Skip to main content

Obesity-Associated Hypertension

  • Chapter
  • First Online:
Endocrine Hypertension

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Both hypertension and obesity are highly prevalent chronic medical conditions that afflict an increasing portion of both the adult and the pediatric populations in clinical practice worldwide.

Based on the sheer prevalence of both of these conditions, it is not unexpected to discover that they often coexist. There is, however, considerable retrospective, cross-sectional and prospective data from various research studies and diverse populations which suggest that the association between obesity and so-called “essential hypertension” is significantly more prevalent than the result of chance co-occurrence. A growing body of data suggests that obesity has a direct, independent, and causal link to the onset and worsening of hypertension. This association now known as obesity-hypertension (OH) has also been shown to be significantly ameliorated by significant (>5% of baseline body weight) weight loss.

While the exact underlying etiopathogenesis of OH is still unclear, it appears to be multifactorial including both mechanical and humoral factors in its development. Among the identified putative contributory factors are renal salt retention, blood volume expansion, and sympathetic activation all of which can be induced by hyperinsulinemia and hyperleptinemia. Hypoadiponectinemia, activation of the renin-angiotensin-aldosterone system (RAAS) as well as the elevated levels of circulating endothelin and free fatty acids also likely play contributing roles. The high prevalence of obstructive sleep apnea (OSA) in the setting of obesity is another pathophysiologic link to the onset of hypertension in obese subjects whose importance is only recently being fully appreciated.

In addition to the well-established complications and comorbidities known to be associated with hypertension and obesity, OH as an entity appears to be associated with some distinctive cardiomyopathic features. This, in addition to issues related to accurate blood pressure measurement and tracking in obese subjects, requires some expertise and extra care on the part of clinical providers who care for these patients.

The management of OH while based on the same general principles applied to management of essential hypertension as a whole has the added blood pressure modulating effects that follow sustained weight loss. More research into the dominant pathophysiologic mechanisms and treatment strategies for drug-resistant OH is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whelton PK, He J, Muntner P. Prevalence, awareness, treatment and control of hypertension in North America, North Africa and Asia. J Hum Hypertens. 2004;18:545–51.

    Article  CAS  PubMed  Google Scholar 

  2. Muntner P, He J, Chen J, Fonseca V, Whelton PK. Prevalence of non-traditional cardiovascular disease risk factors among persons with impaired fasting glucose, impaired glucose tolerance, diabetes, and the metabolic syndrome: analysis of the Third National Health and Nutrition Examination Survey (NHANES III). Ann Epidemiol. 2004;14:686–95.

    Article  PubMed  Google Scholar 

  3. Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–13.

    Article  CAS  PubMed  Google Scholar 

  4. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. Worldwide prevalence of hypertension: a systematic review. J Hypertens. 2004;22:11–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  6. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii; 1–253.

    Google Scholar 

  7. Francischetti EA, Genelhu VA. Obesity-hypertension: an ongoing pandemic. Int J Clin Pract. 2007;61:269–80.

    Article  CAS  PubMed  Google Scholar 

  8. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath Jr CW. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med. 1999;341:1097–105.

    Article  CAS  PubMed  Google Scholar 

  9. Banegas JR, Lopez-Garcia E, Graciani A, et al. Relationship between obesity, hypertension and diabetes, and health-related quality of life among the elderly. Eur J Cardiovasc Prev Rehabil. 2007;14:456–62.

    Article  PubMed  Google Scholar 

  10. Aneja A, El-Atat F, McFarlane SI, Sowers JR. Hypertension and obesity. Recent Prog Horm Res. 2004;59:169–205.

    Article  CAS  PubMed  Google Scholar 

  11. Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.

    Article  PubMed  Google Scholar 

  12. Steyn K, Sliwa K, Hawken S, et al. Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation. 2005;112:3554–61.

    Article  PubMed  Google Scholar 

  13. Larsson S, Alicja W. Epidemiology of obesity and diabetes. In: Mantzoros C, editor. Obesity and diabetics. Totowa: Humana; 2006. p. 15–30.

    Chapter  Google Scholar 

  14. Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertension. 2002;40:441–7.

    Article  CAS  PubMed  Google Scholar 

  15. Virdis A, Ghiadoni L, Masi S, et al. Obesity in the childhood: a link to adult hypertension. Curr Pharm Des. 2009;15:1063–71.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Zhang WH, Zhang L, Wang PY. Prevalence of overweight/obesity and its associations with hypertension, diabetes, dyslipidemia, and metabolic syndrome: a survey in the suburban area of Beijing, 2007. Obes Facts. 2011;4(4):284–9.

    Article  PubMed  Google Scholar 

  17. Flack JM, Casciano R, Casciano J, et al. Cardiovascular disease costs associated with uncontrolled hypertension. Manag Care Interface. 2002;15:28–36.

    PubMed  Google Scholar 

  18. Hansson L, Lloyd A, Anderson P, Kopp Z. Excess morbidity and cost of failure to achieve targets for blood pressure control in Europe. Blood Press. 2002;11:35–45.

    Article  PubMed  Google Scholar 

  19. Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med. 2006;12:62–6.

    Article  CAS  PubMed  Google Scholar 

  20. Abstracts of the fourth international symposium on obesity and hypertension: genetics, molecular mechanisms, metabolic syndrome and cardiovascular risk. 27-29 October 2005, Berlin, Germany. Int J Obes (Lond). 2005;29 Suppl 3:S1–19.

    Google Scholar 

  21. Diaz ME. Hypertension and obesity. J Hum Hypertens. 2002;16 Suppl 1:S18–22.

    Article  PubMed  Google Scholar 

  22. El-Atat F, Aneja A, McFarlane S, Sowers J. Obesity and hypertension. Endocrinol Metab Clin North Am. 2003;32:823–54.

    Article  CAS  PubMed  Google Scholar 

  23. Faloia E, Giacchetti G, Mantero F. Obesity and hypertension. J Endocrinol Invest. 2000;23:54–62.

    CAS  PubMed  Google Scholar 

  24. Kotchen TA. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am J Hypertens. 2010;23:1170–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kotchen TA. Obesity-related hypertension?: weighing the evidence. Hypertension. 2008;52:801–2.

    Article  CAS  PubMed  Google Scholar 

  26. Kurukulasuriya LR, Stas S, Lastra G, Manrique C, Sowers JR. Hypertension in obesity. Med Clin North Am. 2011;95(5):903–17.

    Article  PubMed  Google Scholar 

  27. Garrison RJ, Kannel WB, Stokes III J, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16:235–51.

    Article  CAS  PubMed  Google Scholar 

  28. Okosun IS, Rotimi CN, Forrester TE, et al. Predictive value of abdominal obesity cut-off points for hypertension in blacks from west African and Caribbean island nations. Int J Obes Relat Metab Disord. 2000;24:180–6.

    Article  CAS  PubMed  Google Scholar 

  29. Harris MM, Stevens J, Thomas N, Schreiner P, Folsom AR. Associations of fat distribution and obesity with hypertension in a bi-ethnic population: the ARIC study. Atherosclerosis Risk in Communities Study. Obes Res. 2000;8:516–24.

    Article  CAS  PubMed  Google Scholar 

  30. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Weight and blood pressure. Findings in hypertension screening of 1 million Americans. JAMA. 1978;240:1607–10.

    Article  CAS  PubMed  Google Scholar 

  31. Heneghan HM, Meron-Eldar S, Brethauer SA, Schauer PR, Young JB. Effect of bariatric surgery on cardiovascular risk profile. Am J Cardiol. 2011;108:1499–507.

    Article  PubMed  Google Scholar 

  32. Benraouane F, Litwin SE. Reductions in cardiovascular risk after bariatric surgery. Curr Opin Cardiol. 2011;26:555–61.

    Article  PubMed  Google Scholar 

  33. Johnson WD, Brashear MM, Gupta AK, Rood JC, Ryan DH. Incremental weight loss improves cardiometabolic risk in extremely obese adults. Am J Med. 2011;124(10):931–8.

    Article  PubMed  Google Scholar 

  34. Masuo K, Rakugi H, Ogihara T, Lambert GW. Different mechanisms in weight loss-induced blood pressure reduction between a calorie-restricted diet and exercise. Hypertens Res. 2012;35:41–7.

    Article  CAS  PubMed  Google Scholar 

  35. Weiss R, Dziura J, Burgert TS, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  CAS  PubMed  Google Scholar 

  36. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cassano PA, Segal MR, Vokonas PS, Weiss ST. Body fat distribution, blood pressure, and hypertension. A prospective cohort study of men in the normative aging study. Ann Epidemiol. 1990;1:33–48.

    Article  CAS  PubMed  Google Scholar 

  38. Troisi RJ, Weiss ST, Segal MR, Cassano PA, Vokonas PS, Landsberg L. The relationship of body fat distribution to blood pressure in normotensive men: the normative aging study. Int J Obes. 1990;14:515–25.

    CAS  PubMed  Google Scholar 

  39. Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity is an independent predictor of incident hypertension in Japanese Americans. Ann Intern Med. 2004;140:992–1000.

    PubMed  Google Scholar 

  40. Canoy D, Luben R, Welch A, et al. Fat distribution, body mass index and blood pressure in 22,090 men and women in the Norfolk cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk) study. J Hypertens. 2004;22:2067–74.

    Article  CAS  PubMed  Google Scholar 

  41. Vasan RS, Larson MG, Leip EP, Kannel WB, Levy D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.

    Article  CAS  PubMed  Google Scholar 

  42. Stevens VJ, Obarzanek E, Cook NR, et al. Long-term weight loss and changes in blood pressure: results of the Trials of Hypertension Prevention, phase II. Ann Intern Med. 2001;134:1–11.

    CAS  PubMed  Google Scholar 

  43. He J, Whelton PK, Appel LJ, Charleston J, Klag MJ. Long-term effects of weight loss and dietary sodium reduction on incidence of hypertension. Hypertension. 2000;35:544–9.

    Article  CAS  PubMed  Google Scholar 

  44. Hall JE, Hildebrandt DA, Kuo J. Obesity hypertension: role of leptin and sympathetic nervous system. Am J Hypertens. 2001;14:103S–15.

    Article  CAS  PubMed  Google Scholar 

  45. Haynes WG. Role of leptin in obesity-related hypertension. Exp Physiol. 2005;90:683–8.

    Article  CAS  PubMed  Google Scholar 

  46. Hall JE, da Silva AA, do Carmo JM, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271–6.

    Article  CAS  PubMed  Google Scholar 

  47. Hall JE. Pathophysiology of obesity hypertension. Curr Hypertens Rep. 2000;2:139–47.

    Article  CAS  PubMed  Google Scholar 

  48. Hall JE, Kuo JJ, da Silva AA, de Paula RB, Liu J, Tallam L. Obesity-associated hypertension and kidney disease. Curr Opin Nephrol Hypertens. 2003;12:195–200.

    Article  CAS  PubMed  Google Scholar 

  49. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33.

    Article  PubMed  CAS  Google Scholar 

  50. Pecly IM, Genelhu V, Francischetti EA. Renal functional reserve in obesity hypertension. Int J Clin Pract. 2006;60:1198–203.

    Article  CAS  PubMed  Google Scholar 

  51. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144:21–8.

    PubMed  Google Scholar 

  52. Parati G. Obesity, hypertension and the sympathetic nervous system. J Hypertens. 2002;20:835–7.

    Article  CAS  PubMed  Google Scholar 

  53. Rumantir MS, Vaz M, Jennings GL, et al. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17:1125–33.

    Article  CAS  PubMed  Google Scholar 

  54. Wofford MR, Anderson Jr DC, Brown CA, Jones DW, Miller ME, Hall JE. Antihypertensive effect of alpha- and beta-adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens. 2001;14:694–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sanjuliani AF, de Abreu VG, Francischetti EA. Selective imidazoline agonist moxonidine in obese hypertensive patients. Int J Clin Pract. 2006;60:621–9.

    Article  CAS  PubMed  Google Scholar 

  56. Haynes WG, Sivitz WI, Morgan DA, Walsh SA, Mark AL. Sympathetic and cardiorenal actions of leptin. Hypertension. 1997;30:619–23.

    Article  CAS  PubMed  Google Scholar 

  57. Sivitz WI, Walsh SA, Morgan DA, Thomas MJ, Haynes WG. Effects of leptin on insulin sensitivity in normal rats. Endocrinology. 1997;138:3395–401.

    Article  CAS  PubMed  Google Scholar 

  58. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100:270–8.

    Article  CAS  PubMed  Google Scholar 

  59. Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension. 2002;39:496–501.

    Article  CAS  PubMed  Google Scholar 

  60. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Selective resistance to central neural administration of leptin in agouti obese mice. Hypertension. 2002;39:486–90.

    Article  CAS  PubMed  Google Scholar 

  61. Eikelis N, Schlaich M, Aggarwal A, Kaye D, Esler M. Interactions between leptin and the human sympathetic nervous system. Hypertension. 2003;41:1072–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rahmouni K. Obesity, sympathetic overdrive, and hypertension: the leptin connection. Hypertension. 2010;55:844–5.

    Article  CAS  PubMed  Google Scholar 

  63. Rahmouni K, Morgan DA, Morgan GM, Mark AL, Haynes WG. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes. 2005;54:2012–8.

    Article  CAS  PubMed  Google Scholar 

  64. Umemura S, Nyui N, Tamura K, et al. Plasma angiotensinogen concentrations in obese patients. Am J Hypertens. 1997;10:629–33.

    Article  CAS  PubMed  Google Scholar 

  65. Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45:9–14.

    Article  CAS  PubMed  Google Scholar 

  66. Chan NN, Tong PC, Kong AP, Chan JC. Obesity hypertension: the rationale for renin-angiotensin system blockade. Hong Kong Med J. 2005;11:217–20.

    CAS  PubMed  Google Scholar 

  67. Segura J, Ruilope LM. Obesity, essential hypertension and renin-angiotensin system. Public Health Nutr. 2007;10:1151–5.

    Article  PubMed  Google Scholar 

  68. Sibley S. Hypertension, obesity, and the renin-angiotensin system: a tale of tight associations. Minn Med. 2003;86:46–8.

    PubMed  Google Scholar 

  69. Hall JE, Brands MW, Henegar JR. Mechanisms of hypertension and kidney disease in obesity. Ann N Y Acad Sci. 1999;892:91–107.

    Article  CAS  PubMed  Google Scholar 

  70. Hall JE, Brands MW, Henegar JR. Angiotensin II and long-term arterial pressure regulation: the overriding dominance of the kidney. J Am Soc Nephrol. 1999;10 Suppl 12:S258–65.

    CAS  PubMed  Google Scholar 

  71. Reisin E, Weir MR, Falkner B, Hutchinson HG, Anzalone DA, Tuck ML. Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multicenter placebo-controlled trial. Treatment in Obese Patients With Hypertension (TROPHY) Study Group. Hypertension. 1997;30:140–5.

    Article  CAS  PubMed  Google Scholar 

  72. Robles RG, Villa E, Santirso R, et al. Effects of captopril on sympathetic activity, lipid and carbohydrate metabolism in a model of obesity-induced hypertension in dogs. Am J Hypertens. 1993;6:1009–15.

    CAS  PubMed  Google Scholar 

  73. Engeli S, Bohnke J, Gorzelniak K, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45:356–62.

    Article  CAS  PubMed  Google Scholar 

  74. Barbato KBG, Martins RCV, Rodrigues MLG, Braga JU, Francischetti EA, Genelhu V. [Effects of greater-than-5% weight reduction on hemodynamic, metabolic and neuroendocrine profiles of grade I obese subjects]. Arq Bras Cardiol. 2006;87:12–21.

    Article  CAS  PubMed  Google Scholar 

  75. Goodfriend TL, Calhoun DA. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension. 2004;43:518–24.

    Article  CAS  PubMed  Google Scholar 

  76. Goodfriend TL. Obesity, sleep apnea, aldosterone, and hypertension. Curr Hypertens Rep. 2008;10:222–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100:14211–6.

    Article  CAS  PubMed  Google Scholar 

  78. Di Guardo A, Profeta G, Crisafulli C, et al. Obstructive sleep apnoea in patients with obesity and hypertension. Br J Gen Pract. 2010;60:325–8.

    Article  PubMed  Google Scholar 

  79. de Paula RB, da Silva AA, Hall JE. Aldosterone antagonism attenuates obesity-induced hypertension and glomerular hyperfiltration. Hypertension. 2004;43:41–7.

    Article  PubMed  CAS  Google Scholar 

  80. Bomback AS, Muskala P, Bald E, Chwatko G, Nowicki M. Low-dose spironolactone, added to long-term ACE inhibitor therapy, reduces blood pressure and urinary albumin excretion in obese patients with hypertensive target organ damage. Clin Nephrol. 2009;72:449–56.

    CAS  PubMed  Google Scholar 

  81. Kotchen TA, Kotchen JM, Grim CE, Krishnaswami S, Kidambi S. Aldosterone and alterations of hypertension-related vascular function in African Americans. Am J Hypertens. 2009;22:319–24.

    Article  CAS  PubMed  Google Scholar 

  82. Kidambi S, Kotchen JM, Krishnaswami S, Grim CE, Kotchen TA. Aldosterone contributes to blood pressure variance and to likelihood of hypertension in normal-weight and overweight African Americans. Am J Hypertens. 2009;22:1303–8.

    Article  CAS  PubMed  Google Scholar 

  83. Peeke PM, Chrousos GP. Hypercortisolism and obesity. Ann N Y Acad Sci. 1995;771:665–76.

    Article  CAS  PubMed  Google Scholar 

  84. Rask E, Walker BR, Soderberg S, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87:3330–6.

    Article  CAS  PubMed  Google Scholar 

  85. Goedecke JH, Wake DJ, Levitt NS, et al. Glucocorticoid metabolism within superficial subcutaneous rather than visceral adipose tissue is associated with features of the metabolic syndrome in South African women. Clin Endocrinol (Oxf). 2006;65:81–7.

    Article  CAS  Google Scholar 

  86. Wake DJ, Walker BR. Inhibition of 11beta-hydroxysteroid dehydrogenase type 1 in obesity. Endocrine. 2006;29:101–8.

    Article  CAS  PubMed  Google Scholar 

  87. Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect “Cushing’s disease of the omentum”? Lancet. 1997;349:1210–3.

    Article  CAS  PubMed  Google Scholar 

  88. Pastucha D, Talafa V, Malincikova J, et al. Obesity, hypertension and insulin resistance in childhood–a pilot study. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154:77–81.

    Article  CAS  PubMed  Google Scholar 

  89. Bloomgarden ZT. Obesity, hypertension, and insulin resistance. Diabetes Care. 2002;25:2088–97.

    Article  PubMed  Google Scholar 

  90. Davy KP, Hall JE. Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol. 2004;286:R803–13.

    Article  CAS  PubMed  Google Scholar 

  91. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991;87:2246–52.

    Article  CAS  PubMed  Google Scholar 

  92. Scherrer U, Owlya R, Trueb L. Sympathetic-nerve activity before and after resection of an insulinoma. N Engl J Med. 1996;335:1240–2.

    Article  CAS  PubMed  Google Scholar 

  93. Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation. 2002;106:2533–6.

    Article  PubMed  Google Scholar 

  94. De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM. Endothelial dysfunction in diabetes. Br J Pharmacol. 2000;130:963–74.

    Article  PubMed  Google Scholar 

  95. Hotta K, Funahashi T, Arita Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.

    Article  CAS  PubMed  Google Scholar 

  96. Iwashima Y, Katsuya T, Ishikawa K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension. 2004;43:1318–23.

    Article  CAS  PubMed  Google Scholar 

  97. Koch CA, Wofford M, Ayala AR, Pacak K. Overview of endocrine hypertension. Chapter 26 in Adrenal physiology and diseases (Chrousos GP, Section editor); 2009 http://www.endotext.org/adrenal/adrenal26/adrenalframe26.htm

  98. Cardillo C, Kilcoyne CM, Cannon 3rd RO, Panza JA. Interactions between nitric oxide and endothelin in the regulation of vascular tone of human resistance vessels in vivo. Hypertension. 2000;35:1237–41.

    Article  CAS  PubMed  Google Scholar 

  99. Cardillo C, Kilcoyne CM, Cannon III RO, Panza JA. Increased activity of endogenous endothelin in patients with hypercholesterolemia. J Am Coll Cardiol. 2000;36:1483–8.

    Article  CAS  PubMed  Google Scholar 

  100. Cardillo C, Campia U, Iantorno M, Panza JA. Enhanced vascular activity of endogenous endothelin-1 in obese hypertensive patients. Hypertension. 2004;43:36–40.

    Article  CAS  PubMed  Google Scholar 

  101. Campia U, Cardillo C, Panza JA. Ethnic differences in the vasoconstrictor activity of endogenous endothelin-1 in hypertensive patients. Circulation. 2004;109:3191–5.

    Article  PubMed  Google Scholar 

  102. Jin JJ, Nakura J, Wu Z, et al. Association of endothelin-1 gene variant with hypertension. Hypertension. 2003;41:163–7.

    Article  CAS  PubMed  Google Scholar 

  103. Mather KJ, Lteif A, Steinberg HO, Baron AD. Interactions between endothelin and nitric oxide in the regulation of vascular tone in obesity and diabetes. Diabetes. 2004;53:2060–6.

    Article  CAS  PubMed  Google Scholar 

  104. Bloomfield GL, Sugerman HJ, Blocher CR, Gehr TW, Sica DA. Chronically increased intra-abdominal pressure produces systemic hypertension in dogs. Int J Obes Relat Metab Disord. 2000;24:819–24.

    Article  CAS  PubMed  Google Scholar 

  105. Sugerman H, Windsor A, Bessos M, Wolfe L. Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity. J Intern Med. 1997;241:71–9.

    Article  CAS  PubMed  Google Scholar 

  106. Dwyer TM, Banks SA, Alonso-Galicia M, et al. Distribution of renal medullary hyaluronan in lean and obese rabbits. Kidney Int. 2000;58:721–9.

    Article  CAS  PubMed  Google Scholar 

  107. Kurukulasuriya LR, Stas S, Lastra G, Manrique C, Sowers JR. Hypertension in obesity. Endocrinol Metab Clin North Am. 2008;37:647–62; ix.

    Google Scholar 

  108. Hall JE, Brands MW, Henegar JR, Shek EW. Abnormal kidney function as a cause and a consequence of obesity hypertension. Clin Exp Pharmacol Physiol. 1998;25:58–64.

    Article  CAS  PubMed  Google Scholar 

  109. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59:1498–509.

    Article  CAS  PubMed  Google Scholar 

  110. Redon J. Hypertension in obesity. Nutr Metab Cardiovasc Dis. 2001;11:344–53.

    CAS  PubMed  Google Scholar 

  111. Bravo PE, Morse S, Borne DM, Aguilar EA, Reisin E. Leptin and hypertension in obesity. Vasc Health Risk Manag. 2006;2:163–9.

    Article  CAS  PubMed  Google Scholar 

  112. Hall JE, Crook ED, Jones DW, Wofford MR, Dubbert PM. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci. 2002;324:127–37.

    Article  PubMed  Google Scholar 

  113. Stepniakowski KT, Goodfriend TL, Egan BM. Fatty acids enhance vascular alpha-adrenergic sensitivity. Hypertension. 1995;25:774–8.

    Article  CAS  PubMed  Google Scholar 

  114. Grekin RJ, Dumont CJ, Vollmer AP, Watts SW, Webb RC. Mechanisms in the pressor effects of hepatic portal venous fatty acid infusion. Am J Physiol. 1997;273:R324–30.

    CAS  PubMed  Google Scholar 

  115. Steinberg HO, Tarshoby M, Monestel R, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.

    Article  CAS  PubMed  Google Scholar 

  116. Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature. 2001;409:307–12.

    Article  CAS  PubMed  Google Scholar 

  117. Tan MS, Chang SY, Chang DM, Tsai JC, Lee YJ. Association of resistin gene 3′-untranslated region +62G–>A polymorphism with type 2 diabetes and hypertension in a Chinese population. J Clin Endocrinol Metab. 2003;88:1258–63.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang J, Qin Y, Zheng X, et al. [The relationship between human serum resistin level and body fat content, plasma glucose as well as blood pressure]. Zhonghua Yi Xue Za Zhi. 2002;82:1609–12.

    CAS  PubMed  Google Scholar 

  119. Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J Hypertens. 1992;10:1111–4.

    Article  CAS  PubMed  Google Scholar 

  120. Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. I: Natriuretic peptides. J Hypertens. 1992;10:907–12.

    CAS  PubMed  Google Scholar 

  121. Ogawa Y, Nakao K, Nakagawa O, et al. Human C-type natriuretic peptide. Characterization of the gene and peptide. Hypertension. 1992;19:809–13.

    Article  CAS  PubMed  Google Scholar 

  122. Komatsu Y, Nakao K, Itoh H, Suga S, Ogawa Y, Imura H. Vascular natriuretic peptide. Lancet. 1992;340:622.

    Article  CAS  PubMed  Google Scholar 

  123. Melo LG, Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H. Salt-sensitive ­hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol. 1998;274:R255–61.

    CAS  PubMed  Google Scholar 

  124. Melo LG, Pang SC, Ackermann U. Atrial natriuretic peptide: regulator of chronic arterial blood pressure. News Physiol Sci. 2000;15:143–9.

    CAS  PubMed  Google Scholar 

  125. Melo LG, Steinhelper ME, Pang SC, Tse Y, Ackermann U. ANP in regulation of arterial pressure and fluid-electrolyte balance: lessons from genetic mouse models. Physiol Genomics. 2000;3:45–58.

    CAS  PubMed  Google Scholar 

  126. Dessi-Fulgheri P, Sarzani R, Tamburrini P, et al. Plasma atrial natriuretic peptide and natriuretic peptide receptor gene expression in adipose tissue of normotensive and hypertensive obese patients. J Hypertens. 1997;15:1695–9.

    Article  CAS  PubMed  Google Scholar 

  127. Dessi-Fulgheri P, Sarzani R, Serenelli M, et al. Low calorie diet enhances renal, hemodynamic, and humoral effects of exogenous atrial natriuretic peptide in obese hypertensives. Hypertension. 1999;33:658–62.

    Article  CAS  PubMed  Google Scholar 

  128. Licata G, Volpe M, Scaglione R, Rubattu S. Salt-regulating hormones in young normotensive obese subjects. Effects of saline load. Hypertension. 1994;23:I20–4.

    Article  CAS  PubMed  Google Scholar 

  129. Sarzani R, Dessi-Fulgheri P, Salvi F, et al. A novel promoter variant of the natriuretic peptide clearance receptor gene is associated with lower atrial natriuretic peptide and higher blood pressure in obese hypertensives. J Hypertens. 1999;17:1301–5.

    Article  CAS  PubMed  Google Scholar 

  130. Abate NI, Mansour YH, Tuncel M, et al. Overweight and sympathetic overactivity in black Americans. Hypertension. 2001;38:379–83.

    Article  CAS  PubMed  Google Scholar 

  131. Berchtold P, Jorgens V, Finke C, Berger M. Epidemiology of obesity and hypertension. Int J Obes. 1981;5 Suppl 1:1–7.

    CAS  Google Scholar 

  132. Weyer C, Pratley RE, Snitker S, Spraul M, Ravussin E, Tataranni PA. Ethnic differences in insulinemia and sympathetic tone as links between obesity and blood pressure. Hypertension. 2000;36:531–7.

    Article  CAS  PubMed  Google Scholar 

  133. Castro JP, El-Atat FA, McFarlane SI, Aneja A, Sowers JR. Cardiometabolic syndrome: pathophysiology and treatment. Curr Hypertens Rep. 2003;5:393–401.

    Article  PubMed  Google Scholar 

  134. Good D, Morse SA, Ventura HO, Reisin E. Obesity, hypertension, and the heart. J Cardiometab Syndr. 2008;3:168–72.

    Article  PubMed  Google Scholar 

  135. Pilz B, Brasen JH, Schneider W, Luft FC. Obesity and hypertension-induced restrictive cardiomyopathy: a harbinger of things to come. Hypertension. 2004;43:911–7.

    Article  CAS  PubMed  Google Scholar 

  136. Kannel WB, Cobb J. Left ventricular hypertrophy and mortality–results from the Framingham Study. Cardiology. 1992;81:291–8.

    Article  CAS  PubMed  Google Scholar 

  137. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D. Predictors of new-onset kidney disease in a community-based population. JAMA. 2004;291:844–50.

    Article  CAS  PubMed  Google Scholar 

  138. Palaniappan L, Carnethon M, Fortmann SP. Association between microalbuminuria and the metabolic syndrome: NHANES III. Am J Hypertens. 2003;16:952–8.

    Article  CAS  PubMed  Google Scholar 

  139. Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.

    PubMed  Google Scholar 

  140. Festa A, D’Agostino R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: the Insulin Resistance Atherosclerosis Study. Kidney Int. 2000;58:1703–10.

    Article  CAS  PubMed  Google Scholar 

  141. Festa A, D’Agostino Jr R, Howard G, Mykkanen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation. 2000;102:42–7.

    Article  CAS  PubMed  Google Scholar 

  142. Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17:953–66.

    Article  CAS  PubMed  Google Scholar 

  143. Rumore MM, Kim KS. Potential role of salicylates in type 2 diabetes. Ann Pharmacother. 2010;44:1207–21.

    Article  CAS  PubMed  Google Scholar 

  144. McCarty MF. Salsalate may have broad utility in the prevention and treatment of vascular disorders and the metabolic syndrome. Med Hypotheses. 2010;75:276–81.

    Article  CAS  PubMed  Google Scholar 

  145. Koska J, Ortega E, Bunt JC, et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia. 2009;52:385–93.

    Article  CAS  PubMed  Google Scholar 

  146. Fleischman A, Shoelson SE, Bernier R, Goldfine AB. Salsalate improves glycemia and inflammatory parameters in obese young adults. Diabetes Care. 2008;31:289–94.

    Article  CAS  PubMed  Google Scholar 

  147. Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152:346–57.

    PubMed  Google Scholar 

  148. Konstantinides S, Schafer K, Loskutoff DJ. The prothrombotic effects of leptin possible implications for the risk of cardiovascular disease in obesity. Ann N Y Acad Sci. 2001;947:134–41; discussion 141–2.

    Google Scholar 

  149. Konstantinides S, Schafer K, Koschnick S, Loskutoff DJ. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J Clin Invest. 2001;108:1533–40.

    CAS  PubMed  Google Scholar 

  150. Terzolo M, Reimondo G, Bovio S, Angeli A. Subclinical Cushing’s syndrome. Pituitary. 2004;7:217–23.

    Article  PubMed  Google Scholar 

  151. Terzolo M, Bovio S, Pia A, et al. Subclinical Cushing’s syndrome. Arq Bras Endocrinol Metabol. 2007;51:1272–9.

    Article  PubMed  Google Scholar 

  152. Mazzuco TL, Bourdeau I, Lacroix A. Adrenal incidentalomas and subclinical Cushing’s syndrome: diagnosis and treatment. Curr Opin Endocrinol Diabetes Obes. 2009;16:203–10.

    CAS  PubMed  Google Scholar 

  153. Gagliardi L, Torpy DJ. Subclinical Cushing’s syndrome in adrenal incidentaloma: a common problem or an artefact of current diagnostic testing? Clin Endocrinol (Oxf). 2010;72:277–8.

    Article  Google Scholar 

  154. Terzolo M, Pia A, Ali A, et al. Adrenal incidentaloma: a new cause of the metabolic syndrome? J Clin Endocrinol Metab. 2002;87:998–1003.

    Article  CAS  PubMed  Google Scholar 

  155. Rossi R, Tauchmanova L, Luciano A, et al. Subclinical Cushing’s syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab. 2000;85:1440–8.

    Article  CAS  PubMed  Google Scholar 

  156. Baguet JP, Narkiewicz K, Mallion JM. Update on hypertension management: obstructive sleep apnea and hypertension. J Hypertens. 2006;24:205–8.

    Article  CAS  PubMed  Google Scholar 

  157. Tufik S, Santos-Silva R, Taddei JA, Bittencourt LR. Obstructive sleep apnea syndrome in the Sao Paulo Epidemiologic Sleep Study. Sleep Med. 2010;11:441–6.

    Article  PubMed  Google Scholar 

  158. Shah N, Roux F. The relationship of obesity and obstructive sleep apnea. Clin Chest Med. 2009;30:455–65; vii.

    Google Scholar 

  159. de Sousa AG, Cercato C, Mancini MC, Halpern A. Obesity and obstructive sleep apnea-hypopnea syndrome. Obes Rev. 2008;9:340–54.

    Article  PubMed  Google Scholar 

  160. Zhang XL. [Obstructive sleep apnea hypopnea and metabolic syndromes]. Zhonghua Jie He He Hu Xi Za Zhi. 2007;30:891–3.

    PubMed  Google Scholar 

  161. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284:3015–21.

    Article  CAS  PubMed  Google Scholar 

  162. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.

    Article  CAS  PubMed  Google Scholar 

  163. Morrell MJ, Finn L, Kim H, Peppard PE, Badr MS, Young T. Sleep fragmentation, awake blood pressure, and sleep-disordered breathing in a population-based study. Am J Respir Crit Care Med. 2000;162:2091–6.

    CAS  PubMed  Google Scholar 

  164. Young T, Peppard P. Sleep-disordered breathing and cardiovascular disease: epidemiologic evidence for a relationship. Sleep. 2000;23 Suppl 4:S122–6.

    PubMed  Google Scholar 

  165. Bausmer U, Gouveris H, Selivanova O, Goepel B, Mann W. Correlation of the Epworth Sleepiness Scale with respiratory sleep parameters in patients with sleep-related breathing disorders and upper airway pathology. Eur Arch Otorhinolaryngol. 2010;267:1645–8.

    Article  PubMed  Google Scholar 

  166. Jacobs CK, Coffey J. Clinical inquiries. Sleep apnea in adults: how accurate is clinical prediction? J Fam Pract. 2009;58:327–8.

    PubMed  Google Scholar 

  167. Dimsdale JE, Coy T, Ziegler MG, Ancoli-Israel S, Clausen J. The effect of sleep apnea on plasma and urinary catecholamines. Sleep. 1995;18:377–81.

    CAS  PubMed  Google Scholar 

  168. Narkiewicz K, Pesek CA, Kato M, Phillips BG, Davison DE, Somers VK. Baroreflex control of sympathetic nerve activity and heart rate in obstructive sleep apnea. Hypertension. 1998;32:1039–43.

    Article  CAS  PubMed  Google Scholar 

  169. Robinson GV, Stradling JR, Davies RJ. Sleep. 6: obstructive sleep apnoea/hypopnoea syndrome and hypertension. Thorax. 2004;59:1089–94.

    Article  CAS  PubMed  Google Scholar 

  170. Robinson GV, Pepperell JC, Segal HC, Davies RJ, Stradling JR. Circulating cardiovascular risk factors in obstructive sleep apnoea: data from randomised controlled trials. Thorax. 2004;59:777–82.

    Article  CAS  PubMed  Google Scholar 

  171. Lesske J, Fletcher EC, Bao G, Unger T. Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens. 1997;15:1593–603.

    Article  CAS  PubMed  Google Scholar 

  172. Bao G, Metreveli N, Li R, Taylor A, Fletcher EC. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol. 1997;83:95–101.

    CAS  PubMed  Google Scholar 

  173. Bao G, Randhawa PM, Fletcher EC. Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats. J Appl Physiol. 1997;82:1071–8.

    CAS  PubMed  Google Scholar 

  174. Baguet JP, Erdine S, Mallion JM. European Society of Hypertension Scientific Newsletter: update on hypertension management: hypertension and dysrhythmias. J Hypertens. 2006;24:409–11.

    Article  CAS  PubMed  Google Scholar 

  175. Kato M, Roberts-Thomson P, Phillips BG, et al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation. 2000;102:2607–10.

    Article  CAS  PubMed  Google Scholar 

  176. Duchna HW, Stoohs R, Guilleminault C, Christine Anspach M, Schultze-Werninghaus G, Orth M. Vascular endothelial dysfunction in patients with mild obstructive sleep apnea syndrome. Wien Med Wochenschr. 2006;156:596–604.

    Article  PubMed  Google Scholar 

  177. Duchna HW, Orth M, Schultze-Werninghaus G, Guilleminault C, Stoohs RA. Antihypertensive treatment and endothelium-dependent venodilation in sleep-disordered breathing. Sleep Breath. 2006;10:115–22.

    Article  PubMed  Google Scholar 

  178. Gjorup PH, Sadauskiene L, Wessels J, Nyvad O, Strunge B, Pedersen EB. Abnormally increased endothelin-1 in plasma during the night in obstructive sleep apnea: relation to blood pressure and severity of disease. Am J Hypertens. 2007;20:44–52.

    Article  CAS  PubMed  Google Scholar 

  179. Phillips BG, Narkiewicz K, Pesek CA, Haynes WG, Dyken ME, Somers VK. Effects of obstructive sleep apnea on endothelin-1 and blood pressure. J Hypertens. 1999;17:61–6.

    Article  CAS  PubMed  Google Scholar 

  180. Moller DS, Lind P, Strunge B, Pedersen EB. Abnormal vasoactive hormones and 24-hour blood pressure in obstructive sleep apnea. Am J Hypertens. 2003;16:274–80.

    Article  CAS  PubMed  Google Scholar 

  181. Pimenta E, Calhoun DA, Oparil S. Sleep apnea, aldosterone, and resistant hypertension. Prog Cardiovasc Dis. 2009;51:371–80.

    Article  CAS  PubMed  Google Scholar 

  182. Gonzaga CC, Calhoun DA. Resistant hypertension and hyperaldosteronism. Curr Hypertens Rep. 2008;10:496–503.

    Article  CAS  PubMed  Google Scholar 

  183. Calhoun DA, Nishizaka MK, Zaman MA, Harding SM. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea. Chest. 2004;125:112–7.

    Article  CAS  PubMed  Google Scholar 

  184. Calhoun DA. Use of aldosterone antagonists in resistant hypertension. Prog Cardiovasc Dis. 2006;48:387–96.

    Article  CAS  PubMed  Google Scholar 

  185. Fletcher EC, Bao G, Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension. 1999;34:309–14.

    Article  CAS  PubMed  Google Scholar 

  186. Masserini B, Morpurgo PS, Donadio F, et al. Reduced levels of adiponectin in sleep apnea syndrome. J Endocrinol Invest. 2006;29:700–5.

    CAS  PubMed  Google Scholar 

  187. Zhang XL, Yin KS, Wang H, Su S. Serum adiponectin levels in adult male patients with obstructive sleep apnea hypopnea syndrome. Respiration. 2006;73:73–7.

    Article  PubMed  CAS  Google Scholar 

  188. Makino S, Handa H, Suzukawa K, et al. Obstructive sleep apnoea syndrome, plasma adiponectin levels, and insulin resistance. Clin Endocrinol (Oxf). 2006;64:12–9.

    Article  CAS  Google Scholar 

  189. Zhang XL, Yin KS, Li C, Jia EZ, Li YQ, Gao ZF. Effect of continuous positive airway pressure treatment on serum adiponectin level and mean arterial pressure in male patients with obstructive sleep apnea syndrome. Chin Med J (Engl). 2007;120:1477–81.

    Google Scholar 

  190. Wassertheil-Smoller S, Blaufox MD, Oberman AS, Langford HG, Davis BR, Wylie-Rosett J. The Trial of Antihypertensive Interventions and Management (TAIM) study. Adequate weight loss, alone and combined with drug therapy in the treatment of mild hypertension. Arch Intern Med. 1992;152:131–6.

    Article  CAS  PubMed  Google Scholar 

  191. Wofford MR, Smith G, Minor DS. The treatment of hypertension in obese patients. Curr Hypertens Rep. 2008;10:143–50.

    Article  CAS  PubMed  Google Scholar 

  192. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.

    Article  CAS  PubMed  Google Scholar 

  193. Reisin E, Hutchinson HG. Obesity-hypertension:the effects on cardiovascular and renal systems–the therapeutic approach. In: Oparil S, Weber MA, editors. Hypertension. Philadelphia: W.B. Saunders; 1999. p. 206–10.

    Google Scholar 

  194. Battling Obesity & Hypertension. Does the DASH diet really reduce blood pressure? AWHONN Lifelines. 2002;6:21–3.

    Google Scholar 

  195. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336:1117–24.

    Article  CAS  PubMed  Google Scholar 

  196. Reisin E, Abel R, Modan M, Silverberg DS, Eliahou HE, Modan B. Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients. N Engl J Med. 1978;298:1–6.

    Article  CAS  PubMed  Google Scholar 

  197. Reisin E, Frohlich ED. Effects of weight reduction on arterial pressure. J Chronic Dis. 1982;35:887–91.

    Article  CAS  PubMed  Google Scholar 

  198. Kannel WB, Brand N, Skinner Jr JJ, Dawber TR, McNamara PM. The relation of adiposity to blood pressure and development of hypertension. The Framingham study. Ann Intern Med. 1967;67:48–59.

    CAS  PubMed  Google Scholar 

  199. The effects of nonpharmacologic interventions on blood pressure of persons with high normal levels. Results of the Trials of Hypertension Prevention, Phase I. JAMA. 1992;267:1213–20.

    Google Scholar 

  200. Whelton PK, Appel LJ, Espeland MA, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). TONE Collaborative Research Group. JAMA. 1998;279:839–46.

    Article  CAS  PubMed  Google Scholar 

  201. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.

    Article  CAS  PubMed  Google Scholar 

  202. Harsha DW, Bray GA. Weight loss and blood pressure control (Pro). Hypertension. 2008;51:1420–5; discussion 1425.

    Google Scholar 

  203. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.

    Article  CAS  PubMed  Google Scholar 

  204. Vollmer WM, Sacks FM, Svetkey LP. New insights into the effects on blood pressure of diets low in salt and high in fruits and vegetables and low-fat dairy products. Curr Control Trials Cardiovasc Med. 2001;2:71–4.

    Article  CAS  PubMed  Google Scholar 

  205. Vollmer WM, Sacks FM, Ard J, et al. Effects of diet and sodium intake on blood pressure: subgroup analysis of the DASH-sodium trial. Ann Intern Med. 2001;135:1019–28.

    CAS  PubMed  Google Scholar 

  206. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27:481–90.

    Article  CAS  PubMed  Google Scholar 

  207. Hoffmann IS, Alfieri AB, Cubeddu LX. Salt-resistant and salt-sensitive phenotypes determine the sensitivity of blood pressure to weight loss in overweight/obese patients. J Clin Hypertens (Greenwich). 2008;10:355–61.

    Article  CAS  Google Scholar 

  208. Gillum RF, Prineas RJ, Jeffery RW, et al. Nonpharmacologic therapy of hypertension: the independent effects of weight reduction and sodium restriction in overweight borderline hypertensive patients. Am Heart J. 1983;105:128–33.

    Article  CAS  PubMed  Google Scholar 

  209. Jeffery RW, Gillum R, Gerber WM, Jacobs D, Elmer PJ, Prineas RJ. Weight and sodium reduction for the prevention of hypertension: a comparison of group treatment and individual counseling. Am J Public Health. 1983;73:691–3.

    Article  CAS  PubMed  Google Scholar 

  210. Dunn AL, Marcus BH, Kampert JB, Garcia ME, Kohl III HW, Blair SN. Comparison of lifestyle and structured interventions to increase physical activity and cardiorespiratory fitness: a randomized trial. JAMA. 1999;281:327–34.

    Article  CAS  PubMed  Google Scholar 

  211. Andersen RE, Wadden TA, Bartlett SJ, Zemel B, Verde TJ, Franckowiak SC. Effects of lifestyle activity vs structured aerobic exercise in obese women: a randomized trial. JAMA. 1999;281:335–40.

    Article  CAS  PubMed  Google Scholar 

  212. Fagard R, Bielen E, Hespel P. Physical exercise in hypertension. In: Laralaragh J, Renner B, editors. Hypertension pathophysiology, diagnosis and management. New York: Raven Press; 1990. p. 1985–8.

    Google Scholar 

  213. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    PubMed  Google Scholar 

  214. Lichtenstein AH, Appel LJ, Brands M, et al. Summary of American Heart Association Diet and Lifestyle Recommendations revision 2006. Arterioscler Thromb Vasc Biol. 2006;26:2186–91.

    Article  CAS  PubMed  Google Scholar 

  215. Lichtenstein AH, Appel LJ, Brands M, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114:82–96.

    Article  PubMed  Google Scholar 

  216. Trapp EG, Chisholm DJ, Freund J, Boutcher SH. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. Int J Obes (Lond). 2008;32:684–91.

    Article  CAS  Google Scholar 

  217. Institute of Medicine. Dietary reference intakes for energy, carbohydrates, fibre, fat, fatty acids, cholesterol and protein and amino acids. Washington DC: Food and Nutrition Board; 2002.

    Google Scholar 

  218. Reisin E, Jack AV. Obesity and hypertension: mechanisms, cardio-renal consequences, and therapeutic approaches. Med Clin North Am. 2009;93:733–51.

    Article  CAS  PubMed  Google Scholar 

  219. Fuchs FD. Vascular effects of alcoholic beverages: is it only alcohol that matters? Hypertension. 2005;45:851–2.

    Article  CAS  PubMed  Google Scholar 

  220. Gordon T, Kannel WB. Drinking habits and cardiovascular disease: the Framingham Study. Am Heart J. 1983;105:667–73.

    Article  CAS  PubMed  Google Scholar 

  221. Gordon T, Kannel WB. Drinking and its relation to smoking, BP, blood lipids, and uric acid. The Framingham study. Arch Intern Med. 1983;143:1366–74.

    Article  CAS  PubMed  Google Scholar 

  222. Klatsky AL, Friedman GD, Siegelaub AB, Gerard MJ. Alcohol consumption among white, black, or oriental men and women: Kaiser-Permanente multiphasic health examination data. Am J Epidemiol. 1977;105:311–23.

    CAS  PubMed  Google Scholar 

  223. Klatsky AL, Friedman GD, Siegelaub AB, Gerard MJ. Alcohol consumption and blood pressure Kaiser-Permanente Multiphasic Health Examination data. N Engl J Med. 1977;296:1194–200.

    Article  CAS  PubMed  Google Scholar 

  224. Puddey IB, Parker M, Beilin LJ, Vandongen R, Masarei JR. Effects of alcohol and caloric restrictions on blood pressure and serum lipids in overweight men. Hypertension. 1992;20:533–41.

    Article  CAS  PubMed  Google Scholar 

  225. Parker M, Puddey IB, Beilin LJ, Vandongen R. Two-way factorial study of alcohol and salt restriction in treated hypertensive men. Hypertension. 1990;16:398–406.

    Article  CAS  PubMed  Google Scholar 

  226. Klatsky AL, Gunderson E. Alcohol and hypertension: a review. J Am Soc Hypertens. 2008;2:307–17.

    Article  PubMed  Google Scholar 

  227. Boutelle KN, Kirschenbaum DS. Further support for consistent self-monitoring as a vital component of successful weight control. Obes Res. 1998;6:219–24.

    Article  CAS  PubMed  Google Scholar 

  228. Schouten R, Wiryasaputra DC, van Dielen FM, van Gemert WG, Greve JW. Long-term results of bariatric restrictive procedures: a prospective study. Obes Surg. 2010;20:1617–26.

    Article  PubMed  Google Scholar 

  229. Abeles D, Shikora SA. Bariatric surgery: current concepts and future directions. Aesthet Surg J. 2008;28:79–84.

    Article  CAS  PubMed  Google Scholar 

  230. Sebastian JL. Bariatric surgery and work-up of the massive weight loss patient. Clin Plast Surg. 2008;35:11–26.

    Article  PubMed  Google Scholar 

  231. Grassi G, Seravalle G, Dell’Oro R, et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J Hypertens. 2003;21:1761–9.

    Article  CAS  PubMed  Google Scholar 

  232. Reisin E, Tuck ML. Obesity-associated hypertension: hypothesized link between etiology and selection of therapy. Blood Press Monit. 1999;4 Suppl 1:S23–6.

    PubMed  Google Scholar 

  233. Richards RJ, Thakur V, Reisin E. Obesity-related hypertension: its physiological basis and pharmacological approaches to its treatment. J Hum Hypertens. 1996;10 Suppl 3:S59–64.

    PubMed  Google Scholar 

  234. Masuo K, Mikami H, Ogihara T, Tuck ML. Weight reduction and pharmacologic treatment in obese hypertensives. Am J Hypertens. 2001;14:530–8.

    Article  CAS  PubMed  Google Scholar 

  235. Clasen R, Schupp M, Foryst-Ludwig A, et al. PPARgamma-activating angiotensin type-1 receptor blockers induce adiponectin. Hypertension. 2005;46:137–43.

    Article  CAS  PubMed  Google Scholar 

  236. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  237. Parving HH, Brenner BM, Cooper ME, et al. [Effect of losartan on renal and cardiovascular complications of patients with type 2 diabetes and nephropathy]. Ugeskr Laeger. 2001;163:5514–9.

    CAS  PubMed  Google Scholar 

  238. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  CAS  PubMed  Google Scholar 

  239. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial. Lancet. 2004;363:2022–31.

    Article  CAS  PubMed  Google Scholar 

  240. Cohn JN, Julius S, Neutel J, et al. Clinical experience with perindopril in African-American hypertensive patients: a large United States community trial. Am J Hypertens. 2004;17:134–8.

    Article  CAS  PubMed  Google Scholar 

  241. Julius S, Cohn JN, Neutel J, et al. Antihypertensive utility of perindopril in a large, general practice-based clinical trial. J Clin Hypertens (Greenwich). 2004;6:10–7.

    Article  CAS  Google Scholar 

  242. Dahlof B, Devereux RB, Kjeldsen SE, et al. Cardiovascular morbidity and mortality in the Losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet. 2002;359:995–1003.

    Article  CAS  PubMed  Google Scholar 

  243. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000;355:253–9.

    Google Scholar 

  244. Wilson IM, Freis ED. Relationship between plasma and extracellular fluid volume depletion and the antihypertensive effect of chlorothiazide. Circulation. 1959;20:1028–36.

    Article  CAS  PubMed  Google Scholar 

  245. Weir MR, Reisin E, Falkner B, Hutchinson HG, Sha L, Tuck ML. Nocturnal reduction of blood pressure and the antihypertensive response to a diuretic or angiotensin converting enzyme inhibitor in obese hypertensive patients. TROPHY Study Group. Am J Hypertens. 1998;11:914–20.

    Article  CAS  PubMed  Google Scholar 

  246. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288:2981–97.

    Google Scholar 

  247. Lithell H. Hypertension and hyperlipidemia. A review. Am J Hypertens. 1993;6:303S–8.

    CAS  PubMed  Google Scholar 

  248. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N Engl J Med. 2000;342:905–12.

    Article  CAS  PubMed  Google Scholar 

  249. Dahlof B, Sever PS, Poulter NR, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet. 2005;366:895–906.

    Article  PubMed  CAS  Google Scholar 

  250. Lindholm LH, Carlberg B, Samuelsson O. Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis. Lancet. 2005;366:1545–53.

    Article  CAS  PubMed  Google Scholar 

  251. Sowers JR, Bakris GL. Antihypertensive therapy and the risk of type 2 diabetes mellitus. N Engl J Med. 2000;342:969–70.

    Article  CAS  PubMed  Google Scholar 

  252. MacMahon SW, Macdonald GJ, Bernstein L, Andrews G, Blacket RB. Comparison of weight reduction with metoprolol in treatment of hypertension in young overweight patients. Lancet. 1985;1:1233–6.

    Article  CAS  PubMed  Google Scholar 

  253. MacMahon SW, Macdonald GJ, Bernstein L, Andrews G, Blacket RB. A randomized controlled trial of weight reduction and metoprolol in the treatment of hypertension in young overweight patients. Clin Exp Pharmacol Physiol. 1985;12:267–71.

    Article  CAS  PubMed  Google Scholar 

  254. Fagerberg B, Berglund A, Andersson OK, Berglund G, Wikstrand J. Cardiovascular effects of weight reduction versus antihypertensive drug treatment: a comparative, randomized, 1-year study of obese men with mild hypertension. J Hypertens. 1991;9:431–9.

    Article  CAS  PubMed  Google Scholar 

  255. Sarafidis PA, Bakris GL. Do the metabolic effects of beta blockers make them leading or supporting antihypertensive agents in the treatment of hypertension? J Clin Hypertens (Greenwich). 2006;8:351–6; quiz 357–8.

    Google Scholar 

  256. Sarafidis PA, Bakris GL. Are beta blockers passe for the treatment of hypertension? J Clin Hypertens (Greenwich). 2006;8:239–40.

    Article  Google Scholar 

  257. Sarafidis PA, Bakris GL. Antihypertensive treatment with beta-blockers and the spectrum of glycaemic control. QJM. 2006;99:431–6.

    Article  CAS  PubMed  Google Scholar 

  258. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA. 2004;292:2227–36.

    Article  CAS  PubMed  Google Scholar 

  259. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351:1755–62.

    Article  CAS  PubMed  Google Scholar 

  260. Staessen JA, Fagard R, Thijs L, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350:757–64.

    Article  CAS  PubMed  Google Scholar 

  261. Tuck ML, Bravo EL, Krakoff LR, Friedman CP. Endocrine and renal effects of nifedipine gastrointestinal therapeutic system in patients with essential hypertension. Results of a multicenter trial. The Modern Approach to the Treatment of Hypertension Study Group. Am J Hypertens. 1990;3:333S–41.

    CAS  PubMed  Google Scholar 

  262. Krakoff LR, Bravo EL, Tuck ML, Friedman CP. Nifedipine gastrointestinal therapeutic system in the treatment of hypertension. Results of a multicenter trial. The Modern Approach to the Treatment of Hypertension (MATH) Study Group. Am J Hypertens. 1990;3:318S–25.

    CAS  PubMed  Google Scholar 

  263. Bakris GL, Weir MR, Secic M, Campbell B, Weis-McNulty A. Differential effects of calcium antagonist subclasses on markers of nephropathy progression. Kidney Int. 2004;65:1991–2002.

    Article  CAS  PubMed  Google Scholar 

  264. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). ALLHAT Collaborative Research Group. JAMA. 2000;283:1967–75.

    Google Scholar 

  265. Scheen AJ. Cardiovascular risk-benefit profile of sibutramine. Am J Cardiovasc Drugs. 2010;10:321–34.

    Article  CAS  PubMed  Google Scholar 

  266. Curfman GD, Morrissey S, Drazen JM. Sibutramine–another flawed diet pill. N Engl J Med. 2010;363:972–4.

    Article  CAS  PubMed  Google Scholar 

  267. James WP, Caterson ID, Coutinho W, et al. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med. 2010;363:905–17.

    Article  CAS  PubMed  Google Scholar 

  268. Galhardo J, Davis N, Matthai S, Shield JP. European Medicines Agency withdrawal for sibutramine. Arch Dis Child. 2010;95:856.

    Article  CAS  PubMed  Google Scholar 

  269. Harrison-Woolrych M, Ashton J, Herbison P. Fatal and non-fatal cardiovascular events in a general population prescribed sibutramine in New Zealand: a prospective cohort study. Drug Saf. 2010;33:605–13.

    Article  PubMed  Google Scholar 

  270. Williams G. Withdrawal of sibutramine in Europe. BMJ. 2010;340:c824.

    Article  PubMed  Google Scholar 

  271. Aucott L, Poobalan A, Smith WC, Avenell A, Jung R, Broom J. Effects of weight loss in overweight/obese individuals and long-term hypertension outcomes: a systematic review. Hypertension. 2005;45:1035–41.

    Article  CAS  PubMed  Google Scholar 

  272. Avenell A, Broom J, Brown TJ, et al. Systematic review of the long-term effects and economic consequences of treatments for obesity and implications for health improvement. Health Technol Assess. 2004;8:iii–iv; 1–182.

    Google Scholar 

  273. Aucott L, Poobalan A, Smith WC, et al. Weight loss in obese diabetic and non-diabetic individuals and long-term diabetes outcomes–a systematic review. Diabetes Obes Metab. 2004;6:85–94.

    Article  CAS  PubMed  Google Scholar 

  274. Despres JP, Golay A, Sjostrom L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med. 2005;353:2121–34.

    Article  CAS  PubMed  Google Scholar 

  275. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA. 2006;295:761–75.

    Article  CAS  PubMed  Google Scholar 

  276. Scheen AJ, Finer N, Hollander P, Jensen MD, Van Gaal LF. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet. 2006;368:1660–72.

    Article  CAS  PubMed  Google Scholar 

  277. Weaver TE, Chasens ER, Arora S. Modafinil improves functional outcomes in patients with residual excessive sleepiness associated with CPAP treatment. J Clin Sleep Med. 2009;5:499–505.

    PubMed  Google Scholar 

  278. Bogan RK. Armodafinil in the treatment of excessive sleepiness. Expert Opin Pharmacother. 2010;11:993–1002.

    Article  CAS  PubMed  Google Scholar 

  279. Williams SC, Marshall NS, Kennerson M, Rogers NL, Liu PY, Grunstein RR. Modafinil effects during acute continuous positive airway pressure withdrawal: a randomized crossover double-blind placebo-controlled trial. Am J Respir Crit Care Med. 2010;181:825–31.

    Article  CAS  PubMed  Google Scholar 

  280. Ballard RD. Management of patients with obstructive sleep apnea. J Fam Pract. 2008;57:S24–30.

    PubMed  Google Scholar 

  281. Valentino RM, Foldvary-Schaefer N. Modafinil in the treatment of excessive daytime sleepiness. Cleve Clin J Med. 2007;74(561–6):568–71.

    Google Scholar 

  282. Abad VC, Guilleminault C. Pharmacological management of sleep apnoea. Expert Opin Pharmacother. 2006;7:11–23.

    Article  CAS  PubMed  Google Scholar 

  283. Boeve BF, Silber MH, Ferman TJ. Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients. Sleep Med. 2003;4:281–4.

    Article  PubMed  Google Scholar 

  284. Kryger M, Roth T, Wang-Weigand S, Zhang J. The effects of ramelteon on respiration during sleep in subjects with moderate to severe chronic obstructive pulmonary disease. Sleep Breath. 2009;13:79–84.

    Article  PubMed  Google Scholar 

  285. Nunes DM, Mota RM, Machado MO, Pereira ED, Bruin VM, Bruin PF. Effect of melatonin administration on subjective sleep quality in chronic obstructive pulmonary disease. Braz J Med Biol Res. 2008;41:926–31.

    CAS  PubMed  Google Scholar 

  286. Tsaoussoglou M, Bixler EO, Calhoun S, Chrousos GP, Sauder K, Vgontzas AN. Sleep-disordered breathing in obese children is associated with prevalent excessive daytime sleepiness, inflammation, and metabolic abnormalities. J Clin Endocrinol Metab. 2010;95(1):143–50.

    Article  CAS  PubMed  Google Scholar 

  287. Vgontzas AN, Liao D, Bixler EO, Chrousos GP, Vela-Bueno A. Insomnia with objective short sleep duration is associated with a high risk for hypertension. Sleep. 2009;32(4):491–7.

    PubMed  Google Scholar 

  288. Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Collins B, Basta M, Peiovic S, Chrousos GP. Selective effects of CPAP on sleep apnoea-associated manifestations. Eur J Clin Invest. 2008;38(8):585–95.

    Article  CAS  PubMed  Google Scholar 

  289. Dorresteijn JA, Visseren FL, Spiering W. Mechanisms linking obesity to hypertension. Obes Rev. 2012;13:17–26.

    Article  CAS  PubMed  Google Scholar 

  290. Vasylyeva TL, Chennasamudram SP, Okogbo ME. Can we predict hypertension among preterm children ? Clin Pediatr. 2011;50(10):936–42.

    Article  Google Scholar 

  291. Humphreys MH. The brain splits obesity and hypertension. Nat Med. 2011;17(7):782–3.

    Article  CAS  PubMed  Google Scholar 

  292. Purkayastha S, Zhang G, Cai D. Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med. 2011;17(7):883–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Eugen Melcescu who has helped with illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel I. Uwaifo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uwaifo, G.I. (2013). Obesity-Associated Hypertension. In: Koch, C., Chrousos, G. (eds) Endocrine Hypertension. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-548-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-548-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-547-7

  • Online ISBN: 978-1-60761-548-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics