Skip to main content

Making Friends in Out-of-the- Way Places: How Cells of the Immune System Get Together and How They Conduct Their Business as Revealed by Intravital Imaging

  • Chapter
  • First Online:
National Institute of Allergy and Infectious Diseases, NIH

Abstract

During embryonic and early post-natal development, many cells migrate over substantial distances, changing their spatial relationship to other cells of the same or distinct differentiation state and engaging in cross-talk that helps establish the tissue and organ structure of the adult. However, once this body plan has been established, such active migration and positional exchange is rare in the undiseased state. Even in epithelial tissues that undergo constant renewal, there is an absence of free cell movement; rather, underlying cells replicate and push the older cells to the surface (skin) or apex (villus) where they are sloughed, having followed a fixed path of movement from birth to death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. von Andria U H & Mackay C R (2000). T-cell function and migration. Two sides of the same coin, N Engl J Med, 343, 1020–1034

    Google Scholar 

  2. Bajénoff M & Germain R N (2007). Seeing is believing: a focus on the contribution of microscopic imaging to our understanding of immune system function, Eur J Immunol, 37(S1), S18–S33

    PubMed  Google Scholar 

  3. Sumen C, Mempel T R, Mazo I B & et al (2004). Intravital microscopy: visualizing immunity in context, Immunity, 21, 315–329

    PubMed  CAS  Google Scholar 

  4. Cahalan M D, Parker I, Wei S H & et al (2002). Two-photon tissue imaging: seeing the immune system in a fresh light, Nat Rev Immunol, 2, 872–880

    PubMed  CAS  Google Scholar 

  5. Robey E A & Bousso P (2003). Visualizing thymocyte motility using 2-photon microscopy, Immunol Rev, 195, 51–57

    PubMed  Google Scholar 

  6. Mempel T R, Scimone M L, Mora J R & et al (what’s the year)In vivo imaging of leukocyte trafficking in blood vessels and tissues, Curr Opin Immunol, 16, 406–417

    Google Scholar 

  7. Bousso P & Robey E A (2004). Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy, Immunity, 21, 349–355

    PubMed  CAS  Google Scholar 

  8. Huang A Y, Qi H & Germain R N (2004). Illuminating the landscape of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues, Immunity, 21, 331–339

    PubMed  CAS  Google Scholar 

  9. Halin C, Rodrigo Mora J, Sumen C & et al (2005). In vivo imaging of lymphocyte trafficking, Annu. Rev. Cell Dev Biol, 21, 581–603

    PubMed  CAS  Google Scholar 

  10. Germain R N, Castellino F, Chieppa M & et al (what’s the year) An extended vision for dynamic high-resolution intravital immune imaging, Semin Immunol, 17, 431–441

    Google Scholar 

  11. Cahalan M D & Parker I (2006). Imaging the choreography of lymphocyte trafficking and the immune response, Curr Opin Immunol, 18, 476–482

    PubMed  CAS  Google Scholar 

  12. Germain R N, Miller M J, Dustin M L & et al (2006). (2006). Dynamic imaging of the immune system: progress, pitfalls and promise, Nat Rev Immunol, 6, 497–507

    PubMed  CAS  Google Scholar 

  13. Nguyen Q T, Callamaras N, Hsieh C & et al (2001). Construction of a two-photon microscope for video-rate Ca(2+) imaging, Cell Calcium, 30, 383–393

    PubMed  CAS  Google Scholar 

  14. Miller M J, Wei S H, Cahalan M D & et al (2003). Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy, Proc Natl Acad Sci USA, 100, 2604–2609

    PubMed  CAS  Google Scholar 

  15. Mempel T R, Henrickson S E & von Andrian U H (2004). T-cell priming by dendritic cells in LNs occurs in three distinct phases, Nature, 427, 154–159

    PubMed  CAS  Google Scholar 

  16. Geissmann F, Cameron T O, Sidobre S & et al (2005). Intravascular immune surveillance by CXCR6+NKT cells patrolling liver sinusoids, PLoS Biol, 3, e113

    PubMed  Google Scholar 

  17. Stamper H B Jr & Woodruff JJ (1976). Lymphocyte homing into LNs: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules, J Exp Med, 144, 828–833

    PubMed  Google Scholar 

  18. Warnock R A, Askari S, Butcher E C & et al (1998). Molecular mechanisms of lymphocyte homing to peripheral LNs, J Exp Med, 187, 205–216

    PubMed  CAS  Google Scholar 

  19. Butcher E C, Williams M, Youngman K & et al (1999). Lymphocyte trafficking and regional immunity, Adv Immunol, 72, 209–253

    PubMed  CAS  Google Scholar 

  20. Miyasaka, M. and Tanaka, T. (2004) Lymphocyte trafficking across high endothelial venules: dogmas and enigmas, Nat. Rev. Immunol., 4, 360–370.

    PubMed  CAS  Google Scholar 

  21. Bajénoff M., Egen J G, Koo L Y & et al (2006). Stromal cell networks regulate lymphocyte entry, migration, and territoriality in LNs, Immunity, 25, 989–1001

    PubMed  Google Scholar 

  22. Miller M J, Wei S H, Parker I & et al (2002). Two-photon imaging of lymphocyte motility and antigen response in intact LN, Science, 296, 1869–1873

    PubMed  CAS  Google Scholar 

  23. Bousso P & Robey E (2003). Dynamics of CD8+ T cell priming by dendritic cells in intact LNs, Nat Immunol, 4, 579–585

    PubMed  CAS  Google Scholar 

  24. Miller M J, Hejazi A S, Wei S H & et al (2004). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the LN, Proc Natl Acad Sci USA, 101, 998–1003

    PubMed  CAS  Google Scholar 

  25. Miller M J, Safrina O, Parker I & et al (2004). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in LNs, J Exp Med, 200, 847–856

    PubMed  CAS  Google Scholar 

  26. Hugues S, Fetler L, Bonifaz L & et al (2004). Distinct T cell dynamics in LNs during the induction of tolerance and immunity, Nat Immunol, 5, 1235–1242

    PubMed  CAS  Google Scholar 

  27. Shakhar G, Lindquist R L, Skokos D & et al (2005). =Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo, Nat Immunol, 6, 707–714

    PubMed  CAS  Google Scholar 

  28. Gretz J E, Anderson A O & Shaw S (1997). Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the LN cortex, Immunol Rev, 156, 11–24

    PubMed  CAS  Google Scholar 

  29. Katakai T, Hara T, Lee J H & et al (2004). A novel reticular stromal structure in LN cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells, Int Immunol, 16, 1133–1142

    PubMed  CAS  Google Scholar 

  30. Katakai T, Hara T, Sugai M, Gonda H & et al (2004). LN fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes, J Exp Med, 200, 783–795

    PubMed  CAS  Google Scholar 

  31. Nolte M A, Belien J A, Schadee-Eestermans I & et al (2003). A conduit system distributes chemokines and small blood-borne molecules through the splenic white pulp, J Exp Med, 198, 505–512

    PubMed  CAS  Google Scholar 

  32. Sixt M, Kanazawa N, Selg M & et al (2005). The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the LN, Immunity, 22, 19–29

    PubMed  CAS  Google Scholar 

  33. Lindquist, R, L., Shakhar, G., Dudziak, D & et al (2004). Visualizing dendritic cell networks in vivo, Nat Immunol, 5, 1243–1250

    PubMed  CAS  Google Scholar 

  34. Itano A A, McSorley S J, Reinhardt R L & et al (2003). Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity, Immunity, 19, 47–57

    PubMed  CAS  Google Scholar 

  35. Bajénoff M, Granjeaud S & Guerder S (2003). The strategy of T cell antigen-presenting cell encounter in antigen-draining LNs revealed by imaging of initial T cell activation, J Exp Med, 198, 715–724

    PubMed  Google Scholar 

  36. Stoll S, Delon J, Brotz T M & et al (2002). Dynamic imaging of T cell-dendritic cell interactions in LNs, Science, 296, 1873–1876

    PubMed  Google Scholar 

  37. Bajénoff M, Wurtz O & Guerder S (2002). Repeated antigen exposure is necessary for the differentiation, but not the initial proliferation, of naive CD4(+) T cells, J Immunol, 168, 1723–1729

    PubMed  Google Scholar 

  38. Celli S, Garcia Z & Bousso P (2005). CD4 T cells integrate signals delivered during successive DC encounters in vivo, J Exp Med, 202, 1271–1278

    PubMed  CAS  Google Scholar 

  39. Bajénoff M, Egen J G, Qi H & et al (2007). Highways, byways and breadcrumbs: directing lymphocyte traffic in the LN, Trends Immunol, 28, 346–352

    PubMed  Google Scholar 

  40. Asperti-Boursin F, Real E, Bismuth G & et al (2007). CCR7 ligands control basal T cell motility within LN slices in a phosphoinositide 3-kinase-independent manner, J Exp Med, 204, 1167–1179

    PubMed  CAS  Google Scholar 

  41. Okada T & Cyster J G (2007). CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the LN, J Immunol, 178, 2973–2978

    PubMed  CAS  Google Scholar 

  42. Worbs T, Mempel T R, Bolter J & et al (2007). CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo, J Exp Med, 204, 489–495

    PubMed  CAS  Google Scholar 

  43. Kehrl J H (2006). Chemoattractant receptor signaling and the control of lymphocyte migration, Immunol Res, 34, 211–227

    PubMed  CAS  Google Scholar 

  44. Luther S A, Tang H L, Hyman P L & et al (2000). Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse, Proc Natl Acad Sci USA, 97, 12694–12699

    PubMed  CAS  Google Scholar 

  45. Mueller S N & et al (2007). Regulation of homeostatic chemokine expression and cell trafficking during immune responses, Science, 317, 670–674

    PubMed  CAS  Google Scholar 

  46. Moser B, Schaerli P & Loetscher P (2002). CXCR5(+) T cells: follicular homing takes center stage in T-helper-cell responses, Trends Immunol, 23, 250–254

    PubMed  CAS  Google Scholar 

  47. Vinuesa C G, Tangye S G, Moser B & et al (2005). Follicular B helper T cells in antibody responses and autoimmunity, Nat Rev Immunol, 5, 853–865

    PubMed  CAS  Google Scholar 

  48. Ansel K M & et al (2000). A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, 406, 309–314

    PubMed  CAS  Google Scholar 

  49. Reif K & et al (2002). Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position, Nature, 416, 94–99

    PubMed  Google Scholar 

  50. Arnold C N, Campbell D J, Lipp M & et al (2007). The germinal center response is impaired in the absence of T cell-expressed CXCR5, Eur J Immunol, 37, 100–109

    PubMed  CAS  Google Scholar 

  51. Allen C D, Okada T, Tang H L & et al (2007). Imaging of germinal center selection events during affinity maturation, Science, 315, 528–531

    PubMed  CAS  Google Scholar 

  52. Schwickert T A & et al (2007). In vivo imaging of germinal centres reveals a dynamic open structure, Nature, 446, 83–87

    PubMed  CAS  Google Scholar 

  53. Hauser A E & et al (2007). Definition of germinal-center B cell migration in vivo reveals predominant intrazonal circulation patterns, Immunity, 26, 655–667

    PubMed  CAS  Google Scholar 

  54. Moon J J & et al (2007). Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude, Immunity, 27, 203–213

    PubMed  CAS  Google Scholar 

  55. Condon C, Watkins S C, Celluzzi C M & et al (1996). DNA-based immunization by in vivo transfection of dendritic cells, Nat Med, 2, 1122–1128

    PubMed  CAS  Google Scholar 

  56. Porgador A & et al (1998). Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization, J Exp Med, 188, 1075–1082

    PubMed  CAS  Google Scholar 

  57. Garg S & et al (2003). Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo, Nat Immunol, 4, 907–912

    PubMed  CAS  Google Scholar 

  58. Inaba K, Metlay J P, Crowley M T & et al (1990). Dendritic cells as antigen presenting cells in vivo, Int Rev Immunol, 6, 197–206

    PubMed  CAS  Google Scholar 

  59. Cohn M & Langman R E (1990). The protecton: the unit of humoral immunity selected by evolution, Immunol Rev, 115, 11–147

    PubMed  CAS  Google Scholar 

  60. Castellino F & Germain R N (2006). Cooperation between CD4+ and CD8+ T cells: when, where, and how, Annu Rev Immunol, 24, 519–540

    PubMed  CAS  Google Scholar 

  61. Lanzavecchia A (1998). Immunology: licence to kill, Nature, 393, 413–414

    PubMed  CAS  Google Scholar 

  62. Luster A D (2002). The role of chemokines in linking innate and adaptive immunity, Curr Opin Immunol, 14, 129–135

    PubMed  CAS  Google Scholar 

  63. Ebert L M, Schaerli P & Moser B (2005). Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues, Mol Immunol, 42, 799–809

    PubMed  CAS  Google Scholar 

  64. Castellino F & et al (2006). Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell–dendritic cell interaction, Nature, 440, 890–895

    PubMed  CAS  Google Scholar 

  65. Barnden M J, Allison J, Heath W R & et al (1998). Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements, Immunol. Cell Biol, 76, 34–40

    PubMed  CAS  Google Scholar 

  66. Castellino F & Germain R N (2007). Chemokine-guided CD4+ T cell help enhances generation of IL-6Rαhighil-7Rαhigh prememory CD8+ T cells, J Immunol, 178, 778–787

    PubMed  CAS  Google Scholar 

  67. Wei S H, Parker I, Miller M J & et al (2003). A stochastic view of lymphocyte motility and trafficking within the LN, Immunol Rev, 195, 136–159

    PubMed  CAS  Google Scholar 

  68. Catron D M, Itano A A, Pape K A & et al (2004). Visualizing the first 50 hr of the primary immune response to a soluble antigen, Immunity, 21, 341–347

    PubMed  CAS  Google Scholar 

  69. Soderberg K A & et al (2005). Innate control of adaptive immunity via remodeling of LN feed arteriole, Proc Natl Acad Sci USA, 102, 16315–16320

    PubMed  CAS  Google Scholar 

  70. Mempel T R, Junt T & von Andrian U H (2006). Rulers over randomness: stroma cells guide lymphocyte migration in LNs, Immunity, 25, 867–869

    PubMed  CAS  Google Scholar 

  71. Garcia Z & et al (2007). Competition for antigen determines the stability of T cell–dendritic cell interactions during clonal expansion, Proc Natl Acad Sci USA, 104, 4553–4558

    PubMed  CAS  Google Scholar 

  72. Delon J, Stoll S & Germain R N (2002). Imaging of T-cell interactions with antigen presenting cells in culture and in intact lymphoid tissue, Immunol Rev, 189, 51–63

    PubMed  CAS  Google Scholar 

  73. Henrickson S & von Andrian U H (2007). Single-cell dynamics of T-cell priming, Curr Opin Immunol, 19, 249–258

    PubMed  CAS  Google Scholar 

  74. Altan-Bonnet G & Germain R N (2005). Modeling T cell antigen discrimination based on feedback control of digital ERK responses, PLoS Biol, 3, e356

    PubMed  Google Scholar 

  75. Pape K A, Catron D M, Itano A A & et al (2007). The humoral immune response is initiated in LNs by B cells that acquire soluble antigen directly in the follicles, Immunity, 26, 491–502

    PubMed  CAS  Google Scholar 

  76. Gretz J E, Norbury C C, Anderson A O & et al (2000). Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in LN cortex, J Exp Med, 192, 1425–1440

    PubMed  CAS  Google Scholar 

  77. Wykes M, Pombo A, Jenkins C & et al (1998). Dendritic cells interact directly with naive B lymphocytes to transfer antigen and initiate class switching in a primary T-dependent response, J Immunol, 161, 1313–1319

    PubMed  CAS  Google Scholar 

  78. Berney C & et al (1999). A member of the dendritic cell family that enters B cell follicles and stimulates primary antibody responses identified by a mannose receptor fusion protein, J Exp Med, 190, 851–860

    PubMed  CAS  Google Scholar 

  79. Ludewig B & et al (2000). Induction of optimal anti-viral neutralizing B cell responses by dendritic cells requires transport and release of virus particles in secondary lymphoid organs, Eur J Immunol, 30, 185–196

    PubMed  CAS  Google Scholar 

  80. Colino J, Shen Y & Snapper C M (2002). Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms, J Exp Med, 195, 1–13

    PubMed  CAS  Google Scholar 

  81. Wang H, Griffiths M N, Burton D R & et al (2000). Rapid antibody responses by low-dose, single-step, dendritic cell-targeted immunization, Proc Natl Acad Sci USA, 97, 847–852

    PubMed  CAS  Google Scholar 

  82. Trombetta E S, Ebersold M, Garrett W & et al (2003). Activation of lysosomal function during dendritic cell maturation, Science, 299, 1400–1403

    PubMed  CAS  Google Scholar 

  83. Qi H, Egen J G, Huang A Y & Germain R N (2006). Extrafollicular activation of LN B cells by antigen-bearing dendritic cells, Science, 312, 1672–1676

    PubMed  CAS  Google Scholar 

  84. Goodnow C C & et al (1995). Self-tolerance checkpoints in B lymphocyte development, Adv Immunol, 59, 279–368

    PubMed  CAS  Google Scholar 

  85. Chow A, Toomre D, Garrett W & et al (2002). Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane, Nature, 418, 988–994

    PubMed  CAS  Google Scholar 

  86. Goodnow, C. C., et al. (1988) Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice, Nature, 334, 676–682.

    PubMed  CAS  Google Scholar 

  87. Negulescu, P. A., Krasieva, T. B., Khan & et al (1996). Polarity of T cell shape, motility, and sensitivity to antigen, Immunity, 4, 421–430

    PubMed  CAS  Google Scholar 

  88. Phan T G, Grigorova I, Okada T & et al (2007). Subcapsular encounter and complement-dependent transport of immune complexes by LN B cells, Nat Immunol, 8, 992–1000

    PubMed  CAS  Google Scholar 

  89. Carrasco Y R & Batista F D (2007). B cells acquire particulate antigen in a macrophage-rich area at the boundary between the follicle and the subcapsular sinus of the LN, Immunity, 27, 160–171

    PubMed  CAS  Google Scholar 

  90. Garside P & et al (1998). Visualization of specific B and T lymphocyte interactions in the LN, Science, 281, 96–99

    PubMed  CAS  Google Scholar 

  91. Cariappa A & et al (2005). Perisinusoidal B cells in the bone marrow participate in T-independent responses to blood-borne microbes, Immunity, 23, 397–407

    PubMed  CAS  Google Scholar 

  92. Cavanagh L L & et al (2005). Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells, Nat Immunol, 6, 1029–1037

    PubMed  CAS  Google Scholar 

  93. Mrass P & et al (2006). Random migration precedes stable target cell interactions of tumor-infiltrating T cells, J Exp Med, 203, 2749–2761

    PubMed  CAS  Google Scholar 

  94. Boissonnas A, Fetler L, Zeelenberg I S, Hugues S & et al (2007). (2007). In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor, J Exp Med, 204, 345–356

    PubMed  CAS  Google Scholar 

  95. Kawakami N & et al (2005). Live imaging of effector cell trafficking and autoantigen recognition within the unfolding autoimmune encephalomyelitis lesion, J Exp Med, 201, 1805–1814

    PubMed  CAS  Google Scholar 

  96. Rescigno M & Chieppa M (2005). Gut-level decisions in peace and war, Nat Med, 11, 254–255

    PubMed  CAS  Google Scholar 

  97. Macpherson A J, Geuking M B & McCoy K D (2005). Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria, Immunology, 115, 153–162

    PubMed  CAS  Google Scholar 

  98. Macpherson A J & et al (2000). A primitive T cell-independent mechanism of intestinal mucosal Iga responses to commensal bacteria, Science, 288, 2222–2226

    PubMed  CAS  Google Scholar 

  99. Macpherson A J, Hunziker L, McCoy K & et al (2001). IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms, Microbes Infect, 3, 1021–1035

    PubMed  CAS  Google Scholar 

  100. Sato A & Iwasaki A (2005). Peyer’s patch dendritic cells as regulators of mucosal adaptive immunity, Cell Mol Life Sci, 62, 1333–1338

    PubMed  CAS  Google Scholar 

  101. Liu L M & MacPherson G G (1993). Antigen acquisition by dendritic cells: intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo, J Exp Med, 177, 1299–1307

    PubMed  CAS  Google Scholar 

  102. Rescigno M & et al (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria, Nat Immunol, 2, 361–367

    PubMed  CAS  Google Scholar 

  103. Niess J H & et al (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance, Science, 307, 254–258

    PubMed  CAS  Google Scholar 

  104. Vallon-Eberhard A, Landsman L, Yogev N & et al (2006). Transepithelial pathogen uptake into the small intestinal lamina propria, J Immunol, 176, 2465–2469

    PubMed  CAS  Google Scholar 

  105. Jung S & et al (2002). In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens, Immunity, 17, 211–220

    PubMed  CAS  Google Scholar 

  106. Boes M & et al (2002). T-cell engagement of dendritic cells rapidly rearranges MHC class II transport, Nature, 418, 983–988

    PubMed  CAS  Google Scholar 

  107. Chieppa M, Rescigno M, Huang A Y & et al (2006). Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement, J Exp Med, 203, 2841–2852

    PubMed  CAS  Google Scholar 

  108. Uematsu S & et al (2006). Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells, Nat Immunol, 7, 868–874

    PubMed  CAS  Google Scholar 

  109. Ortega-Cava C F & et al (2006). Epithelial toll-like receptor 5 is constitutively localized in the mouse cecum and exhibits distinctive down-regulation during experimental colitis, Clin Vaccine Immunol, 13, 132–138

    PubMed  CAS  Google Scholar 

  110. Abadie V & et al (2005). Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining LNs, Blood, 106, 1843–1850

    PubMed  CAS  Google Scholar 

  111. Faust N, Varas F, Kelly L M, Heck S & et al (2000). Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages, Blood, 96, 719–726

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank other members of the LBS for their help in the conduct of some of the studies described here, especially Ina Ifrim for her efforts as we introduced 2P instruments into our research program. We also thank our external collaborators on studies mentioned here (especially Nicolas Glaichenhaus, Maria Rescigno, Alan Sher and Antonio Rothfuchs) for working with us to develop the stories we have described in this review. Thanks also to Owen Schwartz of the Biological Imaging Facility of the RTB, NIAID, NIH for his help, advice, and assistance in some of the studies from our laboratory, to Thorsten Mempel and Uli von Andrian for their generous assistance when we were developing the 2P intravital imaging methods used in our laboratory, and to the many colleagues who have created and generously made available genetically modified mouse strains critical to our investigations. This research was supported by the Intramural Research Program of NIAID, NIH.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Germain, R.N. et al. (2010). Making Friends in Out-of-the- Way Places: How Cells of the Immune System Get Together and How They Conduct Their Business as Revealed by Intravital Imaging. In: Georgiev, V. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-512-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-512-5_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-511-8

  • Online ISBN: 978-1-60761-512-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics