Skip to main content

Resistance to Targeted Therapies As a Result of Mutation(s) in the Target

  • Chapter
  • First Online:
Targeted Therapies

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 778 Accesses

Abstract

Tyrosine kinase inhibitors (TKIs) are effective clinical therapies in a subset of malignancies defined by oncogenic alterations. Compelling clinical examples include EGFR mutant non-small cell lung cancer and chronic myeloid leukemia. Unfortunately, the effectiveness of these treatments is ultimately limited due to the development of drug resistance most commonly mediated by secondary mutations. These resistance mutations often occur at the gatekeeper residue, like the T315I mutation in BCR-ABL or the T790M mutation in EGFR, but it can also occur outside the gatekeeper residue. In this chapter, we will address the different types of resistance mutations and the mechanisms by which they confer resistance to TKI. We will also discuss the therapeutic strategies developed to overcome these resistance mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Druker BJ et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  PubMed  CAS  Google Scholar 

  2. Verweij J et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364(9440):1127–34.

    Article  PubMed  CAS  Google Scholar 

  3. Lahiry P et al. Kinase mutations in human disease: interpreting genotype-phenotype relationships. Nat Rev Genet. 2010;11(1):60–74.

    Article  PubMed  CAS  Google Scholar 

  4. Janne PA, Gray N, Settleman J. Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat Rev Drug Discov. 2009;8(9):709–23.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    Article  PubMed  CAS  Google Scholar 

  6. Weinstein IB et al. Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin Cancer Res. 1997;3(12 Pt 2):2696–702.

    PubMed  CAS  Google Scholar 

  7. Weinstein IB, Joe AK. Mechanisms of disease: Oncogene addiction–a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol. 2006;3(8):448–57.

    Article  PubMed  CAS  Google Scholar 

  8. Hantschel O, Superti-Furga G. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol. 2004;5(1):33–44.

    Article  PubMed  CAS  Google Scholar 

  9. Milojkovic D, Apperley J. State-of-the-art in the treatment of chronic myeloid leukaemia. Curr Opin Oncol. 2008;20(1):112–21.

    Article  PubMed  CAS  Google Scholar 

  10. Melo J. Inviting leukemic cells to waltz with the devil. Nat Med. 2001;7(2):156–7.

    Article  PubMed  CAS  Google Scholar 

  11. Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009;113(8):1619–30.

    Article  PubMed  CAS  Google Scholar 

  12. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.

    Article  PubMed  CAS  Google Scholar 

  13. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  PubMed  CAS  Google Scholar 

  14. Gazdar AF et al. Mutations and addiction to EGFR: the Achilles ‘heal’ of lung cancers? Trends Mol Med. 2004;10(10):481–6.

    Article  PubMed  CAS  Google Scholar 

  15. Lynch TJ et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  PubMed  CAS  Google Scholar 

  16. Paez JG et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    Article  PubMed  CAS  Google Scholar 

  17. Pao W et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101(36):13306–11.

    Article  PubMed  CAS  Google Scholar 

  18. Johnson BE, Janne PA. Epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Cancer Res. 2005;65(17):7525–9.

    PubMed  CAS  Google Scholar 

  19. Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006;118(2):257–62.

    Article  PubMed  CAS  Google Scholar 

  20. Chan SK, Gullick WJ, Hill ME. Mutations of the epidermal growth factor receptor in non-small cell lung cancer–search and destroy. Eur J Cancer. 2006;42(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  21. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24.

    Article  PubMed  CAS  Google Scholar 

  22. Engelman JA et al. ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA. 2005;102(10):3788–93.

    Article  PubMed  CAS  Google Scholar 

  23. Heinrich MC et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood. 2000;96(3):925–32.

    PubMed  CAS  Google Scholar 

  24. Heinrich MC et al. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum Pathol. 2002;33(5):484–95.

    Article  PubMed  CAS  Google Scholar 

  25. Tsujimura T et al. Activating mutation in the catalytic domain of c-kit elicits hematopoietic transformation by receptor self-association not at the ligand-induced dimerization site. Blood. 1999;93(4):1319–29.

    PubMed  CAS  Google Scholar 

  26. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol. 2004;22(18):3813–25.

    Article  PubMed  CAS  Google Scholar 

  27. Heinrich MC et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21(23):4342–9.

    Article  PubMed  CAS  Google Scholar 

  28. Debiec-Rychter M et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer. 2006;42(8):1093–103.

    Article  PubMed  CAS  Google Scholar 

  29. Mol CD et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004;279(30):31655–63.

    Article  PubMed  CAS  Google Scholar 

  30. Heinrich MC et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299(5607):708–10.

    Article  PubMed  CAS  Google Scholar 

  31. Sharma SV, Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev. 2007;21(24):3214–31.

    Article  PubMed  CAS  Google Scholar 

  32. Shah NP et al. Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell. 2008;14(6):485–93.

    Article  PubMed  CAS  Google Scholar 

  33. Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood. 2005;105(7):2640–53.

    Article  PubMed  CAS  Google Scholar 

  34. Hochhaus A et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23(6):1054–61.

    Article  PubMed  CAS  Google Scholar 

  35. Shepherd FA et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  36. Mok TS et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361(10):947–57.

    Article  PubMed  CAS  Google Scholar 

  37. Mitsudomi T et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.

    Article  PubMed  CAS  Google Scholar 

  38. Blanke CD et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26(4):626–32.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2(7):358–64.

    Article  PubMed  CAS  Google Scholar 

  40. Schindler T et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000;289(5486):1938–42.

    Article  PubMed  CAS  Google Scholar 

  41. Ohren JF et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004;11(12):1192–7.

    Article  PubMed  CAS  Google Scholar 

  42. Adrian FJ et al. Allosteric inhibitors of Bcr-abl-dependent cell proliferation. Nat Chem Biol. 2006;2(2):95–102.

    Article  PubMed  CAS  Google Scholar 

  43. Cohen MS et al. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science. 2005;308(5726):1318–21.

    Article  PubMed  CAS  Google Scholar 

  44. Kwak EL et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA. 2005;102(21):7665–70.

    Article  PubMed  CAS  Google Scholar 

  45. le Coutre P et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood. 2000;95(5):1758–66.

    PubMed  Google Scholar 

  46. Engelman JA et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  PubMed  CAS  Google Scholar 

  47. Gorre ME et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    Article  PubMed  CAS  Google Scholar 

  48. Jabbour E et al. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006;20(10):1767–73.

    Article  PubMed  CAS  Google Scholar 

  49. Nicolini FE et al. Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia. 2006;20(6):1061–6.

    Article  PubMed  CAS  Google Scholar 

  50. Jabbour E et al. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood. 2008;112(1):53–5.

    Article  PubMed  CAS  Google Scholar 

  51. Nicolini FE et al. Clinical outcome of 27 imatinib mesylate-resistant chronic myelogenous leukemia patients harboring a T315I BCR-ABL mutation. Haematologica. 2007;92(9):1238–41.

    Article  PubMed  CAS  Google Scholar 

  52. Soverini S et al. Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res. 2006;12(24):7374–9.

    Article  PubMed  CAS  Google Scholar 

  53. Hochhaus A, La Rosee P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia. 2004;18(8):1321–31.

    Article  PubMed  CAS  Google Scholar 

  54. Shah NP et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2(2):117–25.

    Article  PubMed  CAS  Google Scholar 

  55. Lowenberg B. Minimal residual disease in chronic myeloid leukemia. N Engl J Med. 2003;349(15):1399–401.

    Article  PubMed  Google Scholar 

  56. Corbin AS et al. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood. 2003;101(11):4611–4.

    Article  PubMed  CAS  Google Scholar 

  57. Gambacorti-Passerini CB et al. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol. 2003;4(2):75–85.

    Article  PubMed  Google Scholar 

  58. Hughes T, Branford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev. 2006;20(1):29–41.

    Article  PubMed  CAS  Google Scholar 

  59. Soverini S et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol. 2005;23(18):4100–9.

    Article  PubMed  CAS  Google Scholar 

  60. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8(11):1018–29.

    Article  PubMed  CAS  Google Scholar 

  61. Blencke S, Ullrich A, Daub H. Mutation of threonine 766 in the epidermal growth factor receptor reveals a hotspot for resistance formation against selective tyrosine kinase inhibitors. J Biol Chem. 2003;278(17):15435–40.

    Article  PubMed  CAS  Google Scholar 

  62. Kobayashi S et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352(8):786–92.

    Article  PubMed  CAS  Google Scholar 

  63. Pao W et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73.

    Article  PubMed  CAS  Google Scholar 

  64. Kosaka T et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res. 2006;12(19):5764–9.

    Article  PubMed  CAS  Google Scholar 

  65. Balak MN et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 2006;12(21):6494–501.

    Article  PubMed  CAS  Google Scholar 

  66. Costa DB et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 2007;4(10):1669–79. discussion 1680.

    PubMed  CAS  Google Scholar 

  67. Bean J et al. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res. 2008;14(22):7519–25.

    Article  PubMed  CAS  Google Scholar 

  68. Gramza AW, Corless CL, Heinrich MC. Resistance to Tyrosine Kinase Inhibitors in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2009;15(24):7510–8.

    Article  PubMed  CAS  Google Scholar 

  69. Heinrich MC et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24(29):4764–74.

    Article  PubMed  CAS  Google Scholar 

  70. Antonescu CR et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res. 2005;11(11):4182–90.

    Article  PubMed  CAS  Google Scholar 

  71. Heinrich MC et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26(33):5352–9.

    Article  PubMed  CAS  Google Scholar 

  72. Nishida T et al. Secondary mutations in the kinase domain of the KIT gene are predominant in imatinib-resistant gastrointestinal stromal tumor. Cancer Sci. 2008;99(4):799–804.

    Article  PubMed  CAS  Google Scholar 

  73. Guo T et al. Mechanisms of sunitinib resistance in gastrointestinal stromal tumors harboring KITAY502–3ins mutation: an in vitro mutagenesis screen for drug resistance. Clin Cancer Res. 2009;15(22):6862–70.

    Article  PubMed  CAS  Google Scholar 

  74. Engelman JA, Settleman J. Acquired resistance to tyrosine kinase inhibitors during cancer therapy. Curr Opin Genet Dev. 2008;18(1):73–9.

    Article  PubMed  CAS  Google Scholar 

  75. Koizumi F et al. Establishment of a human non-small cell lung cancer cell line resistant to gefitinib. Int J Cancer. 2005;116(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  76. Ogino A et al. Emergence of epidermal growth factor receptor T790M mutation during chronic exposure to gefitinib in a non small cell lung cancer cell line. Cancer Res. 2007;67(16):7807–14.

    Article  PubMed  CAS  Google Scholar 

  77. Janne PA. Challenges of detecting EGFR T790M in gefitinib/erlotinib-resistant tumours. Lung Cancer. 2008;60 Suppl 2:S3–9.

    Article  PubMed  Google Scholar 

  78. Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009;16(2):122–31.

    PubMed  Google Scholar 

  79. Quintas-Cardama A, et al. Mutational analysis of chronic myeloid leukemia (cml) clones reveals heightened BCR-ABL1 genetic instability and wild-type BCR-ABL1 exhaustion in patients failing sequential imatinib and dasatinib therapy. ASH Annual Meeting Abstracts. 2007;110(11):1938.

    Google Scholar 

  80. Nardi V et al. Quantitative monitoring by polymerase colony assay of known mutations resistant to ABL kinase inhibitors. Oncogene. 2008;27(6):775–82.

    Article  PubMed  CAS  Google Scholar 

  81. Willis SG et al. High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood. 2005;106(6):2128–37.

    Article  PubMed  CAS  Google Scholar 

  82. Khorashad JS et al. The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia. 2006;20(4):658–63.

    Article  PubMed  CAS  Google Scholar 

  83. Deininger MW et al. Detection of ABL kinase domain mutations with denaturing high-performance liquid chromatography. Leukemia. 2004;18(4):864–71.

    Article  PubMed  CAS  Google Scholar 

  84. Soverini S et al. Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib. Clin Chem. 2004;50(7):1205–13.

    Article  PubMed  CAS  Google Scholar 

  85. Ernst T et al. Dynamics of BCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib. Haematologica. 2008;93(2):186–92.

    Article  PubMed  CAS  Google Scholar 

  86. Maheswaran S et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.

    Article  PubMed  CAS  Google Scholar 

  87. Weisberg E et al. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer. 2007;7(5):345–56.

    Article  PubMed  CAS  Google Scholar 

  88. Manley PW et al. Imatinib: a selective tyrosine kinase inhibitor. Eur J Cancer. 2002;38 Suppl 5:S19–27.

    Article  PubMed  Google Scholar 

  89. Nagar B et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 2002;62(15):4236–43.

    PubMed  CAS  Google Scholar 

  90. Negri T et al. T670X KIT mutations in gastrointestinal stromal tumors: making sense of missense. J Natl Cancer Inst. 2009;101(3):194–204.

    PubMed  CAS  Google Scholar 

  91. Yun CH et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA. 2008;105(6):2070–5.

    Article  PubMed  CAS  Google Scholar 

  92. Roumiantsev S et al. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci USA. 2002;99(16):10700–5.

    Article  PubMed  CAS  Google Scholar 

  93. Cowan-Jacob SW et al. Structural biology contributions to the discovery of drugs to treat chronic myelogenous leukaemia. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 1):80–93.

    PubMed  Google Scholar 

  94. Gajiwala KS et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci USA. 2009;106(5):1542–7.

    Article  PubMed  CAS  Google Scholar 

  95. Emery CM et al. MEK1 mutations confer resistance to MEK and B-RAF inhibition. Proc Natl Acad Sci USA. 2009;106(48):20411–6.

    Article  PubMed  CAS  Google Scholar 

  96. Griswold IJ et al. Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol. 2006;26(16):6082–93.

    Article  PubMed  CAS  Google Scholar 

  97. Toyooka S, Kiura K, Mitsudomi T. EGFR mutation and response of lung cancer to gefitinib. N Engl J Med. 2005;352(20):2136. author reply 2136.

    PubMed  CAS  Google Scholar 

  98. Inukai M et al. Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res. 2006;66(16):7854–8.

    Article  PubMed  CAS  Google Scholar 

  99. Bell DW et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet. 2005;37(12):1315–6.

    Article  PubMed  CAS  Google Scholar 

  100. Vikis H et al. EGFR-T790M is a rare lung cancer susceptibility allele with enhanced kinase activity. Cancer Res. 2007;67(10):4665–70.

    Article  PubMed  CAS  Google Scholar 

  101. Mulloy R et al. Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res. 2007;67(5):2325–30.

    Article  PubMed  CAS  Google Scholar 

  102. Regales L et al. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS One. 2007;2(8):e810.

    Article  PubMed  CAS  Google Scholar 

  103. Suda K et al. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol. 2009;4(1):1–4.

    Article  PubMed  Google Scholar 

  104. Liegl B et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol. 2008;216(1):64–74.

    Article  PubMed  CAS  Google Scholar 

  105. Branford S et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002;99(9):3472–5.

    Article  PubMed  CAS  Google Scholar 

  106. Hofmann WK et al. Ph(+) acute lymphoblastic leukemia resistant to the tyrosine kinase inhibitor STI571 has a unique BCR-ABL gene mutation. Blood. 2002;99(5):1860–2.

    Article  PubMed  Google Scholar 

  107. Hofmann WK et al. Presence of the BCR-ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood. 2003;102(2):659–61.

    Article  PubMed  CAS  Google Scholar 

  108. Engelman JA et al. Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer. J Clin Invest. 2006;116(10):2695–706.

    Article  PubMed  CAS  Google Scholar 

  109. Gumireddy K et al. ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell. 2005;7(3):275–86.

    Article  PubMed  CAS  Google Scholar 

  110. Riely GJ. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. J Thorac Oncol. 2008;3(6 Suppl 2):S146–9.

    Article  PubMed  Google Scholar 

  111. Zhou W et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462(7276):1070–4.

    Article  PubMed  CAS  Google Scholar 

  112. O’Hare T et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.

    Article  PubMed  CAS  Google Scholar 

  113. Zhang J et al. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010;463(7280):501–6.

    Article  PubMed  CAS  Google Scholar 

  114. Van Etten RA, et al. Switch pocket inhibitors of the ABL tyrosine kinase: distinct kinome inhibition profiles and in vivo efficacy in mouse models of CML and B-lymphoblastic leukemia induced by BCR-ABL T315I. ASH Annual Meeting Abstracts. 2008;112(11):576.

    Google Scholar 

  115. Noronha G et al. Inhibitors of ABL and the ABL-T315I mutation. Curr Top Med Chem. 2008;8(10):905–21.

    Article  PubMed  CAS  Google Scholar 

  116. Naumov GN et al. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin Cancer Res. 2009;15(10):3484–94.

    Article  PubMed  CAS  Google Scholar 

  117. Ichihara E et al. Effects of vandetanib on lung adenocarcinoma cells harboring epidermal growth factor receptor T790M mutation in vivo. Cancer Res. 2009;69(12):5091–8.

    Article  PubMed  CAS  Google Scholar 

  118. Gendreau SB et al. Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647. Clin Cancer Res. 2007;13(12):3713–23.

    Article  PubMed  CAS  Google Scholar 

  119. Copland M et al. BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors. Blood. 2008;111(5):2843–53.

    Article  PubMed  CAS  Google Scholar 

  120. Balko JM, et al. Combined MEK and EGFR inhibition demonstrates synergistic activity in EGFR-dependent NSCLC. Cancer Biol Ther. 2009;8(6):522–530.

    Google Scholar 

  121. Faber AC et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA. 2009;106(46):19503–8.

    Article  PubMed  CAS  Google Scholar 

  122. Li D et al. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell. 2007;12(1):81–93.

    Article  PubMed  CAS  Google Scholar 

  123. Quintas-Cardama A, Kantarjian H, Cortes J. Homoharringtonine, omacetaxine mepesuccinate, and chronic myeloid leukemia circa 2009. Cancer. 2009;115(23):5382–93.

    Article  PubMed  CAS  Google Scholar 

  124. Kuroda J et al. Apoptosis-based dual molecular targeting by INNO-406, a second-generation Bcr-Abl inhibitor, and ABT-737, an inhibitor of antiapoptotic Bcl-2 proteins, against Bcr-Abl-positive leukemia. Cell Death Differ. 2007;14(9):1667–77.

    Article  PubMed  CAS  Google Scholar 

  125. Freeman DJ et al. Activity of panitumumab alone or with chemotherapy in non-small cell lung carcinoma cell lines expressing mutant epidermal growth factor receptor. Mol Cancer Ther. 2009;8(6):1536–46.

    Article  PubMed  CAS  Google Scholar 

  126. O’Hare T et al. SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc Natl Acad Sci USA. 2008;105(14):5507–12.

    Article  PubMed  Google Scholar 

  127. Regales L et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest. 2009;119(10):3000–10.

    PubMed  CAS  Google Scholar 

  128. Tang Z et al. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br J Cancer. 2008;99(6):911–22.

    Article  PubMed  CAS  Google Scholar 

  129. Thomas EK et al. Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell. 2007;12(5):467–78.

    Article  PubMed  CAS  Google Scholar 

  130. Neviani P et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117(9):2408–21.

    Article  PubMed  CAS  Google Scholar 

  131. Shimamura T et al. Epidermal growth factor receptors harboring kinase domain mutations associate with the heat shock protein 90 chaperone and are destabilized following exposure to geldanamycins. Cancer Res. 2005;65(14):6401–8.

    Article  PubMed  CAS  Google Scholar 

  132. Nguyen TK et al. Synergistic interactions between DMAG and mitogen-activated protein kinase kinase 1/2 inhibitors in Bcr/abl+ leukemia cells sensitive and resistant to imatinib mesylate. Clin Cancer Res. 2006;12(7 Pt 1):2239–47.

    Article  PubMed  CAS  Google Scholar 

  133. Dai Y et al. Vorinostat synergistically potentiates MK-0457 lethality in chronic myelogenous leukemia cells sensitive and resistant to imatinib mesylate. Blood. 2008;112(3):793–804.

    Article  PubMed  CAS  Google Scholar 

  134. Modugno M et al. Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358. Cancer Res. 2007;67(17):7987–90.

    Article  PubMed  CAS  Google Scholar 

  135. Carpinelli P et al. PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. Mol Cancer Ther. 2007;6(12 Pt 1):3158–68.

    Article  PubMed  CAS  Google Scholar 

  136. Gumireddy K et al. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA. 2005;102(6):1992–7.

    Article  PubMed  CAS  Google Scholar 

  137. Engelman JA et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007;67(24):11924–32.

    Article  PubMed  CAS  Google Scholar 

  138. Li D et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene. 2008;27(34):4702–11.

    Article  PubMed  CAS  Google Scholar 

  139. Yuza Y et al. Allele-dependent variation in the relative cellular potency of distinct EGFR inhibitors. Cancer Biol Ther. 2007;6(5):661–7.

    PubMed  CAS  Google Scholar 

  140. Godin-Heymann N et al. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol Cancer Ther. 2008;7(4):874–9.

    Article  PubMed  CAS  Google Scholar 

  141. Sos ML et al. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res. 2010;70(3):868–74.

    Article  PubMed  CAS  Google Scholar 

  142. Janne PA, et al. Preliminary activity and safety results from a phase I clinical trial of PF-00299804, an irreversible pan-HER inhibitor, in patients (pts) with NSCLC. ASCO Meeting Abstracts. 2008;26(15_suppl):8027.

    Google Scholar 

  143. Janne PA et al. Multicenter, randomized, phase II trial of CI-1033, an irreversible pan-ERBB inhibitor, for previously treated advanced non small-cell lung cancer. J Clin Oncol. 2007;25(25):3936–44.

    Article  PubMed  CAS  Google Scholar 

  144. Ercan D et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene. 2010;29:2346–56.

    Article  PubMed  CAS  Google Scholar 

  145. Shah NP et al. Sequential ABL kinase inhibitor therapy selects for compound drug-resistant BCR-ABL mutations with altered oncogenic potency. J Clin Invest. 2007;117(9):2562–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasi A. Jänne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cortot, A.B., Jänne, P.A. (2011). Resistance to Targeted Therapies As a Result of Mutation(s) in the Target. In: Gioeli, D. (eds) Targeted Therapies. Molecular and Translational Medicine. Humana Press. https://doi.org/10.1007/978-1-60761-478-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-478-4_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-477-7

  • Online ISBN: 978-1-60761-478-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics