Skip to main content

The 1918 Influenza Pandemic: Pathology and Pathogenesis

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Part of the book series: Infectious Disease ((ID))

  • 739 Accesses

Abstract

Influenza viruses are among the most common causes of human respiratory infections [1], and among the most significant because they cause high morbidity and mortality. Influenza outbreaks have apparently occurred since at least the Middle Ages, if not since ancient times [2]. In the elderly, in infants, and in people with chronic diseases, influenza is associated with especially high mortality. In the United States, influenza results in approximately 200,000 hospitalizations and 36,000 deaths in a typical endemic season [3]. In addition to annual winter outbreaks, pandemic influenza viruses occasionally emerge [4,5], as they have every eight to 41 years, for at least several centuries. Up to 50% of the population can be infected in a single pandemic year, and the number of deaths caused by influenza can dramatically exceed what is normally expected [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright P F, Neumann G, Kawaoka Y (2005) Orthomyxoviruses. In: Fields Virology (Knipe, D. M. and Howley, P. M., eds.), 5th ed. Philadelphia: Lippincott Williams & Wilkins, pp. 1691–1740.

    Google Scholar 

  2. Hirsch A (1883) Handbook of Geographical and Historical Pathology, New Sydenham Society, London.

    Google Scholar 

  3. Thompson W W, Shay D K, Weintraub E et al (2003) Mortality associated with influenza and respiratory syncytial virus in the United States, JAMA 289:179–186.

    Article  PubMed  Google Scholar 

  4. Taubenberger J K & Morens D M (2006) 1918 Influenza: the mother of all pandemics, Emerg Infect Dis 12:15–22.

    Article  PubMed  Google Scholar 

  5. Morens D M & Fauci A S (2007) The 1918 influenza pandemic: insights for the 21st century, J Infect Dis 195:1018–1028.

    Article  PubMed  Google Scholar 

  6. Simonsen L (1999) The global impact of influenza on morbidity and mortality, Vaccine 17(Suppl. 1):S3-S10.

    Article  PubMed  Google Scholar 

  7. Morens D M, Taubenberger J K, Fauci A S (2009) The persistent legacy of the 1918 influenza virus, N Engl J Med. 361(3):225–229.

    Article  PubMed  CAS  Google Scholar 

  8. Taubenberger J K, Morens D M, Fauci A S (2007) The next influenza pandemic: can it be predicted? JAMA 297:2025–2027.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson N P & Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic, Bull Hist Med 76:105–115.

    Article  PubMed  Google Scholar 

  10. Taubenberger. K, Reid A H, Krafft A E et al (1997) Initial genetic characterization of the 1918 “Spanish” influenza virus, Science 275:1793–1796.

    Article  PubMed  CAS  Google Scholar 

  11. Taubenberger J K, Reid A H, Lourens R M et al (2005) Characterization of the 1918 influenza virus polymerase genes, Nature 437:889–893.

    Article  PubMed  CAS  Google Scholar 

  12. Rabadan R, Levine A J, Robins H (2006) Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes, J Virol 80:11887–11891.

    Article  PubMed  CAS  Google Scholar 

  13. Travis W D, Colby T V, Koss M N, (2002) Non-Neoplastic Disorders of the Lower Respiratory Tract, American Registry of Pathology and the Armed Forces Institute of Pathology, Washington, D.C.

    Google Scholar 

  14. Taubenberger J K & Layne S P (2001) Diagnosis of influenza virus: coming to grips with the molecular era, Mol Diagn 6:291–305.

    PubMed  CAS  Google Scholar 

  15. Palese P, Tumpey T M, Garcia-Sastre A (2006) What can we learn from reconstructing the extinct 1918 pandemic influenza virus? Immunity 24:121–124.

    Article  PubMed  CAS  Google Scholar 

  16. Tumpey T M, Basler C F, Aguilar P V et al (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus, Science 310:77–80.

    Article  PubMed  CAS  Google Scholar 

  17. Morens D M, Taubenberger J K, Fauci A S (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness, J Infect Dis 198:962–970.

    Article  PubMed  Google Scholar 

  18. Stevens J, Blixt O, Glaser L et al (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities, J Mol Biol 355: 1143–1155.

    Article  PubMed  CAS  Google Scholar 

  19. Logan W (1921) A study of the pneumococcus and streptococcus groups in their relation to influenza, Edinburgh Med J 26:294–312.

    Google Scholar 

  20. Bogart D B, Liu C, Ruth W E et al (1975) Rapid diagnosis of primary influenza pneumonia, Chest 68:513–517.

    Article  PubMed  CAS  Google Scholar 

  21. Guarner J, Paddock C D, Shieh W J et al (2006) Histopathologic and immunohistochemical features of fatal influenza virus infection in children during the 2003–2004 season, Clin Infect Dis 43:132–140.

    Article  PubMed  Google Scholar 

  22. Opie E L, Blake F G, Small J C et al (1921) Epidemic Respiratory Disease: The Pneumonias and Other Infections of the Respiratory Tract Accompanying Influenza and Measles, C. V. Mosby Co., St. Louis, MO.

    Google Scholar 

  23. Hers J (1955) The Histopathology of the Respiratory Tract in Human Influenza, H. E. Stenfert, Leiden.

    Google Scholar 

  24. Brundage J F (2006) Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness, Lancet Infect Dis 6:303–312.

    Article  PubMed  Google Scholar 

  25. Memoli M J, Morens D M, Taubenberger J K (2008) Pandemic and seasonal influenza: therapeutic challenges, Drug Discov Today 13:590–595.

    Article  PubMed  CAS  Google Scholar 

  26. Fodor E, Devenish L, Engelhardt O G et al (1999) Rescue of influenza A virus from recombinant DNA, J Virol 73:9679–9682.

    PubMed  CAS  Google Scholar 

  27. Kash J C, Basler C F, Garcia-Sastre A et al (2004) Global host immune response: pathogenesis and transcriptional profiling of type A influenza viruses expressing the hemagglutinin and neuraminidase genes from the 1918 pandemic virus, J Virol 78:9499–9511.

    Article  PubMed  CAS  Google Scholar 

  28. Kash J C, Tumpey T M, Proll S C et al (2006) Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus, Nature 443: 578–581.

    PubMed  CAS  Google Scholar 

  29. Taubenberger J K (2006) Influenza hemagglutinin attachment to target cells: ‘birds do it, we do it…’ Future Virol 1:415–418.

    Article  PubMed  Google Scholar 

  30. Kuiken T & Taubenberger J K (2008) The pathology of human influenza revisited, Vaccine 26:D59-D66.

    Article  PubMed  Google Scholar 

  31. Korteweg C & Gu J (2008) Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans, Am J Pathol 172:1155–1170.

    Article  PubMed  CAS  Google Scholar 

  32. Stevens J, Blixt O, Tumpey T M et al (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus, Science 312:404–410.

    Article  PubMed  CAS  Google Scholar 

  33. Reid A H, Janczewski T A, Lourens R M et al (2003) 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants, Emerg Infect Dis 9:1249–1253.

    Article  PubMed  Google Scholar 

  34. Stevens J, Corper A L, Basler C F et al (2004) Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus, Science 303:1866–1870.

    Article  PubMed  CAS  Google Scholar 

  35. Yamada S, Suzuki Y, Suzuki T et al (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors, Nature 444:378–382.

    Article  PubMed  CAS  Google Scholar 

  36. Tumpey T M, Maines T R, N Van Hoeven et al (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission, Science 315:655–659.

    Article  PubMed  CAS  Google Scholar 

  37. Qi L, Kash J C, Dugan V G et al (2009) Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis in mice, J. Virol 11:11.

    Google Scholar 

  38. Tumpey T M, Garcia-Sastre A, Mikulasova A et al (2002) Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus, Proc Natl Acad Sci USA 99:13849–13854.

    Article  PubMed  CAS  Google Scholar 

  39. Kobasa D, Takada A, Shinya K et al (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus, Nature 431:703–707.

    Article  PubMed  CAS  Google Scholar 

  40. Chandrasekaran A, Srinivasan A, Raman R et al (2008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin, Nat Biotechnol 26: 107–113.

    Article  PubMed  CAS  Google Scholar 

  41. Srinivasan A, Viswanathan K, Raman R et al (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses, Proc Natl Acad Sci USA 105:2800–2805.

    Article  PubMed  CAS  Google Scholar 

  42. Swayne D E (2007) Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds, Avian Dis 51:242–249.

    Article  PubMed  Google Scholar 

  43. Conenello G M, Zamarin D, Perrone L A et al (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence, PLoS Pathog 3:1414–1421.

    Article  PubMed  CAS  Google Scholar 

  44. Kobasa D, Jones S M, Shinya K et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus, Nature 445:319–323.

    Article  PubMed  CAS  Google Scholar 

  45. Homeland Security Council (2006) National Strategy for Pandemic Influenza Implementation Plan, The White HouseHouseH. Washington, DC.

    Google Scholar 

Download references

Acknowledgements.

We thank all of our collaborators. This research was supported by the Intramural Research Program of the NIAID and the NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kash, J.C., Taubenberger, J.K. (2010). The 1918 Influenza Pandemic: Pathology and Pathogenesis. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_36

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics