Skip to main content

Syndromes of Mineralocorticoid Excess

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

In addition to obesity, diabetes type 2, and the metabolic syndrome, hypertension represents a major public and global health problem, most of which can be improved by lifestyle changes, including changing dietary habits with less consumption of processed and preserved foods, which generally contain higher amounts of salt than freshly prepared food items. Amongst causes for endocrine hypertension are syndromes of mineralocorticoid excess typically resulting from overactive amiloride-sensitive sodium channels located in the distal convoluted tubules and collecting ducts of the kidney, as well as other tissues, including vascular smooth muscle. The net effect of such an overactivation, which occurs mostly in primary aldosteronism is sodium and water retention with volume expansion and hypertension that is exacerbated by a diet high in salt. Biochemically, plasma renin activity is suppressed and hypokalemia may be present. Aldosterone mediates its action through the mineralocortoid receptor (MR), which regulates salt homeostasis in the kidneys and plays a range of other roles in the vasculature, heart, brain, and adipose tissue.

Excessive MR activation can promote inflammation, fibrosis, and heart disease as well as psychiatric illness, including anxiety and depression, through key modulators, including the glucocorticoid receptor and the 11β-hydroxysteroid dehydrogenases.

Apart from aldosterone, the MR is also activated by products of abnormal ­adrenal steroid biosynthesis, dysregulated metabolism of cortisol in cells that are targets of mineralocorticoids, and activating mutations of the MR or of ion channels that are inducible by the MR. We provide here an overview of mineralocorticoid excess caused by congenital adrenal hyperplasia due to mutations of the 11beta-­hydroxylase and 17alpha-hydroxylase genes, by mutations of the 11beta-hydroxysteroid dehydrogenase type 2 gene (apparent mineralocorticoid excess (AME)), mutations of the epithelial sodium channel genes (Liddle syndrome), mutations of the ­mineralocorticoid receptor gene (Geller syndrome), and pseudohypoaldosteronism type 2 or Gordon syndrome.

Most of these conditions are treated by restricted dietary salt intake. However, some require special therapies, including hydrocortisone (CAH), spironolactone/eplerenone, thiazide diuretics (Liddle and Gordon syndrome), while in others spironolactone and other MR antagonists may be contraindicated (Geller syndrome). Understanding the pathophysiology of these rare conditions may help designing future molecular-targeted therapies. Naturally, the mainstay of antihypertensive therapy continues to be reducing the overconsumption of salt in addition to increasing compliance and adherence of patients to currently available indicated therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van Renterghem C, Lazdunski M. A new non-voltage-dependent, epithelial-like Na+ channel in vascular smooth muscle cells. Pflugers Arch. 1991;419(3–4):401–8.

    Article  PubMed  Google Scholar 

  2. Charmandari E, Sertedaki A, Kino T, Merakou C, Hoffman D, Hatch MM et al. A novel point mutation in the KCNJ5 gene causing familial primary hypoaldosteronism and early onset autosomal dominant hypertension. J Clin Endocrinol Metab 2012;24.

    Google Scholar 

  3. Yang J, Fuller PJ. Interactions of the mineralocorticoid receptor—within and without. Mol Cell Endocrinol. 2012;350(2):196–205.

    Article  PubMed  CAS  Google Scholar 

  4. Shibata S, Fujita T. Mineralocorticoid receptors in the pathophysiology of chronic kidney ­diseases and the metabolic syndrome. Mol Cell Endocrinol. 2012;350(2):273–8.

    Article  PubMed  CAS  Google Scholar 

  5. Odermatt A, Kratschmar DV. Tissue-specific modulation of mineralocorticoid receptor ­function by 11β-hydroxysteroid dehydrogenases: an overview. Mol Cell Endocrinol. 2012;350(2):168–86.

    Article  PubMed  CAS  Google Scholar 

  6. Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol. 2012;350(2):310–7.

    Article  PubMed  CAS  Google Scholar 

  7. Koch CA. Adrenal cortex, physiology. In: Martini L, editor. Encyclopedia of endocrinology and endocrine diseases. San Diego: Academic; 2004.

    Google Scholar 

  8. Hassan-Smith Z, Stewart PM. Inherited forms of mineralocorticoid hypertension. Curr Opin Endocrinol Diabetes Obes. 2011;18(3):177–85.

    Article  PubMed  CAS  Google Scholar 

  9. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult ­hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44(4):398–404.

    Article  PubMed  CAS  Google Scholar 

  10. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension. 2008;52(5):818–27.

    Article  PubMed  CAS  Google Scholar 

  11. Calhoun DA, Jones CD, Textor S, Goff DC, Murphy TP, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403–19.

    Article  PubMed  CAS  Google Scholar 

  12. Chobanian AV, et al. The Seventh Report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. JAMA. 2003;289:2560.

    Article  PubMed  CAS  Google Scholar 

  13. Young Jr WF. Endocrine hypertension: then and now. Endocr Pract. 2010;16(5):888–902.

    Article  PubMed  Google Scholar 

  14. Kratzsch J, Wende D, Thiery J, Koch CA. Basal aldosterone-renin-ratio and aldosterone levels in healthy adults during the saline load test. Clin Chem Lab Med. 2007;45–9:A114–5 (German dissertation, Diana Wende, 2008, Leipzig).

    Google Scholar 

  15. Mulatero P. A new form of hereditary primary aldosteronism: familial hypoaldosteronism type III. J Clin Endocrinol Metab. 2008;93(8):2972–4.

    Article  PubMed  CAS  Google Scholar 

  16. Funder JW, Carey RM, Fardella C, Gomez-Sanchez CE, Mantero F, Stowasser M, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:3266–81.

    Article  PubMed  CAS  Google Scholar 

  17. Cho MJ, Sung EY, Park JA, Lee HD. Congestive heart failure as an initial manifestation of reninoma. J Pediatr Endocrinol Metab. 2011;24(11–12):1085–7.

    PubMed  Google Scholar 

  18. Wong L, Hsu TH, Perlroth MG, Hofmann LV, Haynes CM, Katznelson L. Reninoma: case report and literature review. J Hypertens. 2008;26(2):368–73.

    Article  PubMed  CAS  Google Scholar 

  19. Shera AH, Baba AA, Bakshi IH, Lone IA. Recurrent malignant juxtaglomerular cell tumor: a rare cause of malignant hypertension in a child. J Indian Assoc Pediatr Surg. 2011;16(4):152–4.

    Article  PubMed  Google Scholar 

  20. Gottardo F, Cesari M, Morra A, Gardiman M, Fassina A, Dal Bianco M. A kidney tumor in an adolescent with severe hypertension and hypokalemia: an uncommon case—case report and review of the literature on reninoma. Urol Int. 2010;85(1):121–4.

    Article  PubMed  Google Scholar 

  21. Kondo K, Saruta T, Saito I, Yoshida R, Maruyama H, Matsuki S. Benign desoxycorticosterone-producing adrenal tumor. JAMA. 1976;236(9):1042–4.

    Article  PubMed  CAS  Google Scholar 

  22. Sone M, Shibata H, Homma K, Tamura N, Akahira J, Hamada S, et al. Close examination of steroidogenesis disorders in a DOC- and progesterone-producing adrenocortical carcinoma. Endocrine. 2009;35(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  23. Kelly WF, O’Hare MJ, Loizou S, Davies D, Laing I. Hypermineralocorticism without excessive aldosterone secretion: an adrenal carcinoma producing deoxycorticosterone. Clin Endocrinol (Oxf). 1982;17(4):353–61.

    Article  CAS  Google Scholar 

  24. Müssig K, Wehrmann M, Horger M, Maser-Gluth C, Häring HU, Overkamp D. Adrenocortical carcinoma producing 11-deoxycorticosterone: a rare cause of mineralocorticoid hypertension. J Endocrinol Invest. 2005;28(1):61–5.

    PubMed  Google Scholar 

  25. New MI, Geller DS, Fallo F, Wilson RC. Monogenic low rennin hypertension. Trends Endocrinol Metab. 2005;16:92–7.

    Article  PubMed  CAS  Google Scholar 

  26. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;349:776–88.

    Article  PubMed  CAS  Google Scholar 

  27. Zachmann M, Tassinari D, Prader A. Clinical and biochemical variabilitiy of congenital adrenal hyperplasia due to 11beta-hydroxylase deficiency. J Endocrinol Metab. 1983;56:222–9.

    Article  CAS  Google Scholar 

  28. Ogawa K, Hara A, Tanabe S, Tamori S, Yoshida H, Pak CH, et al. A case of 17 alpha-hydroxylase deficiency syndrome associated with right adrenal tumor. Clin Exp Hypertens A. 1984;6(4):863–77.

    Article  PubMed  CAS  Google Scholar 

  29. Costa-Santos M, Kater CE, Auchus RJ, et al. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 Brazilian patients with 17-hydroxylase deficiency. J Clin Endocrinol Metab. 2004;89:49–60.

    Article  PubMed  CAS  Google Scholar 

  30. Wong SL, Shu SG, Tsai CR. Seventeen alpha-hydroxylase deficiency. J Formos Med Assoc. 2006;105:177–81.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrari P. The role of 11β-hydroxysteroid dehydrogenase type 2 in human hypertension. Biochim Biophys Acta. 2010;1802(12):1178–87.

    Article  PubMed  CAS  Google Scholar 

  32. New MI, Levine LS, Biglieri EG, Paeira J, Ulick S. Evidence for an unidentified ACTH-induced steroid hormone causing hypertension. J Clin Endocrinol Metab. 1977;44:924–33.

    Article  PubMed  CAS  Google Scholar 

  33. Lin-Su K, Zhou P, Arora N, et al. In vitro expression studies of a novel mutation delta299 in a patient affected with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 2004;89:2024–7.

    Article  PubMed  CAS  Google Scholar 

  34. Arriza JL, Weinberger C, Cerelli G, Glaser TM, et al. Cloning of the human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237:268–75.

    Article  PubMed  CAS  Google Scholar 

  35. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor mediated. Science. 1988;242:583–5.

    Article  PubMed  CAS  Google Scholar 

  36. Liddle GW, Bledsoe T, Coppage Jr WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians. 1963;76:199–213.

    CAS  Google Scholar 

  37. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:11–4.

    Article  Google Scholar 

  38. Gordon RD, Geddes RA, Pawsey CG, O’Halloran MW. Hypertension and severe hyperkalemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australas Ann Med. 1970;19:287–94.

    PubMed  CAS  Google Scholar 

  39. Mansfield TA, Simon DB, Farfel Z, et al. Multilocus linkage of familial hyperkalemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31-42 and 17p-q21. Nat Genet. 1997;16:202–5.

    Article  PubMed  CAS  Google Scholar 

  40. Kahle KT, Wilson FH, Leng Q, et al. WNK4 regulates the balance between renal NaCl reabsorption and K secretion. Nat Genet. 2003;35:372–6.

    Article  PubMed  CAS  Google Scholar 

  41. Klemm SA, Gordon RD, Tunny TJ, Thompson RE. The syndrome of hypertension and hyperkalemia with normal GFR (Gordon’s syndrome): is there increased proximal sodium reabsorption ? Clin Invest Med. 1991;14:551–8.

    PubMed  CAS  Google Scholar 

  42. Chrousos GP, Vingerhoeds A, Brandon D, et al. Primary cortisol resistance. J Clin Invest. 1982;69:1261–9.

    Article  PubMed  CAS  Google Scholar 

  43. Charmandari E, Kino T, Ichijo T, Chrousos GP. Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab. 2008;93:1563–72.

    Article  PubMed  CAS  Google Scholar 

  44. Charmandari E, Kino T. Chrousos syndrome: a seminal report, a phylogenetic enigma and the clinical implications of glucocorticoid signalling changes. Eur J Clin Invest. 2010;40(10):932–42.

    Article  PubMed  CAS  Google Scholar 

  45. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science. 2000;289:119–23.

    Article  PubMed  CAS  Google Scholar 

  46. Matthew KA, Manish PP, Thomas HH. Renal and electrolyte disorders : Disordersof the renin-angiotensin-aldosterone system 2010;8:251–271.

    Chapter  Google Scholar 

  47. Ferrari P, Bianchetti MG. Diagnostic investigations in inherited endocrine disorders of sodium regulation. In: Ranke MB, Mullis PE, editors. Diagnostics of endocrine function in children and adolescents. 4th ed. Basel: Karger; 2011. p. 210–34.

    Chapter  Google Scholar 

  48. Shackleton CH. Profiling steroid hormones and urinary steroids. J Chromatogr. 1986;379:91–156.

    Article  PubMed  CAS  Google Scholar 

  49. Parsa AA, New MI. Low-renin hypertension of childhood. Endocrinol Metab Clin North Am. 2011;40(2):369–77.

    Article  PubMed  CAS  Google Scholar 

  50. White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rösler A. A mutation in CYP11B1 (Arg-448––His) associated with steroid 11 beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest. 1991;87(5):1664–7.

    Article  PubMed  CAS  Google Scholar 

  51. Paperna T, et al. Mutations in CYP11B1 and congenital adrenal hyperplasia in Moroccan Jews. J Clin Endocrinol Metab. 2005;90(9):5463–5.

    Article  PubMed  CAS  Google Scholar 

  52. Ben Charfeddine I, Riepe FG, Kahloul N, Kulle AE, Adala L, Mamaï O, et al. Two novel CYP11B1 mutations in congenital adrenal hyperplasia due to steroid 11β hydroxylase deficiency in a Tunisian family. Gen Comp Endocrinol. 2012;175(3):514–8.

    Article  PubMed  CAS  Google Scholar 

  53. Melcescu E, Phillips JW, Moll G, Subauste JS, Koch CA. 11-beta-hydroxylase deficiency and other syndromes of mineralocorticoid excess as a rare cause of endocrine hypertension. Horm Metab Res. 2012;44:1–12.

    Google Scholar 

  54. Ulick S, et al. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab. 1979;49:757–64.

    Article  PubMed  CAS  Google Scholar 

  55. Stewart PM, et al. Syndrome of apparent mineralocorticoid excess: a defect in the cortisol-cortisone shuttle. J Clin Invest. 1988;82:340–9.

    Article  PubMed  CAS  Google Scholar 

  56. Knops NB, Monnens LA, Lenders JW, Levtchenko EN. Apparent mineralocorticoid excess: time of manifestation and complications despite treatment. Pediatrics. 2011;127(6):e1610–4.

    Article  PubMed  Google Scholar 

  57. Bailey MA, Paterson JM, Hadoke PW, Wrobel N, Bellamy CO, Brownstein DG, et al. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol. 2008;19(1):47–58.

    Article  PubMed  CAS  Google Scholar 

  58. Hamidon BB, Jeyabalan V. Exogenously-induced apparent hypermineralocorticoidism associated with ingestion of “asam boi”. Singapore Med J. 2006;47(2):156–8.

    PubMed  CAS  Google Scholar 

  59. Moudgil A, Rodich G, Jordan SC, Kamil ES. Nephrocalcinosis and renal cysts associated with apparent mineralocorticoid excess syndrome. Pediatr Nephrol. 2000;15(1–2):60–2.

    Article  PubMed  CAS  Google Scholar 

  60. Lin-Su K, Zhou P, Arora N, Betensky BP, New MI, Wilson RC. In vitro expression studies of a novel mutation delta299 in a patient affected with apparent mineralocorticoid excess. J Clin Endocrinol Metab. 2004;89(5):2024–7.

    Article  PubMed  CAS  Google Scholar 

  61. Morineau G, Sulmont V, Salomon R, Fiquet-Kempf B, Jeunemaitre X, Nicod J, et al. Apparent mineralocorticoid excess:report of six new cases and extensive personal experience. J Am Soc Nephrol. 2006;17:3176–84.

    Article  PubMed  CAS  Google Scholar 

  62. Epstein MT, Espiner EA, Donald RA, Hughes H. Liquorice toxicity and the renin–angiotensin–aldosterone axis in man. Br Med J. 1977;1:209–10.

    Article  PubMed  CAS  Google Scholar 

  63. Sontia B, Mooney J, Gaudet L, Touyz RM. Pseudohypoaldosteronism, liquorice, and hypertension. J Clin Hypertens (Greenwich). 2008;10(2):153–7.

    Article  Google Scholar 

  64. Nishiyama N, Takeshita M, Tanaka K, Miyao M, Mizuno Y. A case of severe hypokalemia caused by a Chinese herbal remedy (Yokukansan) in an 81-year-old woman with dementia. Nihon Ronen Igakkai Zasshi. 2011;48(5):553–7.

    Article  PubMed  Google Scholar 

  65. Stormer FC, Reistad R, Alexander J. Glycyrrhizic acid in liquorice—evaluation of health hazard. Food Chem Toxicol. 1993;31:303–12.

    Article  PubMed  CAS  Google Scholar 

  66. Ploeger B, Mensinga T, Sips A, Deerenberg C, Meulenbelt J, DeJongh J. A population physiologically based pharmacokinetic/pharmacodynamic model for the inhibition of 11-beta-hydroxysteroid dehydrogenase activity by glycyrrhetic acid. Toxicol Appl Pharmacol. 2001;170(1):46–55.

    Article  PubMed  CAS  Google Scholar 

  67. Armanini D, Mattarello MJ, Fiore C, Bonanni G, Scaroni C, Sartorato P, et al. Licorice reduces serum testosterone in healthy women. Steroids. 2004;69(11–12):763–6.

    Article  PubMed  CAS  Google Scholar 

  68. Mattarello MJ, Benedini S, Fiore C, Camozzi V, Sartorato P, Luisetto G, et al. Effect of licorice on PTH levels in healthy women. Steroids. 2006;71(5):403–8.

    Article  PubMed  CAS  Google Scholar 

  69. Farese Jr RV, Biglieri EG, Shackleton CH, Irony I, Gomez Fontes R. Licorice-induced hypermineralocorticoidism. N Engl J Med. 1991;325:1223–7.

    Article  PubMed  Google Scholar 

  70. Van Uum SHM, Hermus ARMM, Smits P, Thien T, Lenders JWM. The role of 11b-hydroxysteroid dehydrogenase in the pathogenesis of hypertension. Cardiovasc Res. 1998;38:16–24.

    Article  PubMed  Google Scholar 

  71. Kageyama Y, Suzuki H, Saruta T. Role of glucocorticoid in the development of glycyrrhizin-induced hypertension. Clin Exp Hypertens. 1994;16:761–78.

    Article  PubMed  CAS  Google Scholar 

  72. Stewart PM, Wallace AM, Atherden SM, Shearing CH, Edwards CR. Mineralocorticoid activity of carbenoxolone: contrasting effects of carbenoxolone and liquorice on 11 beta-hydroxysteroid dehydrogenase activity in man. Clin Sci. 1990;78:49–54.

    PubMed  CAS  Google Scholar 

  73. Nicholls MG, Ramsay LE, Boddy K, Fraser R, Morton JJ, Robertson JI. Mineralocorticoid-induced blood pressure, electrolyte, and hormone changes, and reversal with spironolactone, in healthy men. Metabolism. 1979;28:584–93.

    Article  PubMed  CAS  Google Scholar 

  74. Kageyama Y, Suzuki H, Saruta T. Glycyrrhizin induces mineralocorticoid activity through alterations in cortisol metabolism in the human kidney. J Endocrinol. 1992;135:147–52.

    Article  PubMed  CAS  Google Scholar 

  75. Qadri YJ, Rooj AK, Fuller CM. ENaCs and ASICs as therapeutic targets. Am J Physiol Cell Physiol. 2012;302(7):C943–65.

    Article  PubMed  CAS  Google Scholar 

  76. Rossi E, Farnetti E, Nicoli D, Sazzini M, Perazzoli F, Regolisti G, et al. A clinical phenotype mimicking essential hypertension in a newly discovered family with Liddle’s syndrome. Am J Hypertens. 2011;24(8):930–5.

    Article  PubMed  CAS  Google Scholar 

  77. Firsov D, Schild L, Gautschi I, Merillat A-M, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci USA. 1996;93:15370–5.

    Article  PubMed  CAS  Google Scholar 

  78. Furuhashi M, Kitamura K, Adachi M, Miyoshi T, Wakida N, Ura N, et al. Liddle’s syndrome caused by a novel mutation in the proline-rich PY motif of the epithelial sodium channel ß-subunit. J Clin Endocrinol Metab. 2005;90:340–4.

    Article  PubMed  CAS  Google Scholar 

  79. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, et al. Hypertension caused by a truncated epithelial sodium channel γ subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995;11:76–82.

    Article  PubMed  CAS  Google Scholar 

  80. Inoue J, Iwaoka T, Tokunaga H, Takamune K, Naomi S, Araki M, et al. A family with Liddle’s syndrome caused by a new missense mutation in the ß subunit of the epithelial sodium ­channel. J Clin Endocrinol Metab. 1998;83:2210–3.

    Article  PubMed  CAS  Google Scholar 

  81. Bogdanović R, Kuburović V, Stajić N, Mughal SS, Hilger A, Ninić S, et al. Liddle syndrome in a Serbian family and literature review of underlying mutations. Eur J Pediatr. 2012;171(3):471–8.

    Article  PubMed  Google Scholar 

  82. Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger J-D, et al. Defective regulation of the epithelial Na(+) channel by Nedd4 in Liddle’s syndrome. J Clin Invest. 1993;103:667–73.

    Article  Google Scholar 

  83. Warnock DG. Liddle syndrome: an autosomal dominant form of human hypertension. Kidney Int. 1998;53:18–24.

    Article  PubMed  CAS  Google Scholar 

  84. Yang CL, Angell J, Mitchell R. Ellison DH:WNK kinases regulate tiazide-sensitive NaCl cotransport. J Clin Invest. 2003;111:1039–45.

    PubMed  CAS  Google Scholar 

  85. Suckling RJ, He FJ, Macgregor GA. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010;8(12):CD006763.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian A. Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Melcescu, E., Koch, C.A. (2013). Syndromes of Mineralocorticoid Excess. In: Koch, C., Chrousos, G. (eds) Endocrine Hypertension. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-548-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-548-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-547-7

  • Online ISBN: 978-1-60761-548-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics