Skip to main content

Transcriptional Mediators of Cellular Hormesis

  • Chapter
  • First Online:
Hormesis

Abstract

Hormesis is the beneficial adaptive response of cells and organisms to acute subtoxic doses of certain types of environmental stressors (e.g., heat, oxidation, environmental toxins). Repetitive hormesis through routine exercise, calorie restriction, or ingestion of low levels of phytotoxins with the diet can stimulate cellular catabolic turnover of damaged molecules and increase protective mechanisms. The net result is an improved ability of the organism to better cope with noxious insults (i.e., preconditioning). Key to the benefits of hormesis are (1) the intensity of the stress/toxin, which needs to be enough to stimulate an effective response without causing permanent damage (i.e., subtoxic) and (2) the duration of the exposure, which needs to be limited (acute) to allow repair and recovery. Fundamental to the hormetic adaptive response is gene expression regulation. Although different stressors elicit unique signature responses, the comparison of prototypical hormetic inducers has highlighted the role played by a few transcription factor families. The periodic pulsatile activation of Nrf2, NF-κB, HSF, and FOXO has been found to be essential to obtaining the beneficial effects of various hormetic stimuli in different biological models. This chapter discusses molecular mechanisms and gene targets for these transcription factor families in the hormetic adaptive context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An JH, Blackwell TK (2003) SKN1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17: 1882–1893.

    CAS  PubMed  Google Scholar 

  • Anckar J, Hietakangas V, Denessiouk K et al. (2006) Inhibition of DNA binding by differential sumoylation of heat shock factors. Mol Cell Biol 26: 955–964.

    CAS  PubMed  Google Scholar 

  • Alessio HM, Goldfarb AH, Cutler RG (1988) MDA content in fast and slow-twitch skeletal muscle with intensity of exercise in a rat. Am J Physiol 255: C874–C877.

    CAS  PubMed  Google Scholar 

  • Atherton PJ, Higginson JM, Singh J et al. (2004) Concentration of signal transduction protein exercise and insulin responses in rat extensor digitorum longus and soleus muscles. Mol Cell Biochem 261: 111–116.

    CAS  PubMed  Google Scholar 

  • Baeuerle PA (1991) The inducible transcription factor NF-κB: regulation by distinct protein subunits. Biochem Biophys Acta 1072: 63–80.

    CAS  PubMed  Google Scholar 

  • Bahn YS, Xue C, Idnum A et al. (2007) Sensing the environment: lesson from fungi. Nat Rev Microbiol 5: 57–69.

    CAS  PubMed  Google Scholar 

  • Biamonti G (2004) Nuclear stress bodies: a heterochromatin affair?. Nat Rev Mol Cell Biol 5: 493–498.

    CAS  PubMed  Google Scholar 

  • Biggs WH, Meisenhelder J, Hunter T et al. (1999) Protein kinase B/AKT-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–7426.

    CAS  PubMed  Google Scholar 

  • Bishop NA, Guarente L (2007a) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8: 835–844.

    Google Scholar 

  • Bishop NA, Guarente L (2007b) Two neurons mediate diet-restriction-induced longevity in C elegans. Nature 447: 545–549.

    Google Scholar 

  • Bluher M, Khan BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299: 572–574.

    PubMed  Google Scholar 

  • Boura E, Silhan J, Herman P et al. (2007) Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor FoxO4 are important for DNA binding. J Biol Chem 282: 8265–8275.

    CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ et al. (1999) AKT promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96: 857–868.

    CAS  PubMed  Google Scholar 

  • Brunet A, Kanai F, Stehn J et al. (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156: 817–828.

    CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF et al. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    CAS  PubMed  Google Scholar 

  • Burgering BM, Kops GJ (2002) Cell cycle and death control: long live forkheads. Trends Biochem Sci 27: 352–360.

    CAS  PubMed  Google Scholar 

  • Cai D, Frantz JD, Tawa NE et al. (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119: 285–298.

    CAS  PubMed  Google Scholar 

  • Cameron AR, Anton S, Melville L et al. (2008) Black tea polyphenols mimic insulin/insulin-like growth factor-1 signaling to the longevity factor FOXO1a. Aging Cell 7: 69–77.

    CAS  PubMed  Google Scholar 

  • Chan K, Han XD, Kan YW (2001) An important function of nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci USA 98: 4611–4616.

    CAS  PubMed  Google Scholar 

  • Cho HY, Jedlicka AE, Reddy SP et al. (2002) Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26: 175–182.

    CAS  PubMed  Google Scholar 

  • Cho HY, Reddy SP, Debiase A et al. (2005) Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med 38: 325–343.

    CAS  PubMed  Google Scholar 

  • Chu B, Zhong R, Soncin F et al. (1998) Transcriptional activity of heat shock factor 1 at 37C is repressed through phosphorylation of two distinct residues by glycogen synthase kinase 3 and protein kinase Cα and Cζ. J Biol Chem 273: 18640–18646.

    CAS  PubMed  Google Scholar 

  • Clark KL, Halay ED, Lai E et al. (1993) Co-crystal structure of the HNF-3/fork head DNA recognition motif resembles histone H5. Nature 364: 412–420.

    CAS  PubMed  Google Scholar 

  • Clos J, Westwood JT, Becker PB et al. (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63: 1085–1097.

    CAS  PubMed  Google Scholar 

  • Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30: 464–472.

    CAS  PubMed  Google Scholar 

  • Daitoku H, Hatta M, Matsuzaki H et al. (2004) Silent information regulator 2 potentiates FoXo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 101: 10042–10047.

    CAS  PubMed  Google Scholar 

  • Davies KJ, Quintanilha AT, Brooks GA et al. (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107: 1198–1205.

    CAS  PubMed  Google Scholar 

  • Durham WJ, Li YP, Genken E et al. (2004) Fatiguing exercise reduces DNA binding activity of NF-κB in skeletal muscle nuclei. J Appl Physiol 97: 1740–1745.

    CAS  PubMed  Google Scholar 

  • Denegri M, Moralli D, Rocchi M et al. (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13: 2069–2079.

    CAS  PubMed  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al. (2002) Direct evidence that sulphydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99: 11908–11913.

    CAS  PubMed  Google Scholar 

  • Dowell P, Otto TC, Adi S et al. (2003) Convergence of peroxisome proliferator-activated receptor gamma and FOXO1 signaling pathways. J Biol Chem 278: 45485–45491.

    CAS  PubMed  Google Scholar 

  • Essers MA, Weijzen S, de Vries-Smits AM et al. (2004) FOXO transcription factor activation by oxidative stress mediated by small GTPase ral and JNK. EMBO J 23: 4802–4812.

    CAS  PubMed  Google Scholar 

  • Essers MA, de Vries-Smits LM, Barker N et al. (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308: 1181–1184.

    CAS  PubMed  Google Scholar 

  • Fujimoto M, Izu H, Seki K et al. (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23: 4297–4306.

    CAS  PubMed  Google Scholar 

  • Furuyama T, Nakazawa T, Nakano I et al. (2000) Identification of the differential distribution patterns of mRNA and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349: 629–634.

    CAS  PubMed  Google Scholar 

  • Giannakou ME, Goss M, Partridge L (2008) Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7: 187–198.

    CAS  PubMed  Google Scholar 

  • Gilley J, Coffer PJ, Ham J (2003) FOXO transcription factors directly activate Bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162: 613–622.

    CAS  PubMed  Google Scholar 

  • Gilmore TD (2008) http://www.nfkb.org.

  • Glauser DA, Schlegel W (2007) The emerging role of FOXO transcription factors in pancreatic β cells. J Endocrinol 193: 195–207.

    CAS  PubMed  Google Scholar 

  • Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109: S81–S96.

    CAS  PubMed  Google Scholar 

  • Gomez-Cabrera MC, Borras C, Pallardó FV et al. (2005) Decreasing xanthine oxidase mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567: 113–120.

    CAS  PubMed  Google Scholar 

  • Gomez-Cabrera MC, Martinez A, Santangelo G et al. (2006) Oxidative stress in marathon runners: interest of antioxidant supplementation. Br J Nutr 96: S31–S33.

    CAS  PubMed  Google Scholar 

  • Green M, Schultz TJ, Sullivan EK et al. (1995) A heat shock–responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 15: 3354–3362.

    CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410–7425.

    CAS  PubMed  Google Scholar 

  • Gross SR, Kinzy TG (2005) Translation elongation factor 1a is essential for regulation of the actin cytoskeleton and cell morphology. Nat Struct Mol Biol 12: 772–778.

    CAS  PubMed  Google Scholar 

  • Gross DN, Van den Heuvel AP, Birnbaum MJ (2008) The role of FOXO in the regulation of metabolism. Oncogene 27: 2320–2336.

    CAS  PubMed  Google Scholar 

  • Guettouche T, Boellmann F, Lane WS et al. (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing stress. BMC Biochem 6: 4.

    PubMed  Google Scholar 

  • Han JM, Lee YJ, Lee SY et al. (2007) Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther 321: 249–256.

    CAS  PubMed  Google Scholar 

  • Hansen M, Chandra A, Mitic LL et al. (2008) A role for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS Genet 4: e24.

    PubMed  Google Scholar 

  • Hashimoto N, Kido Y, Uchida T et al. (2006) Ablation of PDK1 in pancreatic beta cells induces diabetes as a result of loss of beta cell mass. Nat Genet 38: 589–593.

    CAS  PubMed  Google Scholar 

  • Haskell WL, Lee IM, Pate RR et al. (2007) Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc 39: 1423–1434.

    PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-κB Signaling. Cell 132: 344–362.

    CAS  PubMed  Google Scholar 

  • He CH, Gong P, Hu B et al. (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276: 20858–20865.

    CAS  PubMed  Google Scholar 

  • He H, Soncin F, Grammatikakis N et al. (2003) Elevated expression of heat shock factor 2A stimulates HSF1-induced transcription during stress. J Biol Chem 278: 35465–35475.

    CAS  PubMed  Google Scholar 

  • Hietakangas V, Ahlskog JK, Jakobsson AM et al. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23: 2953–2968.

    CAS  PubMed  Google Scholar 

  • Hsieh TC, Lu X, Wang Z et al. (2006) Induction of quinone reductase NQO1 by resveratrol in human K562 cells involves the antioxidant response element ARE and is accompanied by nuclear translocation of transcription factor Nrf2. Med Chem 3: 275–285.

    Google Scholar 

  • Ho RC, Hirshman MF, Li Y et al. (2005) Regulation of IkappaB kinase and NF-kappaB in contracting adult rat skeletal muscle. Am J Physiol Cell Physiol 289: C794–C801.

    CAS  PubMed  Google Scholar 

  • Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-kappaB signaling module. Oncogene 25: 6706–6716.

    CAS  PubMed  Google Scholar 

  • Hollander J, Bejma J, Ookawara T et al. (2000) Superoxide dismutase gene expression in skeletal muscle: fiber-specific effect of age. Mech Ageing Dev 116: 33–45.

    CAS  PubMed  Google Scholar 

  • Hollander J, Fiebig R, Ookawara T et al. (2001) Superoxide dismutase gene expression is activated by a single bout of exercise. Pflug Arch (Eur J Physiol) 442: 426–434.

    CAS  Google Scholar 

  • Holmberg CI, Hietakangas V, Mikhailov A et al. (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20: 3800–3810.

    CAS  PubMed  Google Scholar 

  • Holzenberg M, Dupont J, Ducos B et al. (2003) IGF-1 receptor regulates lifespan and oxidative stress resistance in mice. Nature 421: 182–187.

    Google Scholar 

  • Hong Y, Rogers R, Matunis MJ et al. (2001) Regulation of heat shock factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276: 40263–40267.

    CAS  PubMed  Google Scholar 

  • Hunter RB, Kandarian SC (2004) Disruption of either the Nfkb1 or the Bcl3 gene inhibits skeletal muscle atrophy. J Clin Invest 114: 1504–1511.

    CAS  PubMed  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T et al. (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236: 313–322.

    CAS  PubMed  Google Scholar 

  • Jeong WS, Keum YS, Chen C et al. (2005) Differential expression and stability of endogenous nuclear factor E2–related factor 2 (Nrf2) by natural chemopreventive compounds in HepG2 human hepatoma cells. J Biochem Mol Biol 38: 167–176.

    CAS  PubMed  Google Scholar 

  • Jolly C, Morimoto RI, Robert-Nicoud M et al. (1997) HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J Cell Sci 110: 2935–2941.

    CAS  PubMed  Google Scholar 

  • Jolly C, Usson Y, Morimoto RI (1999) Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci USA 96: 6769–6774.

    CAS  PubMed  Google Scholar 

  • Jolly C, Konecny L, Grady DL et al. (2002) In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 156: 775–781.

    CAS  PubMed  Google Scholar 

  • Jolly C, Metz A, Govin J et al. (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164: 25–33.

    CAS  PubMed  Google Scholar 

  • Kang ES, Woo IS, Kim HJ et al. (2007) Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/AKT and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radic Biol Med 43: 535–545.

    CAS  PubMed  Google Scholar 

  • Katob Y, Itoh K, Yoshida E et al. (2001) Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells 6: 857–868.

    Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47: 89–116.

    CAS  PubMed  Google Scholar 

  • Kim SA, Yoon JH, Lee SH et al. (2005) Polo-like kinase phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280: 12653–12657.

    CAS  PubMed  Google Scholar 

  • Kirkwood TB, Shanley DP (2005) Food restriction, evolution and ageing. Mech Ageing Dev 126: 1011–1016.

    PubMed  Google Scholar 

  • Kitamura T, Nakae J, Kitamura Y et al. (2002) The forkhead transcription factor FoXo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 110: 1839–1847.

    CAS  PubMed  Google Scholar 

  • Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17: 2107–2115.

    CAS  PubMed  Google Scholar 

  • Knauf U, Newton EM, Kyriakis J et al. (1996) Repression of heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10: 2782–2793.

    CAS  PubMed  Google Scholar 

  • Kobayashi A, Kang MI, Okawa H et al. (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24: 7130–7139.

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7: 385–394.

    CAS  PubMed  Google Scholar 

  • Kong L, Tanito M, Huang Z, Li F et al. (2007) Delay of photoreceptor degeneration in tubby mouse by sulforaphane. J Neurochem 101: 1041–1052.

    CAS  PubMed  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE et al. (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419: 316–321.

    CAS  PubMed  Google Scholar 

  • Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2–related factor 2–dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24: 1101–1112.

    CAS  PubMed  Google Scholar 

  • Kramer HF, Goodyear LJ (2007) Exercise, MAPK, and NF-κB signaling in skeletal muscle. J Appl Physiol 103: 388–395.

    CAS  PubMed  Google Scholar 

  • Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92: 2177–2186.

    CAS  PubMed  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67: 225–257.

    PubMed  Google Scholar 

  • Kwak MK, Wakabayashi N, Itoh K et al. (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278: 8135–8145.

    CAS  PubMed  Google Scholar 

  • Lee JM, Calkins MJ, Chan K et al. (2003a) Identification of the NF-E2–related factor-2–dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem 278: 12029–12038.

    CAS  PubMed  Google Scholar 

  • Lee JM, Shih AY, Murphy TH et al. (2003b) NF-E2–related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278: 37948–37956.

    Google Scholar 

  • Leeuwenburgh C, Hollander J, Leichtweis M et al. (1997) Adaptation of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol 272: R363–R369.

    CAS  PubMed  Google Scholar 

  • Lehtinen MK, Yuan Z, Boaq PR et al. (2006) A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends lifespan. Cell 125: 987–1001.

    Google Scholar 

  • Libina N, Berman JR, Kenyon C (2003) Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 115: 489–502.

    CAS  PubMed  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191.

    CAS  PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat shock proteins. Annu Rev Genet 22: 631–677.

    CAS  PubMed  Google Scholar 

  • Martin D, Rojo AI, Salinas M et al. (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/AKT pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279: 8919–8929.

    CAS  PubMed  Google Scholar 

  • McArdle A, Vasilaki A, Jackson M (2002) Exercise and skeletal muscle ageing: cellular and molecular mechanisms. Ageing Res Dev 1: 79–93.

    CAS  Google Scholar 

  • Min KJ, Yamamoto R, Buch S et al. (2008) Drosophila lifespan control by dietary restriction independent of insulin-like signaling. Aging Cell 7: 199–206.

    CAS  PubMed  Google Scholar 

  • Minois N (2000) Longevity and aging: beneficial effects of exposure to mild stress. Biogerontology 1: 15–29.

    CAS  PubMed  Google Scholar 

  • Moi P, Chan K, Asunis I et al. (1994) Isolation of NF-E2–related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the β-globin locus control region. Proc Natl Acad Sci USA 91: 9926–9930.

    CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M et al. (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116: 551–563.

    CAS  PubMed  Google Scholar 

  • Murray JI, Whitfield ML, Trinklein ND et al. (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15: 2361–2374.

    CAS  PubMed  Google Scholar 

  • Muto A, Tashiro S, Tsuchiya H et al. (2002) Activation of Maf/AP-1 repressor Bach2 by oxidative stress promotes apoptosis and its interaction with promyelocytic leukemia nuclear bodies. J Biol Chem 277: 20724–20733.

    CAS  PubMed  Google Scholar 

  • Myzak MC, Dashwood RH (2006) Chemoprotection by sulforaphane: keep one eye beyond Keap1. Cancer Lett 233: 208–218.

    CAS  PubMed  Google Scholar 

  • Nakae J, Biggs WH 3rd, Kitamura T et al. (2002) Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor FoXo1. Nat Genet 32: 245–253.

    CAS  PubMed  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y et al. (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17: 469–481.

    CAS  PubMed  Google Scholar 

  • Negrutskii BS, El’skaya AV (1998) Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-t-RNA channeling. Prog Nucleic Acid Res Mol Biol 60: 47–78.

    CAS  PubMed  Google Scholar 

  • Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37: 433–441.

    CAS  PubMed  Google Scholar 

  • Ostling P, Biork JK, Ross-Mattjus P et al. (2007) Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282: 7077–7086.

    PubMed  Google Scholar 

  • Panniers R (1994) Translational control during heat shock. Biochemie 76: 737–747.

    CAS  Google Scholar 

  • Pearson KJ, Lewis KN, Price NL et al. (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci USA 105: 2325–2330.

    CAS  PubMed  Google Scholar 

  • Pirkalla L, Nykanen P, Sistonen L (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15: 1118–1131.

    Google Scholar 

  • Plas DR, Thompson CB (2003) AKT activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278: 12361–12366.

    CAS  PubMed  Google Scholar 

  • Rabindran SK, Haroun RI, Clos J et al. (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259: 230–234.

    CAS  PubMed  Google Scholar 

  • Radak Z, Kaneko T, Tahara S et al. (1999) The effect of exercise training on oxidative damage of lipids, proteins and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 27: 69–74.

    CAS  PubMed  Google Scholar 

  • Radak Z, Kaneko T, Tahara H et al. (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38: 17–23.

    CAS  PubMed  Google Scholar 

  • Radak Z, Chung HY, Goto S (2005) Exercise and hormesis: oxidative stress-related adaptation for successful aging. Biogerontology 6: 71–75.

    CAS  PubMed  Google Scholar 

  • Rallu M, Loones M, Lallemand Y et al. (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc Natl Acad Sci USA 94: 2392–2397.

    CAS  PubMed  Google Scholar 

  • Ramos-Gomez M, Kwak MK, Dolan PM et al. (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98: 3410–3415.

    CAS  PubMed  Google Scholar 

  • Rattan SIS (2004) Aging intervention, prevention and therapy through hormesis. J Gerontol Biol Sci 59A: 705–709.

    Google Scholar 

  • Rena G, Prescott AR, Guo S et al. (2001) Roles of the forkhead in rhabdomyosarcoma (FKHR) phosphorylation sites in regulating 14-3-3 binding, transactivation and nuclear targeting. Biochem J 354: 605–612.

    CAS  PubMed  Google Scholar 

  • Rena G, Woods YL, Prescott AR et al. (2002) Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 21: 2263–2271.

    CAS  PubMed  Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experimentia 18: 571–573.

    CAS  Google Scholar 

  • Rubiolo JA, Mithieux G, Vega FV (2008) Resveratrol protects primary rat hepatocytes against oxidative stress damage. Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 591: 66–72.

    CAS  PubMed  Google Scholar 

  • Shamovsky I, Ivannikov M, Kandel ES et al. (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440: 556–560.

    CAS  PubMed  Google Scholar 

  • Shamovsky I, Nudler E (2008) New insights into the mechanism of heat shock response activation. Cell Mol Life Sci 65: 855–861.

    CAS  PubMed  Google Scholar 

  • Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 20: 3–7.

    Google Scholar 

  • Shen G, Jeong WS, Hu R, Kong AN (2005) Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid Redox Signal 7: 1648–1663.

    CAS  PubMed  Google Scholar 

  • Senftlenben U, Cao Y, Xiao G et al. (2001) Activation by IKKα of a second evolutionary conserved, NF-κB signaling pathway. Science 293: 1495–1499.

    Google Scholar 

  • Son TG, Camandola S, Mattson MP (2008) Hormetic dietary phytochemicals. Neuromolecular Med 10: 236–246.

    CAS  PubMed  Google Scholar 

  • Sun J, Hoshino H, Takaku K et al. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21: 5216–5224.

    CAS  PubMed  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3: 768–780.

    CAS  PubMed  Google Scholar 

  • Tanabe M, Sasai N, Nagata K et al. (1999) The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative slicing. J Biol Chem 274: 27845–27856.

    CAS  PubMed  Google Scholar 

  • Tanigawa S, Fujii M, Hou DX (2007) Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med 42: 1690–1703.

    CAS  PubMed  Google Scholar 

  • Thimmulappa RK, Mai KH, Srisuma S et al. (2002) Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 62: 5196–5203.

    CAS  PubMed  Google Scholar 

  • Tissembaum HA, Guarente L (2001) Increased dosage of Sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230.

    Google Scholar 

  • Tran H, Brunet A, Grenier JM et al. (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296: 530–534.

    CAS  PubMed  Google Scholar 

  • Tsai WC, Bhattacharyya N, Han LY et al. (2003) Insulin inhibition of transcription stimulated by forkhead protein FOXO1 is not solely due to nuclear exclusion. Endocrinology 144: 5615–5622.

    CAS  PubMed  Google Scholar 

  • Tullet JMA, Hertweck M, An JH et al. (2008) Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132: 1025–1038.

    CAS  PubMed  Google Scholar 

  • van der Heide L, Smidt MP (2005) Regulation of FOXO activity by CBP/p300-mediated acetylation. Trends Biochem Sci 30: 81–86.

    PubMed  Google Scholar 

  • van der Host A, de Vries-Smits AM, Brenkman AB et al. (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 10: 1064–1073.

    Google Scholar 

  • van der Horst A, Burgering BM (2007) Stressing the role of FOXO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8: 440–450.

    PubMed  Google Scholar 

  • Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element–mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17: 3145–3156.

    CAS  PubMed  Google Scholar 

  • Vogt PK, Jiang H, Aoki M (2005) Triple layer control: phosphorylation, acetylation and ubiquitination of FOXO proteins. Cell Cycle 4: 908–913.

    CAS  PubMed  Google Scholar 

  • Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9: 122–133.

    CAS  PubMed  Google Scholar 

  • Wakabayashi N, Itoh K, Wakabayashi J et al. (2003) Keap1-null mutation leads to post-natal lethality due to constitutive Nrf2 activation. Nat Genet 35: 238–245.

    CAS  PubMed  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A et al. (2003) Regulation of molecular chaperons gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmatic sequestration of heat shock factor 1. Mol Cell Biol 23: 6013–6026.

    CAS  PubMed  Google Scholar 

  • Wang X, Grammatikakis N, Siganou A et al. (2004) Interactions between extracellular signal regulated protein kinase 1 (ERK1), 14-3-3 epsilon and heat shock factor 1 during stress. J Biol Chem 279: 49460–49469.

    CAS  PubMed  Google Scholar 

  • Wang MC, Bohmann D, Jasper H (2005) JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121: 115–125.

    CAS  PubMed  Google Scholar 

  • Welch WJ, Suhan JP (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol 101: 1198–1211.

    CAS  PubMed  Google Scholar 

  • Westerheid SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for disease of protein conformation. J Biol Chem 280: 33097–33100.

    Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11: 441–469.

    CAS  PubMed  Google Scholar 

  • Wu CC, Hsu MC, Hsieh CW et al. (2006) Upregulation of heme oxygenase-1 by epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/AKT and ERK pathways. Life Sci 78: 2889–2897.

    CAS  PubMed  Google Scholar 

  • Xiao H, Perisic O, Lis JT (1991) Cooperative binding of Drosophila heat shock factor to arrays of a conserved 5 bp unit. Cell 64: 585–593.

    CAS  PubMed  Google Scholar 

  • Xiao X, Zuo X, Davis AA et al. (1999) HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18: 5943–5952.

    CAS  PubMed  Google Scholar 

  • Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23: 8137–8151.

    CAS  PubMed  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38: 769–789.

    CAS  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T et al. (1998) Repression of heat shock factor HSF1 activation by HSP90 (HSP90-complex) that forms a stress sensitive complex with HSF1. Cell 94: 471–480.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Gen Son .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Son, T.G., Cutler, R.G., Mattson, M.P., Camandola, S. (2010). Transcriptional Mediators of Cellular Hormesis. In: Mattson, M., Calabrese, E. (eds) Hormesis. Humana Press. https://doi.org/10.1007/978-1-60761-495-1_4

Download citation

Publish with us

Policies and ethics