(5901):583–6.

    Article  PubMed  CAS  Google Scholar 

  62. Rupnick MA, Panigrahy D, Zhang CY, et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA. 2002;99(16):10730–5.

    Article  PubMed  CAS  Google Scholar 

  63. Kahn CR. Medicine. Can we nip obesity in its vascular bud? Science. 2008;322(5901):542–3.

    Article  PubMed  CAS  Google Scholar 

  64. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79(7):1147–56.

    Article  PubMed  CAS  Google Scholar 

  65. Wu Z, Bucher NL, Farmer SR. Induction of peroxisome proliferator-activated receptor gamma during the conversion of 3 T3 fibroblasts into adipocytes is mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol. 1996;16(8):4128–36.

    PubMed  CAS  Google Scholar 

  66. Shao D, Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem. 1997;272(34):21473–8.

    Article  PubMed  CAS  Google Scholar 

  67. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611–7.

    Article  PubMed  CAS  Google Scholar 

  68. Jin Q, Zhang F, Yan T, et al. C/EBPalpha regulates SIRT1 expression during adipogenesis. Cell Res. 2010;20(4):470–9.

    Article  PubMed  CAS  Google Scholar 

  69. Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004;429(6993):771–6.

    Article  PubMed  CAS  Google Scholar 

  70. Student AK, Hsu RY, Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3 T3-L1 preadipocytes. J Biol Chem. 1980;255(10):4745–50.

    PubMed  CAS  Google Scholar 

  71. Kim JB, Wright HM, Wright M, Spiegelman BM. ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc Natl Acad Sci USA. 1998;95(8):4333–7.

    Article  PubMed  CAS  Google Scholar 

  72. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995;83(5):813–9.

    Article  PubMed  CAS  Google Scholar 

  73. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM. 15-deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 1995;83(5):803–12.

    Article  PubMed  CAS  Google Scholar 

  74. Kim EH, Surh YJ. The role of 15-deoxy-delta(12,14)-prostaglandin J(2), an endogenous ligand of peroxisome proliferator-activated receptor gamma, in tumor angiogenesis. Biochem Pharmacol. 2008;76(11):1544–53.

    Article  PubMed  CAS  Google Scholar 

  75. Walkey CJ, Spiegelman BM. A functional peroxisome proliferator-activated receptor-gamma ligand-binding domain is not required for adipogenesis. J Biol Chem. 2008;283(36):24290–4.

    Article  PubMed  CAS  Google Scholar 

  76. Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995;270(22):12953–6.

    Article  PubMed  CAS  Google Scholar 

  77. Bility MT, Thompson JT, McKee RH, et al. Activation of mouse and human peroxisome proliferator-activated receptors (PPARs) by phthalate monoesters. Toxicol Sci. 2004;82(1):170–82.

    Article  PubMed  CAS  Google Scholar 

  78. Hurst CH, Waxman DJ. Activation of PPARalpha and PPARgamma by environmental phthalate monoesters. Toxicol Sci. 2003;74(2):297–308.

    Article  PubMed  CAS  Google Scholar 

  79. Feige JN, Gelman L, Rossi D, et al. The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. J Biol Chem. 2007;282(26):19152–66.

    Article  PubMed  CAS  Google Scholar 

  80. Grun F, Watanabe H, Zamanian Z, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20(9):2141–55.

    Article  PubMed  CAS  Google Scholar 

  81. Kanayama T, Kobayashi N, Mamiya S, Nakanishi T, Nishikawa J. Organotin compounds promote adipocyte differentiation as agonists of the peroxisome proliferator-activated receptor gamma/retinoid X receptor pathway. Mol Pharmacol. 2005;67(3):766–74.

    Article  PubMed  CAS  Google Scholar 

  82. Hiromori Y, Nishikawa J, Yoshida I, Nagase H, Nakanishi T. Structure-dependent activation of peroxisome proliferator-activated receptor (PPAR) gamma by organotin compounds. Chem Biol Interact. 2009;180(2):238–44.

    Article  PubMed  CAS  Google Scholar 

  83. Vanden Heuvel JP, Thompson JT, Frame SR, Gillies PJ. Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: a comparison of human, mouse, and rat peroxisome proliferator-activated receptor-alpha, -beta, and -gamma, liver X receptor-beta, and retinoid X receptor-alpha. Toxicol Sci. 2006;92(2):476–89.

    Article  Google Scholar 

  84. Takacs ML, Abbott BD. Activation of mouse and human peroxisome proliferator-activated receptors (alpha, beta/delta, gamma) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicol Sci. 2007;95(1):108–17.

    Article  PubMed  CAS  Google Scholar 

  85. Stahlhut RW, van Wijngaarden E, Dye TD, Cook S, Swan SH. Concentrations of urinary phthalate metabolites are associated with increased waist circumference and insulin resistance in adult U.S. males. Environ Health Perspect. 2007;115(6):876–82.

    Article  PubMed  CAS  Google Scholar 

  86. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect. 2008;116(6):761–8.

    Article  PubMed  CAS  Google Scholar 

  87. Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3 T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci. 2005;84(2):319–27.

    Article  PubMed  CAS  Google Scholar 

  88. Fu M, Sun T, Bookout AL, et al. A nuclear receptor atlas: 3 T3-L1 adipogenesis. Mol Endocrinol. 2005;19(10):2437–50.

    Article  PubMed  CAS  Google Scholar 

  89. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7(12):885–96.

    Article  PubMed  CAS  Google Scholar 

  90. le Maire A, Grimaldi M, Roecklin D, et al. Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep. 2009;10(4):367–73.

    Article  PubMed  CAS  Google Scholar 

  91. Hallgren S, Sinjari T, Hakansson H, Darnerud PO. Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch Toxicol. 2001;75(4):200–8.

    Article  PubMed  CAS  Google Scholar 

  92. Cheek AO, Kow K, Chen J, McLachlan JA. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect. 1999;107(4):273–8.

    Article  PubMed  CAS  Google Scholar 

  93. Herbstman JB, Sjodin A, Apelberg BJ, et al. Birth delivery mode modifies the associations between prenatal polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) and neonatal thyroid hormone levels. Environ Health Perspect. 2008;116(10):1376–82.

    Article  PubMed  CAS  Google Scholar 

  94. Smith CJ, Vasta V, Degerman E, Belfrage P, Manganiello VC. Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. Regulation of insulin- and cAMP-dependent activation by phosphorylation. J Biol Chem. 1991;266(20):13385–90.

    PubMed  CAS  Google Scholar 

  95. Van Inwegen RG, Robison GA, Thompson WJ. Cyclic nucleotide phosphodiesterases and thyroid hormones. J Biol Chem. 1975;250(7):2452–6.

    PubMed  Google Scholar 

  96. Viguerie N, Millet L, Avizou S, Vidal H, Larrouy D, Langin D. Regulation of human adipocyte gene expression by thyroid hormone. J Clin Endocrinol Metab. 2002;87(2):630–4.

    Article  PubMed  CAS  Google Scholar 

  97. Chen JQ, Brown TR, Russo J. Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochim Biophys Acta. 2009;1793(7):1128–43.

    Article  PubMed  CAS  Google Scholar 

  98. Foryst-Ludwig A, Clemenz M, Hohmann S, et al. Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma. PLoS Genet. 2008;4(6):e1000108.

    Article  PubMed  CAS  Google Scholar 

  99. Newbold RR, Padilla-Banks E, Jefferson WN. Environmental estrogens and obesity. Mol Cell Endocrinol. 2009;304(1–2):84–9.

    Article  PubMed  CAS  Google Scholar 

  100. Somm E, Schwitzgebel VM, Vauthay DM, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology. 2008;149(12):6289–99.

    Article  PubMed  CAS  Google Scholar 

  101. Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135(2):240–9.

    Article  PubMed  CAS  Google Scholar 

  102. Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci USA. 2004;101(26):9607–11.

    Article  PubMed  CAS  Google Scholar 

  103. Gupta RK, Arany Z, Seale P, et al. Transcriptional control of preadipocyte determination by Zfp423. Nature. 2010;464(7288):619–23.

    Article  PubMed  CAS  Google Scholar 

  104. Bilkovski R, Schulte DM, Oberhauser F, et al. Role of WNT-5a in the determination of human mesenchymal stem cells into preadipocytes. J Biol Chem. 2010;285(9):6170–8.

    Article  PubMed  CAS  Google Scholar 

  105. Ross SE, Hemati N, Longo KA, et al. Inhibition of adipogenesis by Wnt signaling. Science. 2000;289(5481):950–3.

    Article  PubMed  CAS  Google Scholar 

  106. Hoogduijn MJ, Rakonczay Z, Genever PG. The effects of anticholinergic insecticides on human mesenchymal stem cells. Toxicol Sci. 2006;94(2):342–50.

    Article  PubMed  CAS  Google Scholar 

  107. Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  108. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol. 2002;55(9):693–8.

    Article  PubMed  CAS  Google Scholar 

  109. Rodriguez JP, Montecinos L, Rios S, Reyes P, Martinez J. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation. J Cell Biochem. 2000;79(4):557–65.

    Article  PubMed  CAS  Google Scholar 

  110. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600.

    Article  PubMed  CAS  Google Scholar 

  111. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002;99(4):2199–204.

    Article  PubMed  CAS  Google Scholar 

  112. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410(6829):701–5.

    Article  PubMed  CAS  Google Scholar 

  113. Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem. 2009;106(6):984–91.

    Article  PubMed  CAS  Google Scholar 

  114. Crossno Jr JT, Majka SM, Grazia T, Gill RG, Klemm DJ. Rosiglitazone promotes development of a novel adipocyte population from bone marrow-derived circulating progenitor cells. J Clin Invest. 2006;116(12):3220–8.

    Article  PubMed  CAS  Google Scholar 

  115. Koh YJ, Kang S, Lee HJ, et al. Bone marrow-derived circulating progenitor cells fail to transdifferentiate into adipocytes in adult adipose tissues in mice. J Clin Invest. 2007;117(12):3684–95.

    Article  PubMed  CAS  Google Scholar 

  116. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive responses and human evolution. Trends Ecol Evol. 2005;20(10):527–33.

    Article  PubMed  Google Scholar 

  117. Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology. 2009;150(7):3376–82.

    Article  PubMed  CAS  Google Scholar 

  118. Anway MD, Rekow SS, Skinner MK. Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics. 2008;91(1):30–40.

    Article  PubMed  CAS  Google Scholar 

  119. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet. 2000;25(3):338–42.

    Article  PubMed  CAS  Google Scholar 

  120. Burgers WA, Fuks F, Kouzarides T. DNA methyltransferases get connected to chromatin. Trends Genet. 2002;18(6):275–7.

    Article  PubMed  CAS  Google Scholar 

  121. Reed DR, Lawler MP, Tordoff MG. Reduced body weight is a common effect of gene knockout in mice. BMC Genet. 2008;9:4.

    Article  PubMed  CAS  Google Scholar 

  122. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308(5727):1466–9.

    Article  PubMed  CAS  Google Scholar 

  123. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology. 2006;147(6 Suppl):S43–9.

    Article  PubMed  CAS  Google Scholar 

  124. Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15(7):784–90.

    Article  PubMed  CAS  Google Scholar 

  125. Hajkova P, Erhardt S, Lane N, et al. Epigenetic reprogramming in mouse primordial germ cells. Mech Dev. 2002;117(1–2):15–23.

    Article  PubMed  CAS  Google Scholar 

  126. Pembrey ME. Time to take epigenetic inheritance seriously. Eur J Hum Genet. 2002;10(11):669–71.

    Article  PubMed  Google Scholar 

  127. Loukinov DI, Pugacheva E, Vatolin S, et al. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc Natl Acad Sci USA. 2002;99(10):6806–11.

    Article  PubMed  CAS  Google Scholar 

  128. Obama M, Barnes M. Solving the problem of childhood obesity within a generation. Washington DC; 2010 http://www.letsmove.gov/sites/letsmove.gov/files/TaskForce_on_Childhood_Obesity_May2010_FullReport.pdf.

Download references

Acknowledgments

Work in the authors’ laboratory was supported by a grant from the NIH R01 ES015849. A.J. is a predoctoral trainee of NSF IGERT DGE 0549479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Janesick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Janesick, A., Blumberg, B. (2012). Adipocytes as Target Cells for Endocrine Disruption. In: Diamanti-Kandarakis, E., Gore, A. (eds) Endocrine Disruptors and Puberty. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60761-561-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-561-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-560-6

  • Online ISBN: 978-1-60761-561-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics