Skip to main content

Phorbol Esters and Diacylglycerol: The PKC Activators

  • Chapter
  • First Online:
Book cover Protein Kinase C in Cancer Signaling and Therapy

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Protein kinase C (PKC) represents the most prominent of the families of signaling proteins integrating response to the ubiquitous lipophilic second messenger sn-1,2-diacylglycerol and to its ultrapotent analogs, the tumor-promoting phorbol esters. Response is mediated through twin conserved zinc finger structures, the C1 domains. The C1 domains function as hydrophobic switches, for which ligand binding completes a hydrophobic surface on the face of the C1 domain, driving membrane association of PKC and enzymatic activation. Since the lipid bilayer provides critical contacts for ligand binding, along with the C1 domain, membrane heterogeneity provides an important mechanism for diversity, as do the differential functions of the twin C1 domains. Consistent with such mechanistic diversity, PKC ligands can differ dramatically in biological consequences. Thus, whereas PKC ligands have provided the paradigm for tumor promoters, some PKC ligands in fact function as inhibitors of tumor promotion. Reflecting the central role of PKC in cellular signaling, PKC has emerged as a promising therapeutic target for cancer with several PKC ligands currently in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

GFP:

Green fluorescent protein

PDBu:

Phorbol 12,13-dibutyrate

PKC:

Protein kinase C

PMA:

Phorbol 12-myristate 13-acetate

References

  • Acs, P., Bögi, K., Lorenzo, P. S., Marquez, V. E., Biro, T., Szallasi, Z., et al. (1997). The catalytic domain of protein kinase C chimeras modulates the affinity and targeting of phorbol ester-induced translocation. The Journal of Biological Chemistry, 272, 22148–22153.

    Article  PubMed  CAS  Google Scholar 

  • Adolf, W., Chanai, S., & Hecker, E. (1983). 3-O-angeloylingenol, the toxic and skin irritant factor from latex of Euphorbia antiquorum L. (Euphorbiaceae) and from a derived Thai purgative and anthelimintic (vermifuge) drug. Journal of the Science Society of Thailand, 9, 81–88.

    Article  CAS  Google Scholar 

  • Ananthanarayanan, B., Stahelin, R. V., Digman, M. A., & Cho, W. (2003). Activation mechanisms of conventional protein kinaseC isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains. The Journal of Biological Chemistry, 278, 46886–468894.

    Article  PubMed  CAS  Google Scholar 

  • Asiedu, C., Biggs, J., Lilly, M., & Kraft, A. S. (1995). Inhibition of leukemia cell growth by the protein kinase C activator bryostatin correlates with the dephosphorylation of cyclin-dependent kinase 2. Cancer Research, 55, 3716–3720.

    PubMed  CAS  Google Scholar 

  • Aziz, M. H., Manoharan, H. T., Sand, J. M., & Verma, A. K. (2007). Protein kinase Cepsilon interacts with Stat3 and regulates its activation that is essential for the development of skin cancer. Molecular Carcinogenesis, 46, 646–653.

    Article  PubMed  CAS  Google Scholar 

  • Battaini, F., & Mochly-Rosen, D. (2007). Happy birthday protein kinase C: Past, present and future of a superfamily. Pharmacological Research, 56, 461–466.

    Article  CAS  Google Scholar 

  • Berenblum, I., & Shubik, P. (1947). The role of croton oil applications, associated with a single painting of a carcinogen, in tumour induction of the mouse’s skin. British Journal of Cancer, 1, 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Berkow, R. L., & Kraft, A. S. (1985). Bryostatin, a non-phorbol macrocyclic lactone, activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor. Biochemical and Biophysical Research Communications, 131, 1109–1116.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, P. M. (1980). In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 1. Critical Reviews in Toxicology, 8, 153–197.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, P. M. (1981). In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 2. Critical Reviews in Toxicology, 8, 199–234.

    Article  PubMed  CAS  Google Scholar 

  • Blumberg, P. M., Acs, P., Bhattacharyya, D. K., & Lorenzo, P. S. (2000). Inhibitors of protein kinase C and related receptors for the lipophilic messenger sn-1, 2-diacylglycerol. In J. S. Gutkind (Ed.), Signal Transduction and Cell Cycle Inhibitors (pp. 347–364). Totowa, NJ: Humana Press.

    Google Scholar 

  • Blumberg, P. M., Kedei, N., Lewin, N. E., Yang, D., Czifra, G., Pu, Y., et al. (2008). Wealth of opportunity – the C1 domain as a target for drug development. Current Drug Targets, 9, 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Bögi, K., Lorenzo, P. S., Acs, P., Szallasi, Z., Wagner, G. S., & Blumberg, P. M. (1999). Comparison of the roles of the C1a and C1b domains of protein kinase C alpha in ligand induced translocation in NIH 3T3 cells. FEBS Letters, 456, 27–30.

    Article  Google Scholar 

  • Bögi, K., Lorenzo, P. S., Szallasi, Z., Acs, P., Wagner, G. S., & Blumberg, P. M. (1998). Differential selectivity of ligands for the C1a and C1b phorbol ester binding domains of protein kinase C delta: Possible correlation with tumor-promoting activity. Cancer Research, 58, 1423–1428.

    Google Scholar 

  • Braun, D. C., Cao, Y., Wang, S., Garfield, S. H., Hur, G. M., & Blumberg, P. M. (2005). Role of phorbol ester localization in determining protein kinase C or RasGRP3 translocation: Real-time analysis using fluorescent ligands and proteins. Molecular Cancer Therapeutics, 4, 141–150.

    PubMed  CAS  Google Scholar 

  • Brodie, C., Steinhart, R., Kazimirsky, G., Rubinfeld, H., Hyman, T., Ayres, J. N., et al. (2004). PKC delta associates with and is involved in the phosphorylation of RasGRP3 in response to phorbol esters. Molecular Pharmacology, 66, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Canagarajah, B., Leskow, F. C., Ho, J. Y., Mischak, H., Saidi, L. F., Kazanietz, M. G., et al. (2004). Structural mechanism for lipid activation of the Rac-specific GAP, beta2-chimaerin. Cell, 119, 407–418.

    Article  PubMed  CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., & Nishizuka, Y. (1982). Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. The Journal of Biological Chemistry, 257, 7847–7851.

    PubMed  CAS  Google Scholar 

  • Challacombe, J. M., Suhrbier, A., Parsons, P. G., Jones, B., Hampson, P., Kavanagh, D., et al. (2006). Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. The Journal of Immunology, 177, 8123–8132.

    PubMed  CAS  Google Scholar 

  • Chen, Y. B., & LaCasce, A. S. (2008). Enzastaurin. Expert Opinion on Investigational Drugs, 17, 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Cho, W., & Stahelin, R. V. (2005). Membrane-protein interactions in cell signaling and membrane trafficking. Annual Review of Biophysics and Biomolecular Structure, 34, 119–151.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. H., Czifra, G., Kedei, N., Lewin, N. E., Lazar, J., Pu, Y., et al. (2008). Characterization of the interaction of phorbol esters with the C1 domain of MRCK (Myotonic dystrophy kinase related Cdc42 binding kinase) alpha/beta. The Journal of Biological Chemistry, 283, 10543–10549.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S. H., Hyman, T., & Blumberg, P. M. (2006). Differential effect of bryostatin 1 and phorbol 12-myristate 13-acetate on HOP-92 cell proliferation is mediated by down-regulation of protein kinase C delta. Cancer Research, 66, 7261–7269.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y., Pu, Y., Peach, M. L., Kang, J. H., Lewin, N. E., Sigano, D. M., et al. (2007). Conformationally constrained analogues of diacylglycerol (DAG). 28. DAG-dioxolanones reveal a new additional interaction site in the C1b domain of PKC delta. Journal of Medicinal Chemistry, 50, 3465–3481.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, E., Budas, G., Vallentin, A., Koyanagi, T., & Mochly-Rosen, D. (2008). PKC isozymes in chronic cardiac disease: Possible therapeutic targets? Annual Review of Pharmacology and Toxicology, 48, 569–599.

    Article  PubMed  CAS  Google Scholar 

  • Colon-Gonzalez, F., & Kazanietz, M. G. (2006). C1 domains exposed: From diacylglycerol binding to protein-protein interactions. Biochimica et Biophysica Acta, 1761, 827–837.

    Article  PubMed  CAS  Google Scholar 

  • Colon-Gonzalez, F., Leskow, F. C., & Kazanietz, M. G. (2008). Identification of an autoinhibitory mechanism that restricts C1 domain-mediated activation of the Rac-GAP alpha2-chimaerin. The Journal of Biological Chemistry, 283, 35247–35257.

    Article  PubMed  CAS  Google Scholar 

  • Corbalan-Garcia, S., & Gomez-Fernandez, J. C. (2006). Protein kinase C regulatory domains: The art of decoding many different signals in membranes. Biochimica et Biophysica Acta, 1761, 633–654.

    Article  PubMed  CAS  Google Scholar 

  • Dell’Aquila, M. L., Herald, C. L., Kamano, Y., Pettit, G. R., & Blumberg, P. M. (1988). Differential effects of byrostatins and phorbol esters on arachidonic acid metabolite release and epidermal growth factor binding in C3H10T1/2 cells. Cancer Research, 48, 3702–3708.

    PubMed  Google Scholar 

  • Dell’Aquila, M. L., Nyugen, H. T., Herald, C. L., Pettit, G. R., & Blumberg, P. M. (1987). Inhibition by bryostatin 1 of the phorbol ester-induced blockage of differentiation in hexamethylene bisacetamide-treated Friend erythroleukemia cells. Cancer Research, 47, 6006–6009.

    PubMed  Google Scholar 

  • Dempsey, E. C., Cool, C. D., & Littler, C. M. (2007). Lung disease and PKCs. Pharmacological Research, 55, 545–559.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, L., O’Brien, T. G., & Baird, W. M. (1980). Tumor promoters and the mechanism of tumor promotion. Advances in Cancer Research, 32, 1–74.

    Article  PubMed  CAS  Google Scholar 

  • DiazGranados, N., & Zarate, C. A., Jr. (2008). A review of the preclinical and clinical evidence for protein kinase C as a target for drug development for bipolar disorder. Current Psychiatry Reports, 10, 510–519.

    Article  PubMed  Google Scholar 

  • Driedger, P. E., & Blumberg, P. M. (1980). Specific binding of phorbol ester tumor promoters. Proceedings of the National Academy of Sciences of the United States of America, 77, 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Dries, D. R., Gallegos, L. L., & Newton, A. C. (2007). A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. The Journal of Biological Chemistry, 282, 826–830.

    Article  PubMed  CAS  Google Scholar 

  • Dries, D. R., & Newton, A. C. (2008). Kinetic analysis of the interaction of the C1 domain of protein kinase C with lipid membranes by stopped-flow spectroscopy. The Journal of Biological Chemistry, 283, 7885–7893.

    Article  PubMed  CAS  Google Scholar 

  • Duan, D., Lewin, N. E., Sigano, D. M., Blumberg, P. M., & Marquez, V. E. (2004). Conformationally constrained analogues of diacylglycerol. 21. A solid-phse method of synthesis of diacylglycerol lactones as a prelude to a combinatorial approach for the synthesis of protein kinase C isozyme-specific ligands. Journal of Medicinal Chemistry, 47, 3248–3254.

    Article  PubMed  CAS  Google Scholar 

  • Duan, D., Sigano, D. M., Kelley, J. A., Lai, C. C., Lewin, N. E., Kedei, N., et al. (2008). Conformationally constrained analogues of diacylglycerol. 29. Cells sort diacylglycerol-lactone chemical zip codes to produce diverse and selective biological activities. Journal of Medicinal Chemistry, 51, 5198–5220.

    Article  PubMed  CAS  Google Scholar 

  • Farhadi, A., Keshavarzian, A., Ranjbaran, Z., Fields, J. Z., & Banan, A. (2006). The role of protein kinase C isoforms in modulating injury and repair of the intestinal barrier. Journal of Pharmacology and Experimental Therapeutics, 316, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Fujiki, H., & Sugimura, T. (1987). New classes of tumor promoters: Teleocidin, aplysiatoxin, and palytoxin. Advances in Cancer Research, 49, 223–264.

    Article  PubMed  CAS  Google Scholar 

  • Fürstenberger, G., & Hecker, E. (1972). Zum Wirkungsmechanismus cocarcinogener Pflanzeninhaltsstoffe. Planta Medica, 22, 241–266.

    Article  PubMed  Google Scholar 

  • Gallegos, L. L., Kunkel, M. T., & Newton, A. C. (2006). Targeting protein kinase C activity reporter to discrete intracellular regions reveals spatiotemporal differences in agonist-dependent signaling. The Journal of Biological Chemistry, 281, 30947–30956.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Fernandez, J. C., Torrecillas, A., & Corbalan-Garcia, S. (2004). Diacylglycerols as activators of protein kinase C (review). Molecular Membrane Biology, 21, 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Gould, C. M., & Newton, A. C. (2008). The life and death of protein kinase C. Current Drug Targets, 9, 614–625.

    Article  PubMed  CAS  Google Scholar 

  • Grant, S., Turner, A. J., Freemerman, A. J., Wang, Z., Kramer, L., & Jarvis, W. D. (1996). Modulation of protein kinase C activity and calcium-sensitive isoform expression in human myeloid leukemia cells by bryostatin 1: Relationship to differentiation and Ara-C induced apoptosis. Experimental Cell Research, 228, 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Griner, E. M., & Kazanietz, M. G. (2007). Protein kinase C and other diacylglycerol effectors in cancer. Nature Reviews. Cancer, 7, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, E. (1968). Cocarcinogenic principles from the seed oil of Croton tiglium and from other Euphorbiaceae. Cancer Research, 28, 2338–2349.

    PubMed  CAS  Google Scholar 

  • Hecker, E. (1978). Structure-activity relationships in diterpene esters irritant and cocarcinogenic to mouse skin. In T. J. Slaga, A. Sivak, & R. K. Boutwell (Eds.), Carcinogenesis (Vol. 2, pp. 11–48). NY: Mechanisms of Tumor Promotion and Cocarcinogenesis Raven Press.

    Google Scholar 

  • Hennings, H., Blumberg, P. M., Pettit, G. R., Herald, C. L., Shores, R., & Yuspa, S. H. (1987). Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin. Carcinogenesis, 8, 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  • Hennings, H., & Boutwell, R. K. (1970). Studies on the mechanism of skin tumor promotion. Cancer Research, 30, 312–320.

    PubMed  CAS  Google Scholar 

  • Heo, J., Thapar, R., & Campbell, S. L. (2005). Recognition and activation of Rho GTPases by Vav1 and Vav2 guanine nucleotide exchange factors. Biochemistry, 44, 6573–6585.

    Article  PubMed  CAS  Google Scholar 

  • Hommel, U., Zurini, M., & Luyten, M. (1994). Solution structure of a cysteine rich domain of rat protein kinase C. Nature Structural Biology, 1, 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Hornstein, I., Alcover, A., & Katzav, S. (2004). Vav proteins, masters of the world of cytoskeleton organization. Cellular Signalling, 16, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hritz, J., Ulicny, J., Laaksonen, A., Jancura, D., & Miskovsky, P. (2004). Molecular interaction model for the C1b domain of protein kinase C-γ in the complex with its activator phorbol-12-myristate-13-acetate in water solution and lipid bilayer. Journal of Medicinal Chemistry, 47, 6547–6555.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, J. H., Newton, A. C., Parker, P. J., Blumberg, P. M., & Nishizuka, Y. (1997). Taxonomy and function of C1 protein kinase C homology domains. Protein Science, 6, 477–480.

    Article  PubMed  CAS  Google Scholar 

  • Ikuta, T., Chida, K., Tajima, O., Matsuura, Y., Iwamori, M., Ueda, Y., et al. (1994). Cholesterol sulfate, a novel activator for the eta isoform of protein kinase C. Cell Growth Diff, 9, 943–947.

    Google Scholar 

  • Irie, K., Masuda, A., Shindo, M., Nakagawa, Y., & Ohigashi, H. (2004a). Tumor promoter binding of the protein kinase C C1 homology domain peptides of RasGRPs, chimaerins, and Unc13s. Bioorganic & Medicinal Chemistry, 12, 4575–4583.

    Article  CAS  Google Scholar 

  • Irie, K., Nakagawa, Y., & Ohigashi, H. (2004b). Indolactam and benzolactams compounds as new medicinal leads with binding selectivity for C1 domains of protein kinaseC isozymes. Current Pharmaceutical Design, 10, 1371–1385.

    Article  PubMed  CAS  Google Scholar 

  • Irie, K., Nakagawa, Y., & Ohigashi, H. (2005). Toward the development of new medicinal leads with selectivity for protein kinase C isozymes. Chemical Record, 5, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Itai, A., Kato, Y., Tomioka, N., Iitaka, Y., Endo, Y., Hasegawa, M., et al. (1988). A receptor model for tumor promoters: Rational superposition of teleocidins and phorbol esters. Proceedings of the National Academy of Sciences of the United States of America, 85, 3688–3692.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J. E., Goulding, R. E., Ding, Z., Partovi, A., Anthony, K. V., Beaulieu, N., et al. (2007). Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs. Biochemical Journal, 406, 223–236.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. H., Benzaria, S., Sigano, D. M., Lewin, N. E., Pu, Y., Peach, M. L., et al. (2006). Conformationally constrained analogues of diacylglycerol. 26. Exploring the chemical space surrounding the C1 domain of protein kinase C with DAG-lactones containing aryl groups at the sn-1 and sn-2 positions. Journal of Medicinal Chemistry, 49, 3185–3203.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. H., Chung, H. E., Kim, S. Y., Kim, Y., Lee, J., Lewin, N. E., et al. (2003). Conformationally constrained analogues of diacylglycerol (DAG). Effect on protein kinase C (PK-C) binding by the isosteric replacement of sn-1 and sn-2 esters in DAG-lactones. Bioorganic & Medicinal Chemistry, 11, 2529–2539.

    Article  CAS  Google Scholar 

  • Kang, J. H., Peach, M. L., Pu, Y., Lewin, N. E., Nicklaus, M. C., Blumberg, P. M., et al. (2005). Conformationally constrained analogues of diacylglycerol (DAG). 25. Exploration of the sn-1 and sn-2 carbonyl functionality reveals the essential role of the sn-1 carbonyl at the lipid interface in the binding of DAG-lactones to protein kinase C. Journal of Medicinal Chemistry, 48, 5738–5748.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. H., Siddiqui, M. A., Sigano, D. M., Krajewski, K., Lewin, N. E., Pu, Y., et al. (2004). Conformationally constrained analogues of diacylglycerol. 24. Asymmetric synthesis of a chiral ®-DAG-lactone template as a versatile precursor for highly functionalized DAG-lactones. Organic Letters, 6, 2413–2416.

    Article  PubMed  CAS  Google Scholar 

  • Kazanietz, M. G. (2005). Targeting protein kinase C and “non-kinase” phorbol ester receptors: Emerging concepts and therapeutic implications. Biochimica et Biophysica Acta, 1754, 296–304.

    Article  PubMed  CAS  Google Scholar 

  • Kazanietz, M. G., Barchi, J. J., Jr., Omichinski, J. G., & Blumberg, P. M. (1995a). Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids. The Journal of Biological Chemistry, 270, 14679–14684.

    Article  PubMed  CAS  Google Scholar 

  • Kazanietz, M. G., Bustelo, X. R., Barbacid, M., Kolch, W., Mischak, H., Wong, G., et al. (1994). Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and v-raf proto-oncogene products. The Journal of Biological Chemistry, 269, 11590–11594.

    PubMed  CAS  Google Scholar 

  • Kazanietz, M. G., Wang, S., Milne, G. W., Lewin, N. E., Liu, H. L., & Blumberg, P. M. (1995b). Residues in the second cysteine-rich region of protein kinase C delta relevant to phorbol ester binding as revealed by site-directed mutagenesis. The Journal of Biological Chemistry, 270, 21852–21859.

    Article  PubMed  CAS  Google Scholar 

  • Keck, G. E., Kraft, M. B., Truong, A. P., Li, W., Sanchez, C. C., Kedei, N., et al. (2008). Convergent assembly of highly potent analogues of bryostatin 1 via pyran annulation: Bryostatin look-alikes that mimic phorbol ester function. Journal of the American Chemical Society, 130, 6660–6661.

    Article  PubMed  CAS  Google Scholar 

  • Keck, G. E., Poudel, Y. B., Welch, D. S., Kraft, M. B., Truong, A. P., Stephens, J., et al. (2009). Substitution on the A ring confers to bryologues the unique biological activity characteristic of bryostatins and distinct from that of the phorbol esters. Organic Letters, 284, 1302–1312.

    Google Scholar 

  • Kedei, N., Lundberg, D. J., Toth, A., Welburn, P., Garfield, S. H., & Blumberg, P. M. (2004). Characterization of the interaction of ingenol 3-angelate with protein kinase C. Cancer Research, 64, 3243–3255.

    Article  PubMed  CAS  Google Scholar 

  • Kikkawa, U., Matsuzaki, H., & Yamamoto, T. (2002). Protein kinase C delta (PKC delta): Activation mechanisms and functions. Journal of Biochemistry, 132, 831–839.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, K., Mizutani, M. Y., Tomioka, N., Endo, Y., Shudo, K., & Itai, A. (1999). Docking study of bryostatins to protein kinase Cδ Cys2 domain. Chemical and Pharmaceutical Bulletin, 47, 1134–1137.

    Article  CAS  Google Scholar 

  • Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., & Nishizuka, Y. (1980). Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover. The Journal of Biological Chemistry, 255, 2273–2276.

    PubMed  CAS  Google Scholar 

  • Koehler FE (1887) Köhler’s Medizinal-Pflanzen in naturgetreuen Abbildungen mit kurz erläuterndem Texte (ed. Pabst G) Gera-Untermhaus, Germany

    Google Scholar 

  • Kraft, A. S., Smith, J. B., & Berkow, R. L. (1986). Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proceedings of the National Academy of Sciences of the United States of America, 83, 1334–1338.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. R., Duan, W., & Tan, S. L. (2008). Protein kinase C isozymes as potential therapeutic targets in immune disorders. Expert Opinion on Therapeutic Targets, 12, 535–552.

    Article  PubMed  CAS  Google Scholar 

  • Leung, T., Chen, X. Q., Tan, I., Manser, E., & Lim, L. (1998). Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Molecular Biology of the Cell, 18, 130–140.

    CAS  Google Scholar 

  • Lorenzo, P. S., Beheshti, M., Pettit, G. R., Stone, J. C., & Blumberg, P. M. (2000). The guanine nucleotide exchange factor RasGRP is a high-affinity target for diacylglycerol and phorbol esters. Molecular Pharmacology, 57, 840–846.

    PubMed  CAS  Google Scholar 

  • Lorenzo, P. S., Bögi, K., Acs, P., Pettit, G. R., & Blumberg, P. M. (1997). The catalytic domain of protein kinase C delta confers protection from down regulation induced by bryostatin 1. The Journal of Biological Chemistry, 272, 33338–33343.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo, P. S., Bögi, K., Hughes, K. M., Beheshti, M., Bhattacharyya, D., Garfield, S. H., et al. (1999). Differential roles of the tandem C1 domains of protein kinase C delta in the biphasic down-regulation induced by bryostatin 1. Cancer Research, 59, 6137–6144.

    PubMed  CAS  Google Scholar 

  • Marquez, V. E., & Blumberg, P. M. (2003). Diacylglycerol (DAG) and DAG-lactones as selective activators of protein kinase C (PK-C). Accounts of Chemical Research, 36, 434–443.

    Article  PubMed  CAS  Google Scholar 

  • Marquez, V. E., Nacro, K., Benzaria, S., Lee, J., Sharma, R., Teng, K., et al. (1999). The transition from a pharmacophore-guided approach to a receptor-guided approach in the design of potent protein kinase C ligands. Pharmacology and Therapeutics, 82, 251–261.

    Article  PubMed  CAS  Google Scholar 

  • Medkova, M., & Cho, W. (1998). Differential membrane-binding and activation mechanisms of protein kinase C-alpha and -epsilon. Biochemistry, 37, 4892–4900.

    Article  PubMed  CAS  Google Scholar 

  • Mott, H. R., Carpenter, J. W., Zhong, S., Ghosh, S., Bell, R. M., & Campbell, S. L. (1996). The solution structure of the Raf-1 cysteine-rich domain: A novel Ras and phospholipid binding site. Proceedings of the National Academy of Sciences of the United States of America, 93, 8312–8317.

    Article  PubMed  CAS  Google Scholar 

  • Nacro, K., Sigano, D. M., Yan, S., Nicklaus, M. C., Pearce, L. L., Lewin, N. E., et al. (2001). An optimized protein kinase C activating diacylglycerol combining high binding affinity (Ki) with reduced lipophilicity (log P). Journal of Medicinal Chemistry, 44, 1892–1904.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Irie, K., Yanagita, R. C., Ohigashi, H., Tsuda, K. I., Kashiwagi, K., et al. (2006). Design and synthesis of 8-octyl-benzolactam-V9, a selective activator for protein kinase Cε and η. Journal of Medicinal Chemistry, 49, 2681–2688.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H., Kishi, Y., Pajares, M. A., & Rando, R. R. (1989). Structural basis of protein kinase C activation by tumor promoters. Proceedings of the National Academy of Sciences of the United States of America, 86, 9672–9676.

    Article  PubMed  CAS  Google Scholar 

  • Newton, A. C. (2004). Diacylglycerol’s affair with protein kinase C turns 25. Trends in Pharmacological Sciences, 25, 175–177.

    Article  PubMed  CAS  Google Scholar 

  • Newton, A. C., & Johnson, J. E. (1998). Protein kinase C: A paradigm for regulation of protein function by two membrane-targeting modules. Biochimica et Biophysica Acta, 1376, 155–172.

    Article  PubMed  CAS  Google Scholar 

  • Ng, S. B., & Guy, G. R. (1992). Two protein kinase C activators, bryostatin-1 and phorbol-12-myristate-13-acetate, have different effects on haemopoietic cell proliferation and differentiation. Cellular Signalling, 4, 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Oancea, E., & Meyer, T. (1998). Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell, 96, 307–318.

    Article  Google Scholar 

  • Ogbourne, S. M., Hampson, P., Lord, J. M., Parsons, P., De Witte, P. A., & Suhrbier, A. (2007). Proceedings of the First International Conference on PEP005. Anti-Cancer Drugs, 18, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Opferkuch, H. J., & Hecker, E. (1982). On the active principles of the spurge family (Euphorbiaceae) IV. Skin irritant and tumor promoting diterpene esters from Euphorbia ingens E. Mey. Journal of Cancer Research and Clinical Oncology, 103, 255–268.

    Article  PubMed  CAS  Google Scholar 

  • Pak, Y., Enyedy, I. J., Varady, J., Kung, J. W., Lorenzo, P. S., Blumberg, P. M., et al. (2001). Structural basis of binding of high-affinity ligands to protein kinase C: Prediction of the binding modes through a new molecular dynamics method and evaluation by site-directed mutagenesis. Journal of Medicinal Chemistry, 44, 1690–1701.

    Article  PubMed  CAS  Google Scholar 

  • Pasti, G., Rivedal, E., Yuspa, S. H., Herald, C. L., Pettit, G. R., & Blumberg, P. M. (1988). Contrasting duration of inhibition of cell-cell communication in primary mouse epidermal cells by phorbol 12, 13-dibutyrate and by bryostatin 1. Cancer Research, 48, 447–451.

    PubMed  CAS  Google Scholar 

  • Pettit, G. R. (1991). The bryostatins. Fortschritte der Chemie Organischer Naturstoffe, 57, 153–195.

    Article  PubMed  CAS  Google Scholar 

  • Pu, Y., Garfield, S. H., Kedei, N., & Blumberg, P. M. (2009). Characterization of the differential roles of the twin C1a and C1b domains of protein kinase C-delta. The Journal of Biological Chemistry, 284, 1302–1312.

    Article  PubMed  CAS  Google Scholar 

  • Pu, Y., Peach, M. L., Garfield, S. H., Wincovitch, S., Marquez, V. E., & Blumberg, P. M. (2006). Effects on ligand interaction and membrane translocation of the positively charged arginine residues situated along the C1 domain binding cleft in the atypical protein kinase C isoforms. The Journal of Biological Chemistry, 281, 33773–33788.

    Article  PubMed  CAS  Google Scholar 

  • Pu, Y., Perry, N. A., Yang, D., Lewin, N. E., Kedei, N., Braun, D. C., et al. (2005). A novel diacylglycerol-lactone shows marked selectivity in vitro among C1 domains of protein kinase C (PKC) isoforms alpha and delta as well as selectivity for RasGRP compared with PKC alpha. The Journal of Biological Chemistry, 280, 27329–27338.

    Article  PubMed  CAS  Google Scholar 

  • Rapley, J., Tybulewicz, V. L. J., & Rittinger, K. (2008). Crucial structural role for the PH and C1 domains of the Vav1 exchange factor. EMBO Reports, 9, 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Reddig, P. J., Dreckschmidt, N. E., Ahrens, H., Simsiman, R., Tseng, C. P., Zou, J., et al. (1999). Transgenic mice overexpressing protein kinase C delta in the epidermis are resistant to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Research, 59, 5710–5718.

    PubMed  CAS  Google Scholar 

  • Sako, T., Yuspa, S. H., Herald, C. L., Pettit, G. R., & Blumberg, P. M. (1987). Partial parallelism and partial blockade by bryostatin 1 of effects of phorbol ester tumor promoters on primary mouse epidermal cells. Cancer Research, 47, 5445–5450.

    PubMed  CAS  Google Scholar 

  • Shao, L., Lewin, N. E., Lorenzo, P. S., Hu, Z., Enyedy, I. J., Garfield, S. H., et al. (2001). Iridals are a novel class of ligands for phorbol ester receptors with modest selectivity for the RasGRP receptor family. Journal of Medicinal Chemistry, 44, 3872–3880.

    Article  PubMed  CAS  Google Scholar 

  • Shindo, M., Irie, K., Nakahara, A., Ohigashi, H., Konishi, H., Kikkawa, U., et al. (2001). Toward the identification of selective modulators of protein kinase C (PKC) isozymes: Establishment of a binding assay for PKC isozymes using synthetic C1 peptide receptors and identification of the critical residues involved in the phorbol ester binding. Bioorganic & Medicinal Chemistry, 9, 2073–2081.

    Article  CAS  Google Scholar 

  • Sigano, D. M., Peach, M. L., Nacro, K., Choi, Y., Lewin, N. E., Nicklaus, M. C., et al. (2003). Differential binding mnodes of diacylglycerol (DAG) and DAG-lactones to protein kinase C (PK-C). Journal of Medicinal Chemistry, 46, 1571–1579.

    Article  PubMed  CAS  Google Scholar 

  • Silinsky, E. M., & Searl, T. J. (2003). Phorbol esters and neurotransmitter release: More than just protein kinase C? British Journal of Pharmacology, 138, 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  • Slaga, T. J., Fischer, S. M., Nelson, K., & Gleason, G. L. (1980). Studies on the mechanism of skin tumor promotion: Evidence for several stages in promotion. Proceedings of the National Academy of Sciences of the United States of America, 77, 3659–3663.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. B., Smith, L., & Pettit, G. R. (1985). Bryostatins: Potent, new mitogens that mimic phorbol ester tumor promoters. Biochemical and Biophysical Research Communications, 132, 939–945.

    Article  PubMed  CAS  Google Scholar 

  • Stahelin, R. V., Digman, M. A., Medkova, M., Ananthanarayanan, B., Rafter, J. D., Melowic, H. R., et al. (2004). Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase C delta. The Journal of Biological Chemistry, 279, 29501–29512.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, S. F. (2008). Structural basis of protein kinase C isoform function. Physiological Reviews, 88, 1341–1378.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J. C. (2006). Regulation of Ras in lymphocytes: Get a GRP. Biochemical Society Transactions, 34, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Sun, M. D., & Alkon, D. L. (2006). Protein kinase C pharmacology: Perspectives on therapeutic potentials as antidementic and cognitive agents. Recent Patents on CNS Drug Discovery, 1, 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Swat, W., & Fujikawa, K. (2005). The Vav family. At the crossroads of signaling pathways. Immunologic Research, 32, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Szallasi, Z., Bögi, K., Gohari, S., Biro, T., Acs, P., & Blumberg, P. M. (1996). Non-equivalent roles for the first and second zinc fingers of protein kinase δ. The Journal of Biological Chemistry, 271, 18299–18301.

    Article  PubMed  CAS  Google Scholar 

  • Szallasi, Z., Denning, M. F., Smith, C. B., Dlugosz, A. A., Yuspa, S. H., Pettit, G. R., et al. (1994a). Bryostatin 1 protects protein kinase C-delta from down-regulation in mouse keratinocytes in parallel with its inhibition of phorbol ester-induced differentiation. Molecular Pharmacology, 46, 840–850.

    PubMed  CAS  Google Scholar 

  • Szallasi, Z., Krsmanovic, L., & Blumberg, P. M. (1993). Nonpromoting 12-deoxyphorbol 13-esters inhibit phorbol 12-myristate 13-acetate induced tumor promotion in CD-1 mouse skin. Cancer Research, 53, 2507–2512.

    PubMed  CAS  Google Scholar 

  • Szallasi, Z., Smith, C. B., Pettit, G. R., & Blumberg, P. M. (1994b). Differential regulation of protein kinase C isozymes by bryostatin 1 and phorbol 12-myristate 13-acetate in NIH 3T3 fibroblasts. The Journal of Biological Chemistry, 269, 2118–2124.

    PubMed  CAS  Google Scholar 

  • Teixeira, C., Stang, S. L., Zheng, Y., Beswick, N. S., & Stone, J. C. (2003). Integration of DAG signaling systems mediated by PKC-dependent phosphorylation of RasGRP3. Blood, 102, 1414–1420.

    Article  PubMed  CAS  Google Scholar 

  • Topham, M. K. (2006). Signaling roles of diacylglycerol kinases. Journal of Cellular Biochemistry, 97, 474–484.

    Article  PubMed  CAS  Google Scholar 

  • Topham, M. K., & Prescott, S. M. (2001). Diacylglycerol kinase zeta regulates Ras activation by a novel mechanism. The Journal of Cell Biology, 152, 1135–1143.

    Article  PubMed  CAS  Google Scholar 

  • Vrana, J. A., Saunders, A. M., Chellappan, S. P., & Grant, S. (1998). Divergent effects of bryostatin 1 and phorbol myristate acetate on cell cycle arrest and maturation in human myelomonocytic leukemia cells (U937). Differentiation, 63, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q. J. (2006). PKD at the crossroads of DAG and PKC signaling. Trends in Pharmacological Sciences, 27, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q. J., Bhattacharyya, D., Garfield, S., Nacro, K., Marquez, V. E., & Blumberg, P. M. (1999). Differential localization of protein kinase C delta by phorbol esters and related compounds using a fusion protein with green fluorescent protein. The Journal of Biological Chemistry, 274, 37233–37239.

    Article  PubMed  CAS  Google Scholar 

  • Wender, P. A., Cribbs, C. M., Koehler, K. F., Sharkey, N. A., Herald, C. L., Kamano, Y., et al. (1988). Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 85, 7197–7201.

    Article  PubMed  CAS  Google Scholar 

  • Wender, P. A., Hinkle, K. W., Koehler, M. F., & Lippa, B. (1999). The rational design of potential chemotherapeutic agents: Synthesis of bryostatin analogues. Medicinal Research Reviews, 19, 388–407.

    Article  PubMed  CAS  Google Scholar 

  • Xu, R. X., Pawelczyk, T., Xia, T. H., & Brown, S. C. (1997). NMR structure of a protein kinase C-γ phorbol-binding domain and study of protein-lipid micelle interactions. Biochemistry, 36, 10709–10717.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C., & Kazanietz, M. G. (2003). Divergence and complexities in DAG signaling: Looking beyond PKC. Trends in Pharmacological Sciences, 24, 602–608.

    Article  PubMed  CAS  Google Scholar 

  • Yang, C., & Kazanietz, M. G. (2007). (2007) Chimaerins: GAPS that bridge diacylglycerol signaling and the small G-protein Rac. Biochemical Journal, 403, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Zayed, S. M. A. D., Farghaly, M., Taha, H., Gotta, H., & Hecker, E. (1998). Dietary cancer risk conditional cancerogens in produce of livestock fed on species of spurge (Euphorbiaceae) I. Skin irritant and tumor-promoting ingenane-type diterpene esters in E. peplus, one of several herbaceous Euphorbia species contaminating fodder of livestock. Journal of Cancer Research and Clinical Oncology, 124, 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Zayed, S., Sorg, B., & Hecker, E. (1984). Structure activity relations of polyfunctional diterpenes of the tigliane type, V1. Planta Medica, 34, 65–69.

    Article  Google Scholar 

  • Zhang, G., Kazanietz, M. G., Blumberg, P. M., & Hurley, J. H. (1995). Crystal structure of the cys2 activator-binding domain of protein kinase C delta in complex with phorbol ester. Cell, 81, 917–924.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Y., Liu, H., Coughlin, J., Zheng, J., Li, L., & Stone, J. C. (2005). Phosphorylation of RasGRP3 on threonine 133 provides a mechanistic link between PKC and Ras signaling systems in B cells. Blood, 105, 3648–3654.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, M., Horita, D. A., Waugh, D. S., Byrd, R. A., & Morrison, D. K. (2002). Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras. Journal of Molecular Biology, 315, 435–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This contribution was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Blumberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Blumberg, P.M. et al. (2010). Phorbol Esters and Diacylglycerol: The PKC Activators. In: Kazanietz, M. (eds) Protein Kinase C in Cancer Signaling and Therapy. Current Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-543-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-543-9_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-542-2

  • Online ISBN: 978-1-60761-543-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics