Skip to main content

Hypertension in Patients with Cushing’s Syndrome

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Hypertension in patients with Cushing’s syndrome (CS) occurs in up to 95% of adult and in half of pediatric cases. It represents a major cardiovascular risk and mortality factor in such patients. Its pathogenesis is incompletely understood and includes an imbalance of factors involved in vasodilation and vasoconstriction. Amongst these are upregulation of the renin–angiotensin system activity, salt and water retention, increased peripheral resistance, increase in production/activity of endothelin-1 and vasopressin, increased reactivity to catecholamines, as well as decline in antioxidants, nitric oxide synthase, and others. Patients with ectopic CS usually have more pronounced hypercortisolism and hypertension than patients with CS of other etiologies. This might in part be caused by a functional state of mineralocorticoid excess due to oversaturation of the 11-beta-hydroxysteroid dehydrogenase type 2 enzyme. In patients with exogenous CS, the prevalence of hypertension is dose-dependent and lower (about 20%) than in those with endogenous CS. The aim of therapy is to normalize blood pressure and to remove the source of glucocorticoid excess with subsequent resolution of hypertension after surgical cure which will occur in almost all children and adolescents, but only in two-thirds of adults. This resolution depends on the age of onset, duration, and degree of glucocorticoid excess, as well as other underlying hypertension risk factors such as obesity, sleep apnea, and insulin resistance. Treatment should include ACE inhibitors and angiotensin II ­receptor blockers, as well as eplerenone in selected patients (especially those with ectopic CS). Glucocorticoid excess and its effects should be controlled, if necessary with careful use of drugs such as steroidogenesis inhibitors or type II glucocorticoid receptor antagonists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Newell-Price J, Bertagna X, Grossman AB, et al. Cushing’s syndrome. Lancet. 2006;367:1605–17.

    Article  PubMed  CAS  Google Scholar 

  2. Sharma ST, Nieman LN. Cushing’s syndrome: all variants, detection, and treatment. Endocrinol Metab Clin North Am. 2011;40(2):379–91.

    Article  PubMed  CAS  Google Scholar 

  3. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol. 1994;40:479–84.

    Article  CAS  Google Scholar 

  4. Lindholm J, et al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. J Clin Endocrinol Metab. 2001;86:117–23.

    Article  PubMed  CAS  Google Scholar 

  5. Hall JE, Nieman LK, editors. Handbook of diagnostic endocrinology. Totowa: Humana Press; 2003.

    Google Scholar 

  6. Magiakou MA, Smyrnaki P, Chrousos GP. Hypertension in Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab. 2006;20:467–82.

    Article  PubMed  CAS  Google Scholar 

  7. Robyn JA, Koch CA, Montalto J, Yong A, Warne GL, Batch JA. Cushing’s syndrome in childhood and adolescence. J Paediatr Child Health. 1997;33(6):522–7.

    Article  PubMed  CAS  Google Scholar 

  8. Koch CA, Bornstein SR, Chrousos GP, Stratakis CA. Primary pigmented nodular adrenocortical dysplasia (PPNAD) within the scope of Carney complex as the etiology of Cushing’s syndrome. Med Klin (Munich). 2000;95(4):224–30.

    Article  CAS  Google Scholar 

  9. Kirkby-Bott J, Brunaud L, Mathonet M, Hamoir E, Kraimps JL, Trésallet C, et al. Ectopic hormone-secreting pheochromocytoma: a francophone observational study. World J Surg. 2012;36(6):1382–8.

    Article  PubMed  Google Scholar 

  10. Singer J, Werner F, Koch CA, Bartels M, Aigner T, Lincke T, et al. Ectopic Cushing’s syndrome caused by a well-differentiated ACTH-secreting neuroendocrine carcinoma of the ileum. Exp Clin Endocrinol Diabetes. 2010;118(8):524–9.

    Article  PubMed  CAS  Google Scholar 

  11. Uwaifo GI, Koch CA, Hirshberg B, Chen CC, Hartzband P, Nieman LK, et al. Is there a therapeutic role for octreotide in patients with ectopic Cushing’s syndrome? J Endocrinol Invest. 2003;26(8):710–7.

    PubMed  CAS  Google Scholar 

  12. Krakoff J, Koch CA, Calis KA, Alexander RH, Nieman LK. Use of parenteral propylene glycol-containing etomidate preparation for the long-term management of ectopic Cushing’s syndrome. J Clin Endocrinol Metab. 2001;86(9):4104–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, et al. The diagnosis of Cushing’s syndrome: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2008;93(5):1526–40.

    Article  PubMed  CAS  Google Scholar 

  14. Dekkers OM, et al. Mortality in patients treated for Cushing’s disease is increased, compared with patients treated for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab. 2007;92:976–81.

    Article  PubMed  CAS  Google Scholar 

  15. Clayton RN, et al. Mortality and morbidity in Cushing’s disease over 50 years in Stoke-on-Trent, UK: audit and meta-analysis of literature. J Clin Endocrinol Metab. 2011;96:632–42.

    Article  PubMed  CAS  Google Scholar 

  16. Bolland MJ, et al. Mortality and morbidity in Cushing’s syndrome in New Zealand. Clin Endocrinol. 2011;75:436–42.

    Article  Google Scholar 

  17. Porterfield JR, et al. Surgery for Cushing’s syndrome: an historical review and recent ten-year experience. World J Surg. 2008;32:659–77.

    Article  PubMed  Google Scholar 

  18. Swearingen B, et al. Long-term mortality after transsphenoidal surgery for Cushing’s disease. Ann Intern Med. 1999;130:821–4.

    PubMed  CAS  Google Scholar 

  19. Baid S, Nieman LK. Glucocorticoid excess and hypertension. Curr Hypertens Rep. 2004;6:493–9.

    Article  Google Scholar 

  20. Magiakou MA, Mastorakos G, Oldfield EH, Gomez MT, Doppman JL, Cutler Jr GB, et al. Cushing’s syndrome in children and adolescents, presentation, diagnosis, and therapy. N Engl J Med. 1994;331:629–36.

    Article  PubMed  CAS  Google Scholar 

  21. Magiakou MA, Mastorakos G, Zachman K, Chrousos GP. Blood pressure in children and adolescents with Cushing’s syndrome before and after surgical cure. J Clin Endocrinol Metab. 1997;82:1734–7.

    Article  PubMed  CAS  Google Scholar 

  22. Lodish MB, Sinaii N, Patronas N, Batista DL, Keil M, Samuel J, et al. Blood pressure in pediatric patients with Cushing’s Syndrome. J Clin Endocrinol Metab. 2009;94:2002–8.

    Article  PubMed  CAS  Google Scholar 

  23. Pirpiris M, et al. Hydrocortisone-indiced hypertension in men. The role of cardiac output. Am J Hypertens. 1993;6:287–94.

    PubMed  CAS  Google Scholar 

  24. Connell JM, et al. Effects of ACTH and cortisol administration on blood pressure, electrolyte metabolism, atrial natriuretic peptide and renal function in normal man. J Hypertens. 1987;5:425–33.

    Article  PubMed  CAS  Google Scholar 

  25. De Leo M, et al. Cardiovascular disease in Cushing’s syndrome. Neuroendocrinology. 2010;92:50–4.

    Article  PubMed  Google Scholar 

  26. Cicala MV, Mantero F. Hypertension in Cushing’s syndrome: from pathogenesis to treatment. Neuroendocrinology. 2010;92:44–9.

    Article  PubMed  CAS  Google Scholar 

  27. Montrella-Waybill M, et al. Evidence that high dose cortisol-induced Na+ retention in man is not mediated by the mineralocorticoid receptor. J Clin Endocrinol Metab. 1992;72:1060–6.

    Article  Google Scholar 

  28. Ong SLH, Whitworth JA. How do glucocorticoids cause hypertension: role of nitric oxide deficiency, oxidative stress, and eicosanoids. Endocrinol Metab Clin N Am. 2011;40:393–407.

    Article  CAS  Google Scholar 

  29. Pipal JB, Fuller PJ. Structure-function relationships in the mineralocorticoid receptor. J Mol Endocrinol. 2008;41:405–13.

    Article  Google Scholar 

  30. Bridgham JT, et al. Evolution of hormone-receptor complexity by molecular exploitation. Science. 2006;312(5770):97–100.

    Article  PubMed  CAS  Google Scholar 

  31. Arrizza JL, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237:268–75.

    Article  Google Scholar 

  32. De Kloet ER, et al. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.

    Article  PubMed  Google Scholar 

  33. Draper N, Stewart PA. 11β-Hydroxysteroid dehydrogenase and the pre-receptor regulation of corticosteroid hormone action. J Endocrinol. 2005;186:251–71.

    Article  PubMed  CAS  Google Scholar 

  34. Amelung D, et al. Conversion of cortisone to compound F. J Clin Endocrinol Metab. 1953;13:1125–6.

    Article  PubMed  CAS  Google Scholar 

  35. Agarwal AK, et al. Cloning and expression of rat cDNA encoding corticosteroid 11β-dehydrogenase. J Biol Chem. 1989;264:18939–43.

    PubMed  CAS  Google Scholar 

  36. Stewart PM, et al. Human kidney 11β-hydroxysteroid dehydrogenase is a high affinity nicotinamide adenine dinucleotide-dependent enzyme and differs from the cloned “type I” isoform. J Clin Endocrinol Metab. 1994;79:480–4.

    Article  PubMed  CAS  Google Scholar 

  37. Ulick S, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab. 1979;49:757–64.

    Article  PubMed  CAS  Google Scholar 

  38. Stewart PM, et al. Syndrome of apparent mineralocorticoid excess: a defect in the cortisol-cortisone shuttle. J Clin Invest. 1988;82:340–9.

    Article  PubMed  CAS  Google Scholar 

  39. Funder JW and Myles K. Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology. 1996;137:5264–8.

    Article  Google Scholar 

  40. Fjeld C, et al. Differential binding of NAD+ and NADH allows the transcriptional corepressor carboxyl-terminal binding protein to serve as a metabolic sensor. Proc Natl Acad Sci USA. 2003;100:9202–7.

    Article  PubMed  CAS  Google Scholar 

  41. Ward MR, et al. Eplerenone suppresses constrictive remodeling and collagen accumulation after angioplasty in porcine coronary arteries. Circulation. 2001;104:467–72.

    Article  PubMed  CAS  Google Scholar 

  42. Staab CA, Maser E. 11-βHydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Mol Biol. 2010;119:56–72.

    Article  CAS  Google Scholar 

  43. Pereira CD et al. 11-βHydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes Metab. 2012. doi: 10.1111/j.1463-1326.2012.01582.x.

    Google Scholar 

  44. Pirpiris M, et al. Pressor responsiveness in corticosteroid-induced hypertension in humans. Hypertension. 1992;19:567–74.

    Article  PubMed  CAS  Google Scholar 

  45. Nakamoto H, et al. Depressor systems contribute to hypertension induced by glucocorticoid excess in dogs. J Hypertens. 1992;10:561–9.

    Article  PubMed  CAS  Google Scholar 

  46. Wen C, et al. Hemodynamic profile of corticotrophin-induced hypertension in the rat. J Hypertens. 1999;17:1715–23.

    Article  PubMed  CAS  Google Scholar 

  47. Witworth JA, et al. Hemodynamic response to cortisol in man: effects of felodipine. Hypertens Res. 1994;17:137–42.

    Article  Google Scholar 

  48. Connell JM, et al. Haemodynamic, hormonal and renal effects of adrenocorticotrophic hormone in sodium-restricted man. J Hypertens. 1988;6:17–23.

    Article  PubMed  CAS  Google Scholar 

  49. Peppa M, et al. Hypertension and other morbidities with Cushing’s syndrome associated with corticosteroids: a review. Integr Blood Press Control. 2011;4:7–16.

    Article  PubMed  CAS  Google Scholar 

  50. Kirilov G, et al. Elevated plasma endothelin as an additional cardiovascular risk factor in patients with Cushing’s syndrome. Eur J Endocrinol. 2003;149:549–53.

    Article  PubMed  CAS  Google Scholar 

  51. Borcsok I, et al. Glucocorticoids regulate the expression of the humanosteoblastic endothelin A receptor gene. J Exp Med. 1998;188:1563–73.

    Article  PubMed  CAS  Google Scholar 

  52. Sala C, et al. Blunted vascular and renal effects of exogenous atrial natriuretic peptide in patients with Cushing’s disease. J Clin Endocrinol Metab. 2001;86:1957–61.

    Article  PubMed  CAS  Google Scholar 

  53. Colao A, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after 5 years of successful cure. J Clin Endocrinol Metab. 1999;84:2664–72.

    Article  PubMed  CAS  Google Scholar 

  54. Giordano R, et al. Metabolic and cardiovascular outcomes in patients with Cushing’s syndrome of different aetiologies during active disease and 1 years after remission. Clin Endocrinol. 2011;75:354–60.

    Article  CAS  Google Scholar 

  55. Seckl JR, et al. Glucocorticoids and 11-beta-hydroxysteroid dehydrogenase in adipose tissue. Recent Prog Horm Res. 2004;59:359–93.

    Article  PubMed  CAS  Google Scholar 

  56. Rask E, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11-beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87:3330–6.

    Article  PubMed  CAS  Google Scholar 

  57. Tritos NA, Biller BM, Swearingen B. Management of Cushing’s disease. Nat Rev Endocrinol. 2011;7(5):279–89.

    Article  PubMed  CAS  Google Scholar 

  58. Colao A, et al. Pasireotide B2305 Study Group. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med. 2012;366(10):914–24.

    Article  PubMed  CAS  Google Scholar 

  59. Nieman LK, Chrousos GP, Kellner C, Spitz IM, Nisula BC, Cutler GB, et al. Successful treatment of Cushing’s syndrome with the glucocorticoid antagonist RU486. J Clin Endocrinol Metab. 1985;61(3):536–40.

    Article  PubMed  CAS  Google Scholar 

  60. Castinetti F, Conte-Devolx B, Brue T. Medical treatment of Cushing’s syndrome: glucocorticoid receptor antagonists and mifepristone. Neuroendocrinology. 2010;92 Suppl 1:125–30.

    Article  PubMed  CAS  Google Scholar 

  61. Fleseriu M, et al. On behalf of the SEISMIC Study Investigators; The SEISMIC Study Investigators include. Mifepristone, a glucocorticoid receptor antagonist produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Kantorovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kantorovich, V., Koch, C.A., Chrousos, G.P. (2013). Hypertension in Patients with Cushing’s Syndrome. In: Koch, C., Chrousos, G. (eds) Endocrine Hypertension. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-548-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-548-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-547-7

  • Online ISBN: 978-1-60761-548-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics