Cortical Disintegration Mechanism of Anesthetic-Induced Unconsciousness

  • Anthony Hudetz
Part of the Contemporary Clinical Neuroscience book series (CCNE)


The fundamental thesis of this paper is that under general anesthesia, the brain preserves its reactivity to sensory stimulation, but the information conveyed by these stimuli is not integrated – therefore, it is not consciously perceived. This happens at anesthetic depths associated with behavioral unresponsiveness from which unconsciousness is inferred. A further hypothesis is that general anesthetic agents interfere with the integration of sensory information encoded in cortical neuronal activity in the gamma frequency band. A critical region whose connectivity with the rest of the brain may be disrupted in anesthesia is the posterior parietal association cortex. While it is true that most anesthetic agents utilize different cellular and molecular pathways and neuron groups to produce their pharmacological effects, a common systems level action that may lead to unconsciousness by all anesthetics is the disruption of cortical information processing. The plausibility of these hypotheses and supporting experimental evidence is discussed in the context of theoretical considerations for defining consciousness and inferring the presence or absence of consciousness in an anesthetized subject.


Consciousness gamma oscillations neuronal synchrony visual evoked response information exchange entropy neuronal networks functional connectivity 


Disclosure Statement

This work was supported by the grant R01 GM-56398 from the Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA. This work was not an industry-supported study and the author has no financial conflicts of interest. The comments of Drs. Zeljko Bosnjak, Quinn Hogan, Thomas Stekiel, and Anna Stadnicka to this manuscript are appreciated. The contribution of graduate students Jeannette Vizuete and Sivesh Pillay to the experiments from which results are presented here is appreciated.


  1. Achard, S., R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72.PubMedGoogle Scholar
  2. Alkire, M. T. 2008. Loss of effective connectivity during general anesthesia. Int Anesthesiol Clin 46(3):55–73.PubMedGoogle Scholar
  3. Alkire, M. T., and J. Miller. 2005. General anesthesia and the neural correlates of consciousness. Prog Brain Res 150:229–244.PubMedGoogle Scholar
  4. Alkire, M. T., R. J. Haier, and J. H. Fallon. 2000. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic- induced unconsciousness. Conscious Cogn 9(3):370–286.PubMedGoogle Scholar
  5. Alkire, M. T., A. G. Hudetz, and G. Tononi. 2008. Consciousness and anesthesia. Science 322(5903):876–880.PubMedGoogle Scholar
  6. Alkire, M. T., R. J. Haier, N. K. Shah, and C. T. Anderson. 1997. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86(3):549–557.PubMedGoogle Scholar
  7. Alkire, M. T., C. J. Pomfrett, R. J. Haier, M. V. Gianzero, C. M. Chan, B. P. Jacobsen, and J. H. Fallon. 1999. Functional brain imaging during anesthesia in humans: effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology 90(3):701–709.PubMedGoogle Scholar
  8. Alkire, M. T., J. R. McReynolds, E. L. Hahn, and A. N. Trivedi. 2007. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 107(2):264–272.PubMedGoogle Scholar
  9. Andrade, J., D. J. Sapsford, D. Jeevaratnum, A. J. Pickworth, and J. G. Jones. 1996. The coherent frequency in the electroencephalogram as an objective measure of cognitive function during propofol sedation. Anesth Analg 83(6):1279–1284.PubMedGoogle Scholar
  10. Angel, A. 1991. The G. L. Brown lecture. Adventures in anaesthesia. Exp Physiol 76(1):1–38.PubMedGoogle Scholar
  11. Antognini, J. F., and E. Carstens. 2002. In vivo characterization of clinical anaesthesia and its components. Br J Anaesth 89(1):156–166.PubMedGoogle Scholar
  12. Antognini, J. F., L. Barter, and E. Carstens. 2005. Overview movement as an index of anesthetic depth in humans and experimental animals. Comp Med 55(5):413–418.PubMedGoogle Scholar
  13. Antognini, J. F., E. Carstens, and V. Buzin. 1999. Isoflurane depresses motoneuron excitability by a direct spinal action: an F-wave study. Anesth Analg 88(3):681–685.PubMedGoogle Scholar
  14. Baars, B. J. 2005. Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res 150:45–53.PubMedGoogle Scholar
  15. Baars, B. J., W. P. Banks, and J. B. Newman. 2003. Essential sources in the scientific study of consciousness. Cambridge, MA: MIT Press.Google Scholar
  16. Badgaiyan, R. D. 2005. Conscious awareness of retrieval: an exploration of the cortical connectivity. Int J Psychophysiol 55(2):257–262.PubMedGoogle Scholar
  17. Banoub, M., J. E. Tetzlaff, and A. Schubert. 2003. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 99(3):716–737.PubMedGoogle Scholar
  18. Bassett, D. S., and E. Bullmore. 2006. Small-world brain networks. Neuroscientist 12(6):512–523.PubMedGoogle Scholar
  19. Bassett, D. S., A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore. 2006. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103(51):19518–19523.PubMedGoogle Scholar
  20. Berg-Johnsen, J., and I. A. Langmoen. 1986. The effect of isoflurane on unmyelinated and myelinated fibres in the rat brain. Acta Physiol Scand 127(1):87–93.PubMedGoogle Scholar
  21. Berg-Johnsen, J., and I. A. Langmoen. 1990. Mechanisms concerned in the direct effect of isoflurane on rat hippocampal and human neocortical neurons. Brain Res 507(1):28–34.PubMedGoogle Scholar
  22. Biswal, B., F. Z. Yetkin, V. M. Haughton, and J. S. Hyde. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–641.PubMedGoogle Scholar
  23. Biswal, B., A. G. Hudetz, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde. 1997. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo-planar MRI. J Cereb Blood Flow Metab 17(3):301–308.PubMedGoogle Scholar
  24. Block, N. 2005. Two neural correlates of consciousness. Trends Cogn Sci 9(2):46–52.PubMedGoogle Scholar
  25. Bonhomme, V., G. Plourde, P. Meuret, P. Fiset, and S. B. Backman. 2000. Auditory steady-state response and bispectral index for assessing level of consciousness during propofol sedation and hypnosis. Anesth Analg 91(6):1398–1403.PubMedGoogle Scholar
  26. Bouyer, J. J., M. F. Montaron, A. Rougeul, and P. Buser. 1980. Parietal electrocortical rhythms in the cat: their relation to a behavior of focused attention and possible mesencephalic control through a dopaminergic pathway. C R Seances Acad Sci D 291(9):779–783.PubMedGoogle Scholar
  27. Bressler, S. L., R. Coppola, and R. Nakamura. 1993. Episodic multiregional cortical coherence at multiple frequencies during visual task performance. Nature 366(6451):153–156.PubMedGoogle Scholar
  28. Buckner, R. L., J. Sepulcre, T. Talukdar, F. M. Krienen, H. Liu, T. Hedden, J. R. Andrews-Hanna, R. A. Sperling, and K. A. Johnson. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873.PubMedGoogle Scholar
  29. Bullmore, E., and O. Sporns. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198.PubMedGoogle Scholar
  30. Buzsaki, G., L. W. Leung, and C. H. Vanderwolf. 1983. Cellular bases of hippocampal EEG in the behaving rat. Brain Res 287(2):139–171.PubMedGoogle Scholar
  31. Cammarota, J. P., Jr., and B. Onaral. 1998. State transitions in physiologic systems: a complexity model for loss of consciousness. IEEE Trans Biomed Eng 45(8):1017–1023.PubMedGoogle Scholar
  32. Cauller, L. 1995. Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71(1–2):163–170.PubMedGoogle Scholar
  33. Cauller, L. J., and A. T. Kulics. 1991. The neural basis of the behaviorally relevant N1 component of the somatosensory-evoked potential in SI cortex of awake monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp Brain Res 84(3):607–619.PubMedGoogle Scholar
  34. Chalmers, D. J. 1996. The conscious mind: in search of a fundamental theory, philosophy of mind series. New York: Oxford University Press.Google Scholar
  35. Chapin, J. K., B. D. Waterhouse, and D. J. Woodward. 1981. Differences in cutaneous sensory response properties of single somatosensory cortical neurons in awake and halothane anesthetized rats. Brain Res Bull 6(1):63–70.PubMedGoogle Scholar
  36. Coogan, T. A., and A. Burkhalter. 1990. Conserved patterns of cortico-cortical connections define areal hierarchy in rat visual cortex. Exp Brain Res 80(1):49–53.PubMedGoogle Scholar
  37. Crick, F., and C. Koch. 2003. A framework for consciousness. Nat Neurosci 6(2):119–126.PubMedGoogle Scholar
  38. Del Cul, A., S. Baillet, and S. Dehaene. 2007. Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol 5(10):e260.PubMedGoogle Scholar
  39. Desmedt, J. E., and C. Tomberg. 1994. Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett 168(1–2):126–129.PubMedGoogle Scholar
  40. Detsch, O., C. Vahle-Hinz, E. Kochs, M. Siemers, and B. Bromm. 1999. Isoflurane induces dose-dependent changes of thalamic somatosensory information transfer. Brain Res 829(1–2):77–89.PubMedGoogle Scholar
  41. Devor, M., and V. Zalkind. 2001. Reversible analgesia, atonia, and loss of consciousness on bilateral intracerebral microinjection of pentobarbital. Pain 94(1):101–112.PubMedGoogle Scholar
  42. Dong, H. L., S. Fukuda, E. Murata, and T. Higuchi. 2006. Excitatory and inhibitory actions of isoflurane on the cholinergic ascending arousal system of the rat. Anesthesiology 104(1):122–133.PubMedGoogle Scholar
  43. Donoghue, J. P., J. N. Sanes, N. G. Hatsopoulos, and G. Gaal. 1998. Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. J Neurophysiol 79(1):159–173.PubMedGoogle Scholar
  44. Dyhrfjeld-Johnsen, J., V. Santhakumar, R. J. Morgan, R. Huerta, L. Tsimring, and I. Soltesz. 2007. Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97(2):1566–1587.PubMedGoogle Scholar
  45. Eger, E. I., II, and J. M. Sonner. 2006. Anaesthesia defined (gentlemen, this is no humbug). Best Pract Res Clin Anaesthesiol 20(1):23–29.PubMedGoogle Scholar
  46. Engel, A. K., P. Konig, A. K. Kreiter, and W. Singer. 1991. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252(5010):1177–1179.Google Scholar
  47. Erchova, I. A., M. A. Lebedev, and M. E. Diamond. 2002. Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 15(4):744–752.PubMedGoogle Scholar
  48. Erdelyi, M. H. 2004. Subliminal perception and its cognates: theory, indeterminacy, and time. Conscious Cogn 13(1):73–91.PubMedGoogle Scholar
  49. Fell, J., G. Widman, B. Rehberg, C. E. Elger, and G. Fernandez. 2005. Human mediotemporal EEG characteristics during propofol anesthesia. Biol Cybern 92(2):92–100.PubMedGoogle Scholar
  50. Fiset, P., T. Paus, T. Daloze, G. Plourde, P. Meuret, V. Bonhomme, N. Hajj-Ali, S. B. Backman, and A. C. Evans. 1999. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19(13):5506–5513.PubMedGoogle Scholar
  51. Franks, N. P. 2008. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9(5):370–386.PubMedGoogle Scholar
  52. Fries, P., J. H. Reynolds, A. E. Rorie, and R. Desimone. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291(5508):1560–1563.PubMedGoogle Scholar
  53. Garrido, M. I., J. M. Kilner, S. J. Kiebel, and K. J. Friston. 2007. Evoked brain responses are generated by feedback loops. Proc Natl Acad Sci USA 104(52):20961–20966.PubMedGoogle Scholar
  54. Gong, G., Y. He, L. Concha, C. Lebel, D. W. Gross, A. C. Evans, and C. Beaulieu. 2009. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536.PubMedGoogle Scholar
  55. Gusnard, D. A., and M. E. Raichle. 2001. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685–694.PubMedGoogle Scholar
  56. Hagmann, P., M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and J. P. Thiran. 2007. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2(7):e597.PubMedGoogle Scholar
  57. Hagmann, P., L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen, and O. Sporns. 2008. Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159.PubMedGoogle Scholar
  58. Hameroff, S. R. 2006. The entwined mysteries of anesthesia and consciousness: is there a common underlying mechanism? Anesthesiology 105(2):400–412.PubMedGoogle Scholar
  59. Hameroff, S. R., A. W. Kaszniak, and A. Scott. 1996. Toward a science of consciousness: the first Tucson discussions and debates, Complex adaptive systems. Cambridge, MA: MIT Press.Google Scholar
  60. Hameroff, S. R., A. W. Kaszniak, and A. Scott. 1998. Toward a science of consciousness II: the second Tucson discussions and debates, complex adaptive systems. Cambridge, MA: MIT Press.Google Scholar
  61. Hartikainen, K., and M. G. Rorarius. 1999. Cortical responses to auditory stimuli during isoflurane burst suppression anaesthesia. Anaesthesia 54(3):210–214.PubMedGoogle Scholar
  62. Hartikainen, K., M. Rorarius, K. Makela, J. Perakyla, E. Varila, and V. Jantti. 1995. Visually evoked bursts during isoflurane anaesthesia. Br J Anaesth 74(6):681–685.PubMedGoogle Scholar
  63. Hartikainen, K. M., M. Rorarius, J. J. Perakyla, P. J. Laippala, and V. Jantti. 1995. Cortical reactivity during isoflurane burst-suppression anesthesia. Anesth Analg 81(6):1223–1228.PubMedGoogle Scholar
  64. He, Y., Z. Chen, G. Gong, and A. Evans. 2009. Neuronal networks in Alzheimer’s disease. The Neuroscientist 15(4):333–350.Google Scholar
  65. He, Y., J. Wang, L. Wang, Z. J. Chen, C. Yan, H. Yang, H. Tang, C. Zhu, Q. Gong, Y. Zang, and A. C. Evans. 2009. Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS ONE 4(4):e5226.PubMedGoogle Scholar
  66. Heinke, W., and S. Koelsch. 2005. The effects of anesthetics on brain activity and cognitive function. Curr Opin Anaesthesiol 18(6):625–631.PubMedGoogle Scholar
  67. Heinke, W., C. J. Fiebach, C. Schwarzbauer, M. Meyer, D. Olthoff, and K. Alter. 2004. Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. Br J Anaesth 92(5):641–650.PubMedGoogle Scholar
  68. Hentschke, H., C. Schwarz, and B. Antkowiak. 2005. Neocortex is the major target of sedative concentrations of volatile anaesthetics: strong depression of firing rates and increase of GABAA receptor-mediated inhibition. Eur J Neurosci 21(1):93–102.PubMedGoogle Scholar
  69. Hermer-Vazquez, R., L. Hermer-Vazquez, and S. Srinivasan. 2009. A putatively novel form of spontaneous coordination in neural activity. Brain Res Bull 79(1):6–14.PubMedGoogle Scholar
  70. Hobson, J. A., and E. F. Pace-Schott. 2002. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3(9):679–693.PubMedGoogle Scholar
  71. Hofbauer, R. K., P. Fiset, G. Plourde, S. B. Backman, and M. C. Bushnell. 2004. Dose-dependent effects of propofol on the central processing of thermal pain. Anesthesiology 100(2):386–394.PubMedGoogle Scholar
  72. Honey, C. J., and O. Sporns. 2008. Dynamical consequences of lesions in cortical networks. Hum Brain Mapp 29(7):802–809.PubMedGoogle Scholar
  73. Honey, C. J., O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann. 2009. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040.PubMedGoogle Scholar
  74. Hudetz, A. G. 2006. Suppressing Consciousness: mechanisms of general anesthesia. Semin Anesthesia Perioperative Med Pain 25(4):196–204.Google Scholar
  75. Hudetz, A. G. 2008. Are we unconscious during general anesthesia? Int Anesthesiol Clin 46(3):25–42.PubMedGoogle Scholar
  76. Hudetz, A. G., and O. A. Imas. 2007. Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology 107(6):983–991.PubMedGoogle Scholar
  77. Hudetz, A. G., J. D. Wood, and J. P. Kampine. 2003. Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram. Anesthesiology 99(5):1125–1131.PubMedGoogle Scholar
  78. Ikeda, H., and M. J. Wright. 1974a. Effect of halothane-nitrous oxide anaesthesia on the behaviour of ’sustained’ and ’transient’ visual cortical neurones. J Physiol 237(2):20P–21P.PubMedGoogle Scholar
  79. Ikeda, H., and M. J. Wright. 1974b. Sensitivity of neurones in visual cortex (area 17) under different levels of anaesthesia. Exp Brain Res 20(5):471–484.PubMedGoogle Scholar
  80. Imas, O. A., K. M. Ropella, J. D. Wood, and A. G. Hudetz. 2004. Halothane augments event-related gamma oscillations in rat visual cortex. Neuroscience 123(1):269–278.PubMedGoogle Scholar
  81. Imas, O. A., K. M. Ropella, B. D. Ward, J. D. Wood, and A. G. Hudetz. 2005a. Volatile anesthetics disrupt frontal-posterior recurrent information transfer at gamma frequencies in rat. Neurosci Lett 387(3):145–150.PubMedGoogle Scholar
  82. Imas, O. A., K. M. Ropella, B. D. Ward, J. D. Wood, and A. G. Hudetz . 2005b. Volatile anesthetics enhance flash-induced gamma oscillations in rat visual cortex. Anesthesiology 102(5):937–947.PubMedGoogle Scholar
  83. Imas, O. A., K. M. Ropella, J. D. Wood, and A. G. Hudetz. 2006. Isoflurane disrupts anterio-posterior phase synchronization of flash-induced field potentials in the rat. Neurosci Lett 402(3):216–221.PubMedGoogle Scholar
  84. Jackson, M. E., and L. J. Cauller. 1998. Neural activity in SII modifies sensory evoked potentials in SI in awake rats. Neuroreport 9(15):3379–3382.PubMedGoogle Scholar
  85. James, W. 1890. The principles of psychology. New York: H. Holt and Co.Google Scholar
  86. John, E. R. 2002. The neurophysics of consciousness. Brain Res Brain Res Rev 39(1):1–28.PubMedGoogle Scholar
  87. John, E. R., L. S. Prichep, W. Kox, P. Valdes-Sosa, J. Bosch-Bayard, E. Aubert, M. Tom, F. diMichele, and L. D. Gugino. 2001. Invariant reversible QEEG effects of anesthetics. Conscious Cogn 10(2):165–183.PubMedGoogle Scholar
  88. Jugovac, I., O. Imas, and A. G. Hudetz. 2006. Supraspinal anesthesia: behavioral and electroencephalographic effects of intracerebroventricularly infused pentobarbital, propofol, fentanyl and midazolam. Anesthesiology 105(4):1–15.Google Scholar
  89. Keil, A., M. M. Muller, W. J. Ray, T. Gruber, and T. Elbert. 1999. Human gamma band activity and perception of a gestalt. J Neurosci 19(16):7152–7161.PubMedGoogle Scholar
  90. Kerssens, C., S. Hamann, S. Peltier, X. P. Hu, M. G. Byas-Smith, and P. S. Sebel. 2005. Attenuated brain response to auditory word stimulation with sevoflurane: a functional magnetic resonance imaging study in humans. Anesthesiology 103(1):11–19.PubMedGoogle Scholar
  91. Knight, R. T. 2007. Neuroscience. Neural networks debunk phrenology. Science 316(5831):1578–1579.PubMedGoogle Scholar
  92. Koenig, T., L. Prichep, D. Lehmann, P. V. Sosa, E. Braeker, H. Kleinlogel, R. Isenhart, and E. R. John. 2002. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16(1):41–48.PubMedGoogle Scholar
  93. Kral, A., J. Tillein, R. Hartmann, and R. Klinke. 1999. Monitoring of anaesthesia in neurophysiological experiments. Neuroreport 10(4):781–787.PubMedGoogle Scholar
  94. Kroeger, D., and F. Amzica. 2007. Hypersensitivity of the anesthesia-induced comatose brain. J Neurosci 27(39):10597–10607.PubMedGoogle Scholar
  95. Kulli, J., and C. Koch. 1991. Does anesthesia cause loss of consciousness? Trends Neurosci 14(1):6–10.PubMedGoogle Scholar
  96. Lamme, V. A., and P. R. Roelfsema. 2000. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23(11):571–579.PubMedGoogle Scholar
  97. Laureys, S. 2005. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 9(12):556–559.PubMedGoogle Scholar
  98. Lee, U., S. Kim, G. J. Noh, B. M. Choi, E. Hwang, and G. A. Mashour. 2009. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. In press. [Epub ahead of print (May 12)].Google Scholar
  99. Lee, U., G. A. Mashour, S. Kim, G. J. Noh, and B. M. Choi. 2009. Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious Cogn 18(1):56–64.PubMedGoogle Scholar
  100. Libet, B. 1982. Brain stimulation in the study of neuronal functions for conscious sensory experiences. Hum Neurobiol 1(4):235–242.PubMedGoogle Scholar
  101. Libet, B., D. K. Pearl, D. E. Morledge, C. A. Gleason, Y. Hosobuchi, and N. M. Barbaro. 1991. Control of the transition from sensory detection to sensory awareness in man by the duration of a thalamic stimulus. The cerebral ’time-on’ factor. Brain 114(Pt 4):1731–1757.PubMedGoogle Scholar
  102. Lipschutz, J. H., R. M. Pascuzzi, J. Bognanno, and T. Putty. 1991. Bilateral anterior cerebral artery infarction resulting from explosion-type injury to the head and neck. Stroke 22(6):813–815.PubMedGoogle Scholar
  103. Lydic, R. 1996. Reticular modulation of breathing during sleep and anesthesia. Curr Opin Pulm Med 2(6):474–481.PubMedGoogle Scholar
  104. Lydic, R., and J. F. Biebuyck. 1994. Sleep neurobiology: relevance for mechanistic studies of anaesthesia. Br J Anaesth 72(5):506–508.PubMedGoogle Scholar
  105. Ma, J., B. Shen, L. S. Stewart, I. A. Herrick, and L. S. Leung. 2002. The septohippocampal system participates in general anesthesia. J Neurosci 22(2):RC200.PubMedGoogle Scholar
  106. Maloney, K. J., E. G. Cape, J. Gotman, and B. E. Jones. 1997. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat. Neuroscience 76(2):541–555.PubMedGoogle Scholar
  107. Mashour, G. A. 2004. Consciousness unbound: toward a paradigm of general anesthesia. Anesthesiology 100(2):428–433.PubMedGoogle Scholar
  108. Mashour, G. A., S. A. Forman, and J. A. Campagna. 2005. Mechanisms of general anesthesia: from molecules to mind. Best Pract Res Clin Anaesthesiol 19(3):349–364.PubMedGoogle Scholar
  109. Melloni, L., C. Molina, M. Pena, D. Torres, W. Singer, and E. Rodriguez. 2007. Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27(11):2858–2865.PubMedGoogle Scholar
  110. Metzinger, T. 2000. Neural correlates of consciousness : empirical and conceptual questions. Cambridge, MA: MIT Press.Google Scholar
  111. Meunier, D., S. Achard, A. Morcom, and E. Bullmore. 2009. Age-related changes in modular organization of human brain functional networks. Neuroimage 44(3):715–723.PubMedGoogle Scholar
  112. Meuret, P., S. B. Backman, V. Bonhomme, G. Plourde, and P. Fiset. 2000. Physostigmine reverses propofol-induced unconsciousness and attenuation of the auditory steady state response and bispectral index in human volunteers. Anesthesiology 93(3):708–717.PubMedGoogle Scholar
  113. Miller, J. W., C. M. Hall, K. D. Holland, and J. A. Ferrendelli. 1989. Identification of a median thalamic system regulating seizures and arousal. Epilepsia 30(4):493–500.PubMedGoogle Scholar
  114. Muller, M. M., T. Gruber, and A. Keil. 2000. Modulation of induced gamma band activity in the human EEG by attention and visual information processing. Int J Psychophysiol 38(3):283–299.PubMedGoogle Scholar
  115. Munglani, R., J. Andrade, D. J. Sapsford, A. Baddeley, and J. G. Jones. 1993. A measure of consciousness and memory during isoflurane administration: the coherent frequency. Br J Anaesth 71(5):633–641.PubMedGoogle Scholar
  116. Munk, M. H., P. R. Roelfsema, P. Konig, A. K. Engel, and W. Singer. 1996. Role of reticular activation in the modulation of intracortical synchronization. Science 272(5259):271–274.PubMedGoogle Scholar
  117. Naghavi, H. R., and L. Nyberg. 2005. Common fronto-parietal activity in attention, memory, and consciousness: shared demands on integration? Conscious Cogn 14(2):390–425.PubMedGoogle Scholar
  118. Nelson, L. E., T. Z. Guo, J. Lu, C. B. Saper, N. P. Franks, and M. Maze. 2002. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 5(10):979–984.PubMedGoogle Scholar
  119. Ogawa, T., K. Shingu, M. Shibata, M. Osawa, and K. Mori. 1992. The divergent actions of volatile anaesthetics on background neuronal activity and reactive capability in the central nervous system in cats. Can J Anaesth 39(8):862–872.PubMedGoogle Scholar
  120. Osa, M., M. Ando, and E. Adachi-Usami. 1989. Human flash visually evoked cortical potentials under different levels of halothane anesthesia. Nippon Ganka Gakkai Zasshi 93(2):265–270.PubMedGoogle Scholar
  121. Pascual-Leone, A., and V. Walsh. 2001. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292(5516):510–512.PubMedGoogle Scholar
  122. Pawela, C. P., B. B. Biswal, Y. R. Cho, D. S. Kao, R. Li, S. R. Jones, M. L. Schulte, H. S. Matloub, A. G. Hudetz, and J. S. Hyde. 2008. Resting-state functional connectivity of the rat brain. Magn Reson Med 59(5):1021–1029.PubMedGoogle Scholar
  123. Pawela, C. P., A. G. Hudetz, B. D. Ward, M. L. Schulte, R. Li, D. S. Kao, M. C. Mauck, Y. R. Cho, J. Neitz, and J. S. Hyde. 2008. Modeling of region-specific fMRI BOLD neurovascular response functions in rat brain reveals residual differences that correlate with the differences in regional evoked potentials. Neuroimage 41(2):525–534.PubMedGoogle Scholar
  124. Peltier, S. J., C. Kerssens, S. B. Hamann, P. S. Sebel, M. Byas-Smith, and X. Hu. 2005. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport 16(3):285–288.PubMedGoogle Scholar
  125. Pfurtscheller, G., D. Flotzinger, and C. Neuper. 1994. Differentiation between finger, toe and tongue movement in man based on 40 Hz EEG. Electroencephalogr Clin Neurophysiol 90(6):456–460.PubMedGoogle Scholar
  126. Plourde, G., and C. Villemure. 1996. Comparison of the effects of enflurane/N2O on the 40-Hz auditory steady- state response versus the auditory middle-latency response. Anesth Analg 82(1):75–83.PubMedGoogle Scholar
  127. Plourde, G., J. Baribeau, and V. Bonhomme. 1997. Ketamine increases the amplitude of the 40-Hz auditory steady-state response in humans. Br J Anaesth 78(5):524–529.PubMedGoogle Scholar
  128. Plourde, G., P. Belin, D. Chartrand, P. Fiset, S. B. Backman, G. Xie, and R. J. Zatorre. 2006. Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology 104(3):448–457.PubMedGoogle Scholar
  129. Plourde, G., C. Villemure, P. Fiset, V. Bonhomme, and S. B. Backman. 1998. Effect of isoflurane on the auditory steady-state response and on consciousness in human volunteers. Anesthesiology 89(4):844–851.PubMedGoogle Scholar
  130. Rabe, L. S., L. Moreno, B. M. Rigor, and N. Dafny. 1980. Effects of halothane on evoked field potentials recorded from cortical and subcortical nuclei. Neuropharmacology 19(9):813–825.PubMedGoogle Scholar
  131. Raichle, M. E., A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman. 2001. A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682.PubMedGoogle Scholar
  132. Rampil, I. J., and B. S. King. 1996. Volatile anesthetics depress spinal motor neurons. Anesthesiology 85(1):129–134.PubMedGoogle Scholar
  133. Rampil, I. J., and M. J. Laster. 1992. No correlation between quantitative electroencephalographic measurements and movement response to noxious stimuli during isoflurane anesthesia in rats. Anesthesiology 77(5):920–925.PubMedGoogle Scholar
  134. Rampil, I. J., P. Mason, and H. Singh. 1993. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 78(4):707–712.PubMedGoogle Scholar
  135. Rees, G., G. Kreiman, and C. Koch. 2002. Neural correlates of consciousness in humans. Nat Rev Neurosci 3(4):261–270.PubMedGoogle Scholar
  136. Riehle, A., F. Grammont, M. Diesmann, and S. Grun. 2000. Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation. J Physiol Paris 94(5–6):569–582.PubMedGoogle Scholar
  137. Ries, C. R., and E. Puil. 1999a. Ionic mechanism of isoflurane’s actions on thalamocortical neurons. J Neurophysiol 81(4):1802–1809.PubMedGoogle Scholar
  138. Ries, C. R., and E. Puil. 1999b. Mechanism of anesthesia revealed by shunting actions of isoflurane on thalamocortical neurons. J Neurophysiol 81(4):1795–1801.PubMedGoogle Scholar
  139. Robbins, S. E. 2004. On time, memory and dynamic form. Conscious Cogn 13(4):762–788.PubMedGoogle Scholar
  140. Robson, J. G. 1967. The effects of anesthetic drugs on cortical units. Anesthesiology 28(1):144–154.PubMedGoogle Scholar
  141. Rodriguez, E., N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela. 1999. Perception’s shadow: long-distance synchronization of human brain activity. Nature 397(6718):430–433.PubMedGoogle Scholar
  142. Roelfsema, P. R., A. K. Engel, P. Konig, and W. Singer. 1997. Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385(6612):157–161.PubMedGoogle Scholar
  143. Rojas, M. J., J. A. Navas, S. A. Greene, and D. M. Rector. 2008. Discrimination of auditory stimuli during isoflurane anesthesia. Comp Med 58(5):454–457.PubMedGoogle Scholar
  144. Rozenfeld, H. D., and D. Ben-Avraham. 2007. Percolation in hierarchical scale-free nets. Phys Rev E Stat Nonlin Soft Matter Phys 75(6 Pt 1):061102.PubMedGoogle Scholar
  145. Salvador, R., J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and E. Bullmore. 2005. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15(9):1332–1342.PubMedGoogle Scholar
  146. Sarnthein, J., H. Petsche, P. Rappelsberger, G. L. Shaw, and A. von Stein. 1998. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95(12):7092–7096.PubMedGoogle Scholar
  147. Schiff, N. D., and F. Plum. 2000. The role of arousal and "gating" systems in the neurology of impaired consciousness. J Clin Neurophysiol 17(5):438–452.PubMedGoogle Scholar
  148. Schwender, D., M. Daunderer, S. Mulzer, S. Klasing, U. Finsterer, and K. Peter. 1997. Midlatency auditory evoked potentials predict movements during anesthesia with isoflurane or propofol. Anesth Analg 85(1):164–173.PubMedGoogle Scholar
  149. Schwender, D., M. Daunderer, N. Schnatmann, S. Klasing, U. Finsterer, and K. Peter. 1997. Midlatency auditory evoked potentials and motor signs of wakefulness during anaesthesia with midazolam. Br J Anaesth 79(1):53–58.PubMedGoogle Scholar
  150. Schwender, D., S. Klasing, P. Conzen, U. Finsterer, E. Poppel, and K. Peter. 1996. Midlatency auditory evoked potentials during anaesthesia with increasing endexpiratory concentrations of desflurane. Acta Anaesthesiol Scand 40(2):171–176.PubMedGoogle Scholar
  151. Schwender, D., E. Weninger, M. Daunderer, S. Klasing, E. Poppel, and K. Peter. 1995. Anesthesia with increasing doses of sufentanil and midlatency auditory evoked potentials in humans. Anesth Analg 80(3):499–505.PubMedGoogle Scholar
  152. Shao, Z., and A. Burkhalter. 1996. Different balance of excitation and inhibition in forward and feedback circuits of rat visual cortex. J Neurosci 16(22):7353–7365.PubMedGoogle Scholar
  153. Shulman, R. G., F. Hyder, and D. L. Rothman. 2003. Cerebral metabolism and consciousness. C R Biol 326(3):253–273.PubMedGoogle Scholar
  154. Srinivasan, R., D. P. Russell, G. M. Edelman, and G. Tononi. 1999. Increased synchronization of neuromagnetic responses during conscious perception. J Neurosci 19(13):5435–5448.PubMedGoogle Scholar
  155. Steinmetz, P. N., A. Roy, P. J. Fitzgerald, S. S. Hsiao, K. O. Johnson, and E. Niebur. 2000. Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404(6774):187–190.PubMedGoogle Scholar
  156. Steriade, M. 1998. Corticothalamic networks, oscillations, and plasticity. Adv Neurol 77:105–134.PubMedGoogle Scholar
  157. Steyn-Ross, M. L., D. A. Steyn-Ross, J. W. Sleigh, and L. C. Wilcocks. 2001. Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. I. A thermodynamics analogy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 64(1–1):011917.Google Scholar
  158. Steyn-Ross, D. A., M. L. Steyn-Ross, L. C. Wilcocks, and J. W. Sleigh. 2001. Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. II. Numerical simulations, spectral entropy, and correlation times. Phys Rev E Stat Nonlin Soft Matter Phys 64(1 Pt 1):011918.PubMedGoogle Scholar
  159. Stins, J. F. 2009. Establishing consciousness in non-communicative patients: a modern-day version of the Turing test. Conscious Cogn 18(1):187–192.PubMedGoogle Scholar
  160. Stuss, D. T., T. W. Picton, and M. P. Alexander. 2001. Consciousness, self awareness, and the frontal lobes. In The frontal lobes and neuropsychiatric illness. Washington, DC: American Psychiatric Pub.Google Scholar
  161. Super, H., H. Spekreijse, and V. A. Lamme. 2001. Two distinct modes of sensory processing observed in monkey primary visual cortex (V1). Nat Neurosci 4(3):304–310.PubMedGoogle Scholar
  162. Swindale, N. V. 2003. Neural synchrony, axonal path lengths, and general anesthesia: a hypothesis. Neuroscientist 9(6):440–445.PubMedGoogle Scholar
  163. Tallon-Baudry, C., and O. Bertrand. 1999. Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3(4):151–162.PubMedGoogle Scholar
  164. Tallon-Baudry, C., A. Kreiter, and O. Bertrand. 1999. Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans. Vis Neurosci 16(3):449–459.PubMedGoogle Scholar
  165. Tigwell, D. A., and J. Sauter. 1992. On the use of isoflurane as an anaesthetic for visual neurophysiology. Exp Brain Res 88(1):224–228.PubMedGoogle Scholar
  166. Tiitinen, H., J. Sinkkonen, K. Reinikainen, K. Alho, J. Lavikainen, and R. Naatanen. 1993. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364(6432):59–60.PubMedGoogle Scholar
  167. Tononi, G. 2004. An information integration theory of consciousness. BMC Neurosci 5(1):42.PubMedGoogle Scholar
  168. Treisman, A. 1996. The binding problem. Curr Opin Neurobiol 6(2):171–178.PubMedGoogle Scholar
  169. Vanderwolf, C. H. 2000. Are neocortical gamma waves related to consciousness? Brain Res 855(2):217–224.PubMedGoogle Scholar
  170. Velly, L. J., M. F. Rey, N. J. Bruder, F. A. Gouvitsos, T. Witjas, J. M. Regis, J. C. Peragut, and F. M. Gouin. 2007. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology 107(2):202–212.PubMedGoogle Scholar
  171. Velmans, M., and S. Schneider. 2007. The Blackwell companion to consciousness. Malden, MA; Oxford: Blackwell Pub.Google Scholar
  172. Veselis, R. A., V. A. Feshchenko, R. A. Reinsel, B. Beattie, and T. J. Akhurst. 2005. Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology 102(1):26–34.PubMedGoogle Scholar
  173. Villeneuve, M. Y., and C. Casanova. 2003. On the use of isoflurane versus halothane in the study of visual response properties of single cells in the primary visual cortex. J Neurosci Methods 129(1):19–31.PubMedGoogle Scholar
  174. Vincent, J. L., G. H. Patel, M. D. Fox, A. Z. Snyder, J. T. Baker, D. C. Van Essen, J. M. Zempel, L. H. Snyder, M. Corbetta, and M. E. Raichle. 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447(7140):83–86.PubMedGoogle Scholar
  175. Vogt, B. A., and S. Laureys. 2005. Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res 150:205–217.PubMedGoogle Scholar
  176. von Stein, A., C. Chiang, and P. Konig. 2000. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA 97(26):14748–14753.Google Scholar
  177. von Stein, A., P. Rappelsberger, J. Sarnthein, and H. Petsche. 1999. Synchronization between temporal and parietal cortex during multimodal object processing in man. Cereb Cortex 9(2):137–150.Google Scholar
  178. Wang, J., L. Wang, Y. Zang, H. Yang, H. Tang, Q. Gong, Z. Chen, C. Zhu, and Y. He. 2009. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30(5):1511–1523.PubMedGoogle Scholar
  179. Weiskrantz, L. 1990. The Ferrier lecture, 1989. Outlooks for blindsight: explicit methodologies for implicit processes. Proc R Soc Lond B Biol Sci 239(1296):247–278.PubMedGoogle Scholar
  180. Wheeler, M. A., and D. T. Stuss. 2003. Remembering and knowing in patients with frontal lobe injuries. Cortex 39(4–5):827–846.PubMedGoogle Scholar
  181. Woods, J. W. 1964. Behavior of chronic decerebrate rats. J Neurophysiol 27:635–644.PubMedGoogle Scholar
  182. Young, G. B., and S. E. Pigott. 1999. Neurobiological basis of consciousness. Arch Neurol 56(2):153–157.PubMedGoogle Scholar
  183. Zeman, A. 2002. Consciousness: a user’s guide. New Haven, CT: Yale University Press.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of AnesthesiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations