Structural Biology and the Design of Effective Vaccines for HIV-1 and Other Viruses

  • Peter D. Kwong
  • Gary J. Nabel
  • Priyamvada Acharya
  • Jeffrey C. Boyington
  • Lei Chen
  • Chantelle Hood
  • Albert Kim
  • Leopold Kong
  • Young Do Kwon
  • Shahzad Majeed
  • Jason McLellan
  • Gilad Ofek
  • Marie Pancera
  • Mallika Sastry
  • Anita Changela
  • Jonathan Stuckey
  • Tongqing Zhou
Chapter
Part of the Infectious Disease book series (ID)

Abstract

Structural biology provides a wealth of information about the three-dimensional organization and chemical makeup of proteins. An understanding of atomic-level structure offers enormous potential to design rationally proteins that stimulate specific immune responses. Yet current vaccine development efforts makes little use of structural information. At the Vaccine Research Center, a major goal is to apply structural techniques to vaccine design for challenging pathogens, that include human immunodeficiency virus type 1 (HIV-1) and other enveloped viruses such as influenza, Ebola, and respiratory syncytial viruses. Our three-part strategy involves 1.) the definition of the functional viral spike at the atomic level 2.) achieving a structural understanding of how neutralizing antibodies recognize the spike, and 3.) rational development of proteins that can elicit a specific antibody response. Overall, our strategy aims to incorporate information about viral spike-antibody interactions, to assimilate immunogenic feedback, and to leverage recent advances in immunofocusing and computational biology.

References

  1. 1.
    Zhou, T., Xu, L., Dey, B., Hessell, A.J., Van Ryk, D., Xiang, S.H., Yang, X., Zhang, M.Y., Zwick, M.B., Arthos, J., Burton, D.R., Dimitrov, D.S., Sodroski, J., Wyatt, R., Nabel, G.J. and Kwong, P.D. (2007). Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737.PubMedCrossRefGoogle Scholar
  2. 2.
    Li, Y., Migueles, S.A., Welcher, B., Svehla, K., Phogat, A., Louder, M.K., Wu, X., Shaw, G.M., Connors, M., Wyatt, R.T. and Mascola, J.R. (2007). Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat Med 13:1032–1034.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, J.E., Fusco, M.L., Hessell, A.J., Oswald, W.B., Burton, D.R. and Saphire, E.O. (2008). Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson, I.A., Skehel, J.J. and Wiley, D.C. (1981). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373.PubMedCrossRefGoogle Scholar
  5. 5.
    Yin, H.-S., Wen, X., Paterson, R.G., Lamb, R.A. and Jardetzky, T.S. (2006). Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439:38–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Harrison, S.C. (2005). Mechanism of membrane fusion by viral envelope proteins. Adv Virus Res 64:231–261.PubMedCrossRefGoogle Scholar
  7. 7.
    Colman, P.M. and Lawrence, M.C. (2003). The structural biology of type I viral membrane fusion. Nat Rev Mol Cell Biol 4:309–319.PubMedCrossRefGoogle Scholar
  8. 8.
    Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B.H., Wolinsky, S. and Bhattacharya, T. (2000). Timing the ancestor of the HIV-1 pandemic strains. Science 288:1789–1796.PubMedCrossRefGoogle Scholar
  9. 9.
    (2008). 2008 Report on the global AIDS Epidemic, in Joint United Nations Programme on HIV/AIDS.Google Scholar
  10. 10.
    Wyatt, R., Kwong, P.D., Desjardins, E., Sweet, R.W., Robinson, J., Hendrickson, W.A. and Sodroski, J.G. (1998). The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–711.PubMedCrossRefGoogle Scholar
  11. 11.
    Wyatt, R. and Sodroski, J. (1998). The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888.PubMedCrossRefGoogle Scholar
  12. 12.
    Roux, K.H. and Taylor, K.A. (2007). AIDS virus envelope spike structure. Curr Opin Struct Biol 17:244–252.PubMedCrossRefGoogle Scholar
  13. 13.
    Liu, J., Bartesaghi, A., Borgnia, M.J., Sapiro, G. and Subramaniam, S. (2008). Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113.PubMedCrossRefGoogle Scholar
  14. 14.
    Kwong, P.D. (2005). Human immunodeficiency virus: refolding the envelope. Nature 433:815–816.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, B., Vogan, E.M., Gong, H., Skehel, J.J., Wiley, D.C. and Harrison, S.C. (2005). Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433:834–841.PubMedCrossRefGoogle Scholar
  16. 16.
    Feng, Y., Broder, C.C., Kennedy, P.E. and Berger, E.A. (1996). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877.PubMedCrossRefGoogle Scholar
  17. 17.
    Moore, J.P. (1997). Coreceptors: implications for HIV pathogenesis and therapy. Science 276:51–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Berger, E.A., Murphy, P.M. and Farber, J.M. (1999). Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700.PubMedCrossRefGoogle Scholar
  19. 19.
    Caffrey, M., Cai, M., Kaufman, J., Stahl, S.J., Wingfield, P.T., Covell, D.G., Gronenborn, A.M. and Clore, G.M. (1998). Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J 17:4572–4584.PubMedCrossRefGoogle Scholar
  20. 20.
    Lu, M., Blacklow, S.C. and Kim, P.S. (1995). A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082.PubMedCrossRefGoogle Scholar
  21. 21.
    Chan, D.C., Fass, D., Berger, J.M. and Kim, P.S. (1997). Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273.PubMedCrossRefGoogle Scholar
  22. 22.
    Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. and Wiley, D.C. (1997). Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430.PubMedCrossRefGoogle Scholar
  23. 23.
    Tan, K., Liu, J., Wang, J., Shen, S. and Lu, M. (1997). Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci U S A 94:12303–12308.CrossRefGoogle Scholar
  24. 24.
    Yang, X., Lee, J., Mahony, E.M., Kwong, P.D., Wyatt, R. and Sodroski, J. (2002). Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J Virol 76:4634–4642.PubMedCrossRefGoogle Scholar
  25. 25.
    Kim, S., Pang, H.B. and Kay, M.S. (2008). Peptide mimic of the HIV envelope gp120-gp41 interface. J Mol Biol 376:786–797.PubMedCrossRefGoogle Scholar
  26. 26.
    Kwong, P.D., Wyatt, R., Desjardins, E., Robinson, J., Culp, J.S., Hellmig, B.D., Sweet, R.W., Sodroski, J. and Hendrickson, W.A. (1999). Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J Biol Chem 274:4115–4123.PubMedCrossRefGoogle Scholar
  27. 27.
    Kwong, P.D., Wyatt, R., Majeed, S., Robinson, J., Sweet, R.W., Sodroski, J. and Hendrickson, W.A. (2000). Structures of HIV-1 gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8:1329–1339.PubMedCrossRefGoogle Scholar
  28. 28.
    Kwong, P.D., Wyatt, R., Robinson, J., Sweet, R.W., Sodroski, J. and Hendrickson, W.A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659.PubMedCrossRefGoogle Scholar
  29. 29.
    Huang, C.C., Tang, M., Zhang, M.Y., Majeed, S., Montabana, E., Stanfield, R.L., Dimitrov, D.S., Korber, B., Sodroski, J., Wilson, I.A., Wyatt, R. and Kwong, P.D. (2005). Structure of a V3-containing HIV-1 gp120 core. Science 310:1025–1028.PubMedCrossRefGoogle Scholar
  30. 30.
    Huang, C.C., Lam, S.N., Acharya, P., Tang, M., Xiang, S.H., Hussan, S.S., Stanfield, R.L., Robinson, J., Sodroski, J., Wilson, I.A., Wyatt, R., Bewley, C.A. and Kwong, P.D. (2007). Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317:1930–1934.PubMedCrossRefGoogle Scholar
  31. 31.
    Wei, X., Decker, J.M., Wang, S., Hui, H., Kappes, J.C., Wu, X., Salazar-Gonzalez, J.F., Salazar, M.G., Kilby, J.M., Saag, M.S., Komarova, N.L., Nowak, M.A., Hahn, B.H., Kwong, P.D. and Shaw, G.M. (2003). Antibody neutralization and escape by HIV-1. Nature 422:307–312.PubMedCrossRefGoogle Scholar
  32. 32.
    Wyatt, R., Moore, J., Accola, M., Desjardin, E., Robinson, J. and Sodroski, J. (1995). Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. J Virol 69:5723–5733.PubMedGoogle Scholar
  33. 33.
    Kwong, P.D., Doyle, M.L., Casper, D.J., Cicala, C., Leavitt, S.A., Majeed, S., Steenbeke, T.D., Venturi, M., Chaiken, I., Fung, M., Katinger, H., Parren, P.W., Robinson, J., Van Ryk, D., Wang, L., Burton, D.R., Freire, E., Wyatt, R., Sodroski, J., Hendrickson, W.A. and Arthos, J. (2002). HIV-1 evades antibody-mediated neutralization through conformational masking of receptor-binding sites. Nature 420:678–682.PubMedCrossRefGoogle Scholar
  34. 34.
    Decker, J.M., Bibollet-Ruche, F., Wei, X., Wang, S., Levy, D.N., Wang, W., Delaporte, E., Peeters, M., Derdeyn, C.A., Allen, S., Hunter, E., Saag, M.S., Hoxie, J.A., Hahn, B.H., Kwong, P.D., Robinson, J.E. and Shaw, G.M. (2005). Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J Exp Med 201:1407–1419.PubMedCrossRefGoogle Scholar
  35. 35.
    Salzwedel, K., Smith, E.D., Dey, B. and Berger, E.A. (2000). Sequential CD4-coreceptor interactions in human immunodeficiency virus type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. J Virol 74:326–333.PubMedCrossRefGoogle Scholar
  36. 36.
    Labrijn, A.F., Poignard, P., Raja, A., Zwick, M.B., Delgado, K., Franti, M., Binley, J., Vivona, V., Grundner, C., Huang, C.C., Venturi, M., Petropoulos, C.J., Wrin, T., Dimitrov, D.S., Robinson, J., Kwong, P.D., Wyatt, R.T., Sodroski, J. and Burton, D.R. (2003). Access of antibody molecules to the conserved coreceptor binding site on glycoprotein gp120 is sterically restricted on primary human immunodeficiency virus type 1. J Virol 77:10557–10565.PubMedCrossRefGoogle Scholar
  37. 37.
    Burton, D.R., Pyati, J., Koduri, R., Sharp, S.J., Thornton, G.B., Parren, P.W., Sawyer, L.S., Hendry, R.M., Dunlop, N., Nara, P.L. and et al. (1994). Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266:1024–1027.PubMedCrossRefGoogle Scholar
  38. 38.
    Muster, T., Guinea, R., Trkola, A., Purtscher, M., Klima, A., Steindl, F., Palese, P. and Katinger, H. (1994). Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. J Virol 68:4031–4034.PubMedGoogle Scholar
  39. 39.
    Muster, T., Steindl, F., Purtscher, M., Trkola, A., Klima, A., Himmler, G., Ruker, F. and Katinger, H. (1993). A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67:6642–6647.PubMedGoogle Scholar
  40. 40.
    Trkola, A., Purtscher, M., Muster, T., Ballaun, C., Buchacher, A., Sullivan, N., Srinivasan, K., Sodroski, J., Moore, J.P. and Katinger, H. (1996). Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70:1100–1108.PubMedGoogle Scholar
  41. 41.
    Ofek, G., Tang, M., Sambor, A., Katinger, H., Mascola, J.R., Wyatt, R. and Kwong, P.D. (2004). Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol 78:10724–10737.PubMedCrossRefGoogle Scholar
  42. 42.
    Cavacini, L.A., Samore, M.H., Gambertoglio, J., Jackson, B., Duval, M., Wisnewski, A., Hammer, S., Koziel, C., Trapnell, C. and Posner, M.R. (1998). Phase I study of a human monoclonal antibody directed against the CD4-binding site of HIV type 1 glycoprotein 120. AIDS Res Hum Retroviruses 14:545–550.PubMedCrossRefGoogle Scholar
  43. 43.
    Lin, P.F., Blair, W., Wang, T., Spicer, T., Guo, Q., Zhou, N., Gong, Y.F., Wang, H.G., Rose, R., Yamanaka, G., Robinson, B., Li, C.B., Fridell, R., Deminie, C., Demers, G., Yang, Z., Zadjura, L., Meanwell, N. and Colonno, R. (2003). A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci U S A 100:11013–11018.CrossRefGoogle Scholar
  44. 44.
    Zhao, Q., Ma, L., Jiang, S., Lu, H., Liu, S., He, Y., Strick, N., Neamati, N. and Debnath, A.K. (2005). Identification of N-phenyl-N’-(2,2,6,6-tetramethyl-piperidin-4-yl)-oxalamides as a new class of HIV-1 entry inhibitors that prevent gp120 binding to CD4. Virology 339:213–225.PubMedCrossRefGoogle Scholar
  45. 45.
    Madani, N., Schon, A., Princiotto, A.M., Lalonde, J.M., Courter, J.R., Soeta, T., Ng, D., Wang, L., Brower, E.T., Xiang, S.H., Do Kwon, Y., Huang, C.C., Wyatt, R., Kwong, P.D., Freire, E., Smith, A.B., 3rd and Sodroski, J. (2008). Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 16:1689–1701.PubMedCrossRefGoogle Scholar
  46. 46.
    Vita, C., Drakopoulou, E., Vizzavona, J., Rochette, S., Martin, L., Menez, A., Roumestand, C., Yang, Y.S., Ylisastigui, L., Benjouad, A. and Gluckman, J.C. (1999). Rational engineering of a miniprotein that reproduces the core of the CD4 site interacting with HIV-1 envelope glycoprotein. Proc Natl Acad Sci USA 96:13091–13096.PubMedCrossRefGoogle Scholar
  47. 47.
    Martin, L., Stricher, F., Misse, D., Sironi, F., Pugniere, M., Barthe, P., Prado-Gotor, R., Freulon, I., Magne, X., Roumestand, C., Menez, A., Lusso, P., Veas, F. and Vita, C. (2003). Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat Biotechnol 21:71–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Stricher, F., Huang, C.C., Descours, A., Duquesnoy, S., Combes, O., Decker, J.M., Kwon, Y.D., Lusso, P., Shaw, G.M., Vita, C., Kwong, P.D. and Martin, L. (2008). Combinatorial optimization of a CD4-mimetic miniprotein and cocrystal structures with HIV-1 gp120 envelope glycoprotein. J Mol Biol 382:510–524.PubMedCrossRefGoogle Scholar
  49. 49.
    Huang, C.C., Stricher, F., Martin, L., Decker, J.M., Majeed, S., Barthe, P., Hendrickson, W.A., Robinson, J., Roumestand, C., Sodroski, J., Wyatt, R., Shaw, G.M., Vita, C. and Kwong, P.D. (2005). Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure 13:755–768.PubMedCrossRefGoogle Scholar
  50. 50.
    Pantophlet, R., Wilson, I.A. and Burton, D.R. (2004). Improved design of an antigen with enhanced specificity for the broadly HIV-neutralizing antibody b12. Protein Eng Des Sel. 17:749–758.PubMedCrossRefGoogle Scholar
  51. 51.
    Pantophlet, R., Wilson, I.A. and Burton, D.R. (2003). Hyperglycosylated mutants of human immunodeficiency virus (HIV) type 1 monomeric gp120 as novel antigens for HIV vaccine design. J Virol 77:5889–5901.PubMedCrossRefGoogle Scholar
  52. 52.
    Roberts, M.J., Bentley, M.D. and Harris, J.M. (2002). Chemistry for peptide and protein PEGylation. Adv Drug Deliver Rev. 54:459–476.CrossRefGoogle Scholar
  53. 53.
    O’Riordan, C.R., Lachapelle, A., Delgado, C., Parkes, V., Wadsworth, S.C., Smith, A.E. and Francis, G.E. (1999). PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358.PubMedCrossRefGoogle Scholar
  54. 54.
    Ogris, M., Brunner, S., Schuller, S., Kircheis, R. and Wagner, E. (1999). PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 6:595–605.PubMedCrossRefGoogle Scholar
  55. 55.
    Dey, B., Svehla, K., Xu, L., Wycuff, D., Zhou, T., Voss, G., Phogat, A., Chakrabarti, B.K., Li, Y., Shaw, G.M., Kwong, P.D., Nabel, G.J., Mascola, J. and Wyatt, R.T. (2009). Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site.Submitted.Google Scholar
  56. 56.
    Lam, S.N., Acharya, P., Wyatt, R., Kwong, P.D. and Bewley, C.A. (2008). Tyrosine-sulfate isosteres of CCR5 N-terminus as tools for studying HIV-1 entry. Bioorg Med Chem:In press.Google Scholar
  57. 57.
    Carter, C.W., Jr. and Carter, C.W. (1979). Protein crystallization using incomplete factorial experiments. J Biol Chem 254:12219–12223.PubMedGoogle Scholar
  58. 58.
    Jancarik, J. and Kim, S.H. (1991). Sparse-Matrix Sampling - a Screening Method for Crystallization of Proteins. J Appl Crystallogr 24:409–411.CrossRefGoogle Scholar
  59. 59.
    Majeed, S., Ofek, G., Belachew, A., Huang, C.C., Zhou, T. and Kwong, P.D. (2003). Enhancing protein crystallization through precipitant synergy. Structure 11:1061–1070.PubMedCrossRefGoogle Scholar
  60. 60.
    Stevens, R.C. and Wilson, I.A. (2001). Tech.Sight. Industrializing structural biology. Science 293:519–520.PubMedCrossRefGoogle Scholar
  61. 61.
    Hosfield, D., Palan, J., Hilgers, M., Scheibe, D., McRee, D.E. and Stevens, R.C. (2003). A fully integrated protein crystallization platform for small-molecule drug discovery. J Struct Biol 142:207–217.PubMedCrossRefGoogle Scholar
  62. 62.
    Morris, D.W., Kim, C.Y. and McPherson, A. (1989). Automation of protein crystallization trials: use of a robot to deliver reagents to a novel multi-chamber vapor diffusion plate. Biotechniques 7:522–527.PubMedGoogle Scholar
  63. 63.
    Hendrickson, W.A. (2000). Synchrotron crystallography. Trends in Biochemical Sciences 25:637–643.PubMedCrossRefGoogle Scholar
  64. 64.
    Sakabe, N. (1991). X-Ray-Diffraction Data-Collection System for Modern Protein Crystallography with a Weissenberg Camera and an Imaging Plate Using Synchrotron Radiation. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment 303:448–463.CrossRefGoogle Scholar
  65. 65.
    Zhang, Z.Q. and Smith, D.L. (1993). Determination of Amide Hydrogen-Exchange by Mass-Spectrometry - a New Tool for Protein-Structure Elucidation. Protein Sci 2:522–531.PubMedCrossRefGoogle Scholar
  66. 66.
    Smith, D.L., Deng, Y.Z. and Zhang, Z.Q. (1997). Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32:135–146.PubMedCrossRefGoogle Scholar
  67. 67.
    Cavanagh, J., Fairbrother, W.J., Palmer 3rd, A.G., Rance, M. and Skelton, N.J. (2007). Protein NMR Spectroscopy: Principles and Practice. Elsevier, Oxford.Google Scholar
  68. 68.
    Igumenova, T.I., Frederick, K.K. and Wand, A.J. (2006). Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chemical Reviews 106:1672–1699.PubMedCrossRefGoogle Scholar
  69. 69.
    Jarymowycz, V.A. and Stone, M.J. (2006). Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chemical Reviews 106:1624–1671.PubMedCrossRefGoogle Scholar
  70. 70.
    Palmer, A.G. and Massi, F. (2006). Characterization of the Dynamics of Biomacromolecules Using Rotating-Frame Spin Relaxation NMR Spectroscopy. Chemical Reviews 106:1700–1719.PubMedCrossRefGoogle Scholar
  71. 71.
    Siggers, K., Soto, C. and Palmer, 3rd A.G. (2007). Conformational dynamics in loop swap mutants of homologous fibronectin type III domains. Biophys J. 93:2447–2456.PubMedCrossRefGoogle Scholar
  72. 72.
    Tolman, J.R. and Ruan, K. (2006). NMR Residual Dipolar Couplings as Probes of Biomolecular Dynamics. Chemical Reviews 106:1720–1736.PubMedCrossRefGoogle Scholar
  73. 73.
    Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A. and White, J. (2006). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 80:4174–4178.PubMedCrossRefGoogle Scholar
  74. 74.
    Kovacova, A., Ruttkay-Nedecky, G., Haverlik, I.K. and Janecek, S. (2002). Sequence similarities and evolutionary relationships of influenza virus A hemagglutinins. Virus Genes 24:57–63.PubMedCrossRefGoogle Scholar
  75. 75.
    Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C. and Wilson, I.A. (2006). Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus. Science 312:404–410.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang, Q., Tian, X., Chen, X. and Ma, J. (2007). Structural basis for receptor specificity of influenza B virus hemagglutinin. Proc Natl Acad Sci USA 104:16874–16879.PubMedCrossRefGoogle Scholar
  77. 77.
  78. 78.
    Bao, Y., Bolotov, P., Dernovoy, D., Kiryutin, B., Zaslavsky, L., Tatusova, T., Ostell, J. and Lipman, D. (2008). The Influenza Virus Resource at the National Center for Biotechnology Information. J. Virol. 82:596–601.PubMedCrossRefGoogle Scholar
  79. 79.
    Nichol, K.L. and Treanor, J.J. (2006). Vaccines for Seasonal and Pandemic Influenza. J Infect Dis 194:S111-S118.PubMedCrossRefGoogle Scholar
  80. 80.
    Okuno, Y., Isegawa, Y., Sasao, F. and Ueda, S. (1993). A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. J. Virol. 67:2552–2558.PubMedGoogle Scholar
  81. 81.
    Kashyap, A.K., Steel, J., Oner, A.F., Dillon, M.A., Swale, R.E., Wall, K.M., Perry, K.J., Faynboym, A., Ilhan, M., Horowitz, M., Horowitz, L., Palese, P., Bhatt, R.R. and Lerner, R.A. (2008). Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies. Proc Natl Acad Sci USA 105:5986–5991.PubMedCrossRefGoogle Scholar
  82. 82.
  83. 83.
    Thompson, W.W., Shay, D.K., Weintraub, E., Brammer, L., Cox, N., Anderson, L.J. and Fukuda, K. (2003). Mortality Associated With Influenza and Respiratory Syncytial Virus in the United States. JAMA 289:179–186.PubMedCrossRefGoogle Scholar
  84. 84.
    Kim, H.W., Canchola, J.G., Brandt, C.D., Pyles, G., Chanock, R.M., Jensen, K. and Parrott, R.H. (1969). Respiratory Syncytial Virus Disease in Infants Despite Prior Administration of Antigenic Inactivated Vaccine. Am. J. Epidemiol. 89:422–434.PubMedGoogle Scholar
  85. 85.
    Chen, L., Gorman, J.J., McKimm-Breschkin, J., Lawrence, L.J., Tulloch, P.A., Smith, B.J., Colman, P.M. and Lawrence, M.C. (2001). The Structure of the Fusion Glycoprotein of Newcastle Disease Virus Suggests a Novel Paradigm for the Molecular Mechanism of Membrane Fusion. Structure 9:255–266.PubMedCrossRefGoogle Scholar
  86. 86.
    Yin, H.-S., Paterson, R.G., Wen, X., Lamb, R.A. and Jardetzky, T.S. (2005). Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA 102:9288–9293.PubMedCrossRefGoogle Scholar
  87. 87.
    Reeves, P.J., Callewaert, N., Contreras, R. and Khorana, H.G. (2002). Structure and function in rhodopsin: High-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl. Acad. Sci U.S.A. 99:13419–13424.PubMedCrossRefGoogle Scholar
  88. 88.
    Kuhn, J.H., Radoshitzky, S.R., Guth, A.C., Warfield, K.L., Li, W., Vincent, M.J., Towner, J.S., Nichol, S.T., Bavari, S., Choe, H., Aman, M.J. and Farzan, M. (2006). Conserved Receptor-binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Common Receptor. J. Biol. Chem. 281:15951–15958.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Peter D. Kwong
    • 1
  • Gary J. Nabel
    • 2
  • Priyamvada Acharya
    • 1
  • Jeffrey C. Boyington
    • 2
  • Lei Chen
    • 1
  • Chantelle Hood
    • 2
  • Albert Kim
    • 1
  • Leopold Kong
    • 1
  • Young Do Kwon
    • 1
  • Shahzad Majeed
    • 1
  • Jason McLellan
    • 1
  • Gilad Ofek
    • 1
  • Marie Pancera
    • 1
  • Mallika Sastry
    • 1
  • Anita Changela
    • 1
  • Jonathan Stuckey
    • 1
  • Tongqing Zhou
    • 1
  1. 1.Structural Biology Section, Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, NIHBethesdaUSA
  2. 2.Virology Laboratory, Vaccine Research CenterNational Institute of Allergy and Infectious Diseases, NIHBethesdaUSA

Personalised recommendations